Molecular Phylogenetics and Evolution Vol. 20, No. 3, September, pp. 390 – 408, 2001 doi:10.1006/mpev.2001.0957, available online at http://www.idealibrary.com on
Molecular Phylogeny of Gobioid Fishes (Perciformes: Gobioidei) Based on Mitochondrial 12S rRNA Sequences Hurng-Yi Wang,* Mung-Pei Tsai,† Jerry Dean,‡ and Sin-Che Lee† *Department of Biology, National Taiwan Normal University, Taipei, Taiwan; †Laboratory of Molecular Systematics of Fishes, Institute of Zoology, Academia Sinica, Taipei 11529, Taiwan; and ‡Animal Conservation Genetics Resource Science and Management, Southern Cross University, Lismore 2480, Australia Received June 27, 2000; revised January 3, 2001; published online July 23, 2001
The molecular phylogeny of the gobioid fishes, comprising 33 genera and 43 valid species, was examined by use of complete mitochondrial 12S rRNA and tRNA VAL genes. Both parsimony and neighbor-joining analyses revealed comparable results and are generally congruent with those of morphological studies. The Odontobutis, which was always placed at the base of the phylogenetic trees, can be treated as a sister group of all other nonrhyacichthyid gobioids. Within eleotrid fishes, the monophyly of the Eleotrinae is strongly supported by molecular data. The Butinae is closer to fishes with five branchiostegal rays and should be treated as a sister group of the latter. The group with five branchiostegal rays, except for sicydiines, can be divided into two groups according to their epural counts. Fish with one epural, the Gobiinae of Pezold plus Microdesmidae, form a monophyletic group which is sister to those with two epurals, the Oxudercinae and Gobionellinae of Pezold. However, Sicydiinae, which have one epural, are closer to the Oxudercinae and Gobionellinae rather than to the Gobiinae. Since progressive reduction in epural number has been observed along this lineage, the sicydiines should be treated as a derived group within the groups with two epurals. © 2001 Academic Press Key Words: Gobioidei; Eleotridae; Gobiidae; mitochondrial 12S rRNA; molecular phylogeny.
INTRODUCTION The Gobioidei is one of the largest vertebrate suborders with approximately 2000 extant species of freshwater, estuarine, and marine fishes classified into about 270 genera (Nelson, 1994). The high diversity, with small adult size of most gobioid species, has hindered full understanding of the taxa and has led to chaos in their systematic relationships. Within the suborder Gobioidei, the Rhyacichthyidae has been corroborated as a sister group of all other gobioids (Miller, 1973). The other nonrhyacichthyid gobioids have been 1055-7903/01 $35.00 Copyright © 2001 by Academic Press All rights of reproduction in any form reserved.
placed in the unique family Gobiidae (Miller, 1973) or divided into five families: the Eleotridae, Xenisthmidae, Gobiidae, Microdesmidae, and Kraemeriidae (Hoese, 1984; Table 1). Hoese (1967) divided these nonrhyacichthyid gobioids into two groups: one for species with six branchiostegal rays [Eleotrinae and Xenisthminae of Miller (1973); Eleotridae and Xenisthmidae of Hoese (1984)] and the other for those with five branchiostegal rays [Gobiinae, Gobionellinae, and Kraemeriinae of Miller (1973); Gobiidae, Kraemeriidae, and Microdesmidae of Hoese (1984)]. Having six branchiostegal rays is the character recognized as a plesiomorphy within the Gobioidei (generalized perciforms have six or seven), and the loss of one ray may be a synapomorphy for the group with five rays. Within the six-branchiostegal-ray group, Springer (1983), in a review of osteology and classification of gobioids, provided information on specialization for defining xenisthmids. He also noted that the Eleotrinae of Miller (⫽Eleotrididae of Hoese) was not defined by any synapomorphy. Hoese and Gill (1993) proposed that the eleotrid fishes should be subdivided into the Odontobutidae, Butinae, and Eleotrinae (Table 1). However, in contrast to the last group, no derived characters well-characterize the other two. In addition, they recognize Butinae and Eleotrinae as two of three subfamilies within the Gobiidae and treat all other taxa with five branchiostegal rays as a third subfamily (Fig. 1). This arrangement produced ambiguities among the relationships within their systematic system. A more intensive investigation of the phylogeny of traditional eleotrid fishes and their relationships with other gobiids is necessary. Despite sharing a synapomorphy, the phylogenetic relationships among the five-branchiostegal-ray groups (the so-called true gobiids) are also uncertain. According to the number of epurals, Miller (1973) divided the gobiids into two groups: the group with two epurals belongs to the Gobionellinae, which includes Oxudercinae, Amblyopinae, and Hoese’s (1984) Gobiinae in part; the other group with one epural belongs to the
390
PHYLOGENY OF GOBIOID FISHES
TABLE 1 Classification of Gobioid Fishes Miller (1973)
Hoese (1984)
Family Gobiidae* Subfamily Eleotrinae 2 Subfamily Xenisthminae* 2 Subfamily Gobionellinae 2 Subfamily Priskeninae B Subfamily Gobiinae 1 Subfamily Kraemeriinae* 1
Family Eleotridae 2 Family Xenisthmidae* 2 Family Kraemeriidae* 1 Family Microdesmidae* 1 Family Gobiidae* Subfamily Gobiinae 1,2 Subfamily Sicydiinae* 1 Subfamily Oxudercinae* 2 Subfamily Amblyopinae 2
Nelson (1994) A Family Odontobutidae 2 Family Eleotridae Subfamily Eleotrinae* 2 Subfamily Butinae 2 Family Xenisthmidae* 2 Family Kraemeriidae* 1 Family Microdesmidae* 1 Family Gobiidae* Subfamily Gobiinae* 1 Subfamily Sicydiinae* 1 Subfamily Oxudercinae* 2 Subfamily Amblyopinae* 2 Subfamily Gobionellinae 2
Note. An asterisk (*) signifies a monophyletic taxon. Boldface indicates six-branchiostegal-ray taxa. Superscripts 1 and 2 indicate the epural numbers. A The classification was based on Hoese and Gill (1993) and Pezold (1993). B Only a fossil record was found.
391
other hand, we noted that the decreased number of species in the Gobiinae (Pezold, 1993) was caused by the transfer of species with two epurals to the newly revised Gobionellinae. It dawned on us that the number of epurals may provide valuable phylogenetic information. Herein we address three questions: (1) Should traditional eleotrid fishes be treated as three different groups as Hoese and Gill (1993) proposed? (2) What is the phylogenetic relationship between the fish with six and those with five branchiostegal rays or which taxon or taxa are more closely related to the true gobiids than others are? (3) Since the relationships within the fish with five branchiostegal rays (Gobiidae) have not been proposed yet, is the phylogenetic system proposed by Miller (1973), which relies mainly on the number of epural bones, informative? Sequences of the 12S ribosomal RNA gene have been widely used in phylogenetic studies in vertebrates (Penzo et al., 1998; Simons and Mayden, 1998; Gatesy et al., 1997; Montgelard et al., 1997; Lavergne et al., 1996; Richards and Moore, 1996; Springer and Douzery, 1996; Ledje and Arnason, 1996; Douzery and Catzeflis, 1995; Kjer, 1995). So far, no comprehensive analysis of the phylogenetic relationships with the Gobioidei has been published. Limited information, derived from morphological evidence, is either contradictory or controversial. The present study used complete 12S rRNA and tRNA VAL genes as genetic markers to evaluate the phylogenetic relationships among the gobioids. MATERIALS AND METHODS
Gobiinae, which includes Microdesmidae, Sicydiinae, and part of Hoese’s (1984) Gobiinae. This arrangement was criticized because the reduction of epural number from two to one has probably occurred several times. By excluding microdesmids, Hoese (1984) combined the Gobiinae and Gobionellinae of Miller (1973) into one group, the Gobiidae, with four subfamilies: the Oxudercinae, Amblyopinae, Sicydiinae, and Gobiinae. Within the Gobiidae designated by Hoese (1984), monophyly has been proposed for the Sicydiinae (Parenti and Thomas, 1998; Harrison, 1989), Oxudercinae (Murdy, 1989), and Amblyopinae (Pezold, 1993). Based on the oculoscapular canal system in gobioid fishes, Pezold (1993) proposed that a unique modification of the anterior oculoscapular canal is synapomorphic for most species included in Hoese’s Gobiinae. This delimitation of the Gobiinae resulted in a remnant group of genera being placed in an additional subfamily, the Gobionellinae (Table 1). As a consequence, five subfamilies, the Amblyopinae, Gobiinae, Oxudercinae, Sicydiinae, and Gobionellinae, within Gobiidae have been recognized (Nelson, 1994) as having a monophyletic origin except for the last group (Gobionellinae). On the
Specimens for DNA extraction used in this study are listed in Table 2. Most specimens were identified to species, but in some case the identification was only to genus, due to the scarcity of a reliable key. Crude DNA from fresh or 95% ethanol-preserved muscle samples was extracted following Kocher et al. (1989), except that we used an overnight incubation instead. The DNA was purified by two extractions with
FIG. 1. Hypothesized interrelationships of the Gobioidei based on Hoese and Gill (1993). The Gobiinae here represents all fivebranchiostegal-ray taxa, including Kraemeriidae, Microdesmidae, and Gobiidae in Nelson (1994). The Xenisthmidae was not included in this dendrogram, but Hoese and Gill (1993) suggest that it should be close to the Butinae.
392
WANG ET AL.
TABLE 2 Taxa Analyzed in This Study Species Perciformes Odontobutidae Eleotridae Butinae
Eleotrinae
Gobiidae Gobiinae
Gobionellinae
Sicydiinae Oxudercinae Microdesmidae
Scombridae
Odontobutis obscura Butis kilomatodon Butis melanostigma Butis butis Butis sp. Bortrichthys marmoratus Oxyeleotris urophthalmoides Bostrychus sinensis Ophiocara porocephala Eleotris fuscus E. melanosoma E. acanthopoma Mogurnda mogurnda Mogurnda adspersa Ophieleotris aporos Ophieleotris sp. Hypseleotris galii Hypseleotris compressa Philypodon grandiceps Philypodon sp. Gobiomorphus australis Glossogobius celebius Istigobius sp. Exyrias puntang Valenciennea strigatus Gobiodon sp. Amblyeleotris gattata Pseudogobiopsis oligactis Brachygobius xanthomelas Redigobius bikolanus Rhinogobius sp. Gobiopterus brachypterus Oligolepis acutipinnis Stenogobius sp. Stiphodon ornata Sicyopterus longifilis Periophthalmus modestus Boleophthalmus pectinirostris Pogonoculus zebra Ptereleotris evides Ptereleotris heteroptera Nemateleotris magnificus Nemateleorris sp. Scomber australasicus
phenol, one or two with phenol/chloroform/isoamyl alcohol (25:24:1) and one with chloroform/isoamyl alcohol (24:1), followed by ethanol precipitation with a 1/10 volume of NaOAC. Two primers (12SL and 12SR) were used to amplify the complete mitochondrial 12S ribosomal RNA and tRNA VAL genes by polymerase chain reaction (PCR). The primer sequences of 12SR: 5⬘-TTT CAT GTT TCC TTG CGG TAC-3⬘ and 12SL: 5⬘-AAA GCA CGG CAC TGA AGA TGC-3⬘ are based on Wang et al. (2000). PCR was performed in a 50-l reaction volume containing 5
l of 10⫻ reaction buffer (10 mM Tris–HCl, pH 9.0; 50 mM KCl; 15 mM MgCl 2; 0.1% (w/v) gelatin; 1% Triton X-100), 0.4 M each primer, 0.2 M each dNTP, 50 – 100 ng of crude DNA, and 1 unit of Taq polymerase (InViTAQ, Germany). The amplification was carried out using the following cycling parameters: initial denaturation at 94°C for 2 min, 35 cycles of denaturation at 94°C for 1 min, and primer annealing at 50°C for 1 min, followed by extention at 72°C for 1.5 min. The last cycle employed an extension time of 10 min. PCR products were purified from agarose gels with a Gene Clean III elution kit, following the instructions provided by the manufacturer (BIO 101, USA). The sequences were determined with dye terminator cycle sequencing reactions that were subsequently loaded onto an Applied Biosystems 377A automatic sequencer, following the protocols produced by the manufacturer. Both strands were sequenced by two internal primers, ES1: 5⬘-AAC TGG GAT TAG ATA CCC CAC TAT G-3⬘ and ES3R: 5⬘-GTT CTA GAA GCT CCT CTA GG-3⬘. DNA sequences were primarily aligned with the default parameters of CLUSTAL W (Thompson, et al., 1994). The sequences contain the complete 12S rRNA and tRNA VAL and about 150 bp of 16S rRNA genes. The 16S rRNA gene was excluded from further analysis because of its ambiguous alignment. Sequence alignment was improved by recognition of stem regions as proposed by Springer and Douzery (1996) with some modifications. After sequence alignment, we eliminated the regions that could not be aligned reliably (see Appendix) and created three data sets including loops, stems, and loops ⫹ stems. In further analysis, all three data sets were analyzed separately. According to the transitional biases in the data, we performed different weighting schemes in our phylogenetic reconstructions: TS1TV1 (TS and TV were equally weighted), TS1TV2 (TV was given twice the weight of TS), and TS1TV3. Because the TS bias can reach as much as 10 times greater than that of TV in stem regions, two additional weighting schemes, TS1TV5 and TS1TV10, were performed when only stems were analyzed. We also analyzed the combined data set with or without tRNA VAL to test whether the topology differed. We estimated phylogenetic relationships among taxa by using two phylogenetic methods with Scomber australasicus (Pereiformes) as an outgroup. The maximum parsimony method (MP) was carried out with the PAUP program version 4.0 (Swofford, 2000). The distance neighbor-joining (NJ) method with Tamura and Nei’s (1993) distances was also performed with the PAUP. Parsimony analyses were conducted with heuristie searches with 20 replications of random stepwise additions to find the minimal evolutionary tree(s). Three hundred bootstrap replications with 10 heuristic, random stepwise additions were performed to de-
393
PHYLOGENY OF GOBIOID FISHES
TABLE 3 Bootstrap Values of Different TS/TV Weighting Schemes for the Major Nodes of Gobioidei Phylogeny Based on Combined Data Sets TS1TV1
TS1TV2
TS1TV3
Node*
NJ
MP
NJ
MP
NJ
MP
ELE A BUTI B GBI GBNE
95 58 64 90 98 92
60 82 — 80 78 81
97 53 64 83 99 87
51 73 — 82 70 81
96 54 63 88 98 91
50 70 — 85 66 85
* The represented nodes are the same as those in Fig. 3.
termine statistical support levels. In NJ analyses, bootstrap replications were performed 500 times for each weight used. Confidence levels of the NJ tree were also assessed by calculating the confidence probability (CP) of each branch length with MEGA (Kumar et al., 1993). Computer simulations suggest that CP values are better estimators of statistical reliability of branches than are bootstrap P values (Sitnikova et al., 1995). RESULTS A 1078-bp sequence, containing 1003 bp of mitochondrial 12S rRNA and 75 bp of tRNA VAL genes, was aligned. Sequences that could not be reliably aligned were excluded from further analyses (Appendix). Thus, the analyzed sequences contained 914 bp of 12S rRNA and 75 bp of tRNA VAL genes. All sequences were registered with GenBank (Accession Nos. AF265363– AF265402 and AF265404 –AF265407). Of the 12S rRNA genes analyzed, there were 449 bp in stems and 465 bp in loops. There were 188 variable and 109 informative sites in stem regions and 273 and 214, respectively, in loop regions. In the beginning, we performed different weighting schemes to analyze data sets. The relationships of the major groups when different TS/TV weighting schemes were applied were essentially the same (Tables 3 and 4). The results of different weighting schemes for stem regions are not shown because only one node was resolved. We, therefore, present only unweighted trees in our results. With stems and loops in combination, both data sets with and without tRNA were carried out. The tree topologies from the above two data sets were essentially the same, but the result with higher bootstrap supports was obtained with tRNA gene, so only the result with tRNA is presented. Distance method. Initially, different distance models, including Jukes and Cantor one-parameter, Kimura two-parameter, and Tamura and Nei models were used to correct pairwise distances for multiple
hits. Since the distances estimated and neighbor-joining trees generated by different methods were identical at the 50% consensus level, we finally chose the neighbor-joining trees by Tamura and Nei distance to present in this paper. In the analysis of the combined data set (stems ⫹ loops ⫹ tRNA VAL), Odontobutis is at the root of the tree (Fig. 2). The remaining gobioids form four clades: ELE including genera of Eleotrinae (Hoese and Gill, 1993); BUTI including genera of Butinae (Hoese and Gill, 1993); GBNE including Gobionellinae (Pezold, 1993), Sicydiinae, and Oxudercinae; and GBI including Gobiinae (Pezold, 1993) and Microdesmidae. Except for Odontobutis, the ELE clade is at the base of the tree and is sister to the other major clades. Of the other three major clades, BUTI is considered to be a sister group to the GBI ⫹ GBNE clades, and the monophyly of the fish with five branchiostegal rays (GBI ⫹ GBNE) was strongly supported by 90% of bootstrap replications. Three of four clades, except BUTI, are supported by high bootstrap and CP values (⬎90%), but the bootstrap to support the BUTI clades is only 64% of replications. Within ELE, Mogurnda and Ophieleotris is sister to each other and both are positioned at the base of this lineage. Eleotris is an outgroup of the rest of the genera including Hypseleotris, Philypodon, and Gobiomorphus. The BUTI is divided into two groups: the lineage with Bortrichthys, Bostrychus, Ophiocara, and Oxyeleotris and the sister group Butis. The GBI contains the Gobiinae and microdesmids, the latter being strongly supported as a monophyly (95% BPs). Within the Gobiinae, Istigobius and Exyrias are well paired when compared to other genera. In GBNE, three lineages are observed: the first with Brachygobius and its sister group Gobiopterus, the second with Pseudogobiopsis and its sister group Redigobius, and the third comprising the rest of the genera named GBNE-A clade (60% of BP replicates). Within the GBNE-A, Rhinogobius and Oxudercines (Periophthalmus ⫹ Boleophthalmus) are at the base of the lineage, and Oligolep is the sister group to Stenogobius ⫹ the sicydiines (Sicyopterus and Stiphodon). TABLE 4 Bootstrap Values of Different TS/TV Weighting Schemes for the Major Nodes of Gobioidei Phylogeny Based on Loop Regions Only TS1TV1
TS1TV2
TS1TV3
Node*
NJ
MP
NJ
MP
NJ
MP
ELE A BUTI B GBI GBNE
72 — 59 82 76 81
32 — 40 60 51 74
70 — 61 80 75 82
23 — 42 62 50 76
66 — 57 84 75 79
34 — 36 51 47 75
* The represented nodes are the same as those in Fig. 3.
394
WANG ET AL.
FIG. 2. Relationships of the Gobioidei based on analysis of a combined data set constructed by the neighbor-joining (NJ) method. Numbers close to the nodes indicate bootstrap values; those below the slash are confidence probabilities of the NJ tree. Nodes A and B are as shown in Tables 3 and 4.
When stems were excluded from the analysis (i.e., using loops only), all four clades found in the combined data set were also formed, but the relationship between BUTI clade and gobiids (GBI ⫹ GBNE) could not be resolved (Table 4). In the analysis of stem regions, although the monophyly of the Eleotrinae is firmly supported, relationships among all other non-Eleotrinae genera are yet unresolved. Parsimony method. In the combined data set, eight equal minimum-length trees were resolved. The strict consensus of the eight most-parsimonious trees is shown in Fig. 3. The four major clades shown in Fig. 3 indicate relationships identical to those of the NJ tree,
except for small differences within clades. However, the levels of bootstrap replications to support each clade are lower than those of the NJ tree (Fig. 3; Table 3). Within ELE, the relationships among taxa are almost identical to those of the NJ tree, except for a reversal in position of nodes between Eleotris and Hypseleotris. The GBNE clade, as in the NJ analysis, possesses two pairs of sister groups: Gobiopterus is sister to Brachygobius and Pseudogobiopsis is sister to Redigobius. In addition, the monophyletic sicydiines (Sicyopterus and Stiphodon) and Oxudercines (Boleophthalmus and Periophthalmus) are also resolved. As for the GBI clade, only two lineages are resolved:
395
PHYLOGENY OF GOBIOID FISHES
FIG. 3. Strict consensus of eight minimum-length trees. Numbers close to the nodes are bootstrap support percentages over 50%. Tree length is 2195 steps with CI ⫽ 0.346 and RI ⫽ 0.524.
the one with Exyrias and Istigobius and the monophyletic microdesmids with 86% bootstrap replications. In the analysis of loop regions, the ELE and BUTI clades failed to be resolved. Of the groups with five branchiostegal rays, the formation of the GBI and GBNE clades is positively supported by bootstrap replications (51 and 74%, respectively), and those are sister to each other (60%). Within the GBI clade, the monophyly of the microdesmids is supported, and Exyrias is a sister group to Istigobius (68%). In the GBNE clade, the monophyly of the sicydiines and Oxudercines is strongly supported by bootstrap replications (92 and 89%, respectively). When only stems were taken into account, the topology of the parsimony tree was similar to that of the NJ tree. The monophyly of the Eleotrinae is supported (60%), but relationships among other taxa
(BUTI ⫹ GBI ⫹ GBNE), as in the NJ tree, are not resolved. DISCUSSION Different relative weightings of TV vs TS do not alter the phylogenetic relationships among major clades (Tables 3 and 4), indicating that the phylogenetic signal in the data set is robust under a wide range of assumptions. Our current results are highly comparable with what Hoese and Gill (1993) proposed. No matter what kind of analysis was performed, Odontobutis is always distinct from the other gobioids analyzed (Figs. 2 and 3) and thus should be treated as a sister group to other nonrhyacichthyid gobioids. The rest of the gobioids can be divided into three major parts,
396
WANG ET AL.
ELE, BUTI, and GBI ⫹ GBNE. Hoese and Gill (1993) included an unresolved trichomy among them in their proposed phylogeny. As revealed by molecular data, the BUTI is closer to the group with five branchiostegal rays (GBI⫹GBNE) than to ELE. Accordingly, we suggest that the ELE should be a sister group to the rest of them. The Eleotrinae was originally proposed and diagnosed as a monophyly by Hoese and Gill (1993) on the basis of two anatomical characters, and this is convincingly supported by molecular data. Within this lineage, Birdsong et al. (1988) identified several genera (named the Gobiomorphus group), including Gobiomorphus, Mogurnda, and Philypodon, by judging the existence of a gobiid-type interneural gap. However, the monophyly of the Gobiomorphus group is not supported by molecular data. Mogurnda was found to be sister to Ophieleotris rather than to other Gobiomorphus genera. Therefore, the relationships of these genera need to be reconsidered. Monophyly of BUTI was resolved in both MP and NJ trees with low bootstrap and CP values. In our analysis, the BUTI is divided into two groups: the first is Butis which is distinctly separated from the second group which includes Bortrichthys, Bostrychus, Ophiocara, and Oxyeleotris. This result is compatible with that of Akihito (1971) who found that the median and posterior supratemporal bone were fused in Butis but separated in other genera. In addition, after surveying 109 species, Akihoto (1971) found that the supertemporal could be found only in the Xenisthmidae and the genera now included in BUTI. This may indicate that BUTI is closer to the Xenisthmidae than to other gobioids within the group with six branchiostegal rays. In our opinion, therefore, within gobioids except the Rhyacichthyidae and Odontobutis, the ELE can be treated as a basal monophyletic group and the BUTI ⫹ Xenisthmidae would be a transient group between fish with six and five branchiostegal rays. Further intensive investigations, including the Xenisthmidae, in this group is needed to understand the relationships among them. Monophyly of gobioids with five branchiostegal rays has been proposed for years, but the relationships among them are still uncertain. Although the taxonomic system of Miller (1973) based on epural number was criticized, the molecular data fit well with his scheme. Species with one epural, including microdesmids and Pezold’s Gobiinaes, are grouped in the GBI clade. On the other hand, most species in the GBNE, including oxudercins and Pezold’s Gobionellinae clade, possess two epurals with the exception of sicydiines, which possess only one epural. This will be discussed later. The microdesmids are characterized by the unique specialization of having an elongated posterior pelvic process and represent a gobiid level of organization.
Because they possess one epural, Miller (1973) placed the microdesmids in his Gobiinae. Hoese (1984) noted that microdesmids retain a primitive palatine– ethmoid articulation of eleotrids. In addition, Hoese and Gill (1993) noted that the procurrent cartilage of ptereotrines (primitive microdesmids) extends beyond the tip of the epural, and the adductor mandibulae tendon attaches to the middle of the maxilla, as in eleotrines, suggesting that the microdesmids might form a subgroup of the eleotridines. However, as revealed in our data, the microdesmids are joined in the GBI clade with Pezold’s Gobiinae, as strongly supported by the phylograms shown in Figs. 2 and 3. Since the palatine– ethmoid articulation is found in some specialized gobiid genera (Hoese 1984), we suggest that microdesmids should be treated as a specialized group within the GBI clade instead of a separate group. The Gobiinae of Hoese (1984) is not easily definable since it contains about 200 genera. Pezold (1993) redefined the Gobiinae based on a single anterior interorbital pore and fused interorbital portion of the oculoscapular canal for most species included in Hoese’s Gobiinae. However, the genera of the Gobiinae in this report failed to form a distinct lineage within the GBI clade. Since Pezold’s Gobiinae contains a large number of taxa in about 130 genera with diversified morphology and life style, the small number of genera and characters (122 phylogenetic informative sites with 6 genera) that we used may not be large enough to provide an overview of the phylogeny within the Gobiinae. Recognition of Gobionellinae by Miller (1973) is based primarily on Pezold (1993), who includes Gobionellus, Gobiopterus, Chasmichthys, Acanthogobius, Astrabe, and some unassigned genera of having two epurals as in Birdsong et al. (1988). This group is the only one whose monophyly is not proposed within the Gobiidae. In addition, the relationship with other gobiid subfamilies is not yet clear. Harrison (1989) hypothesized a group of genera including Ctenogobius, Evorthodus, Gnatholepis, Gobioides, Gobionellus, Oligolepis, and Stenogobius based upon an apomorphic palatine structure. The same structure is also observed in Awaous, which was suggested as the sister group to the sicydiines (Birdsong et al., 1988). This hypothesis is supported by other derived features of the cephalic lateralis (Pezold, unpublished; cited in Pezold, 1993). In addition, in the study of pharyngeal jaw morphology, Rhinogobius, Stenogobius, and Awaous were considered closely related to the sicydiines (Parenti and Thomas, 1998). Accordingly, the phylogenetic relationships of these genera should be close to each other. This organization is convincingly supported by molecular data indicating that Rhinogobius, Oligolepis, and Stenogobius are grouped in the same lineage (GBNE-A) within the GBNE clade. The sicydiines are the only group with one epural in the GBNE lineage, which misled Miller (1973) to ac-
397
PHYLOGENY OF GOBIOID FISHES
commodate this group within his Gobiinae. However, the progressive reduction of epural counts is observed in the GBNE clade. In this lineage, one epural has been found in some specimens of Oligolepis (3 of 22), Rhinogobius (1 of 9), and oxudercines (Oxuderces, 2 of 25). On the other hand, two epurals have also been found in the sicydiines (Stiphodon, 1 of 20) (Birdsong et al., 1988). Therefore, the reduction of epural number would be an evolutionary tendency within this subclade, and the sicydiines may be the most-advanced group. Having two epurals, Miller (1973) placed the oxudercines in his Gobionellinae. This classification system is supported by molecular data which includes the oxudercines (Periophthalmus ⫹ Boleophthalmus) within the GBNE clade. The subfamily Amblyopinae with two epurals is not included in our analysis; however, Miller (1973) put this taxon in his Gobionellinae based on morphological characters. In addition, according to the cephalic lateralis, Pezold (1993) put Gobioides, which was previously placed in the Amblyopinae, into his Gobionellinae, forming the monophyly of Amblyopinae. Although not studied in detail, the characters exam-
ined suggest that the subfamily Amblyopinae is closer to the GBNE clade. That problem is currently under study by one of us (S.C.L.). Generally speaking, the molecular data support the division of the gobiids into two lineages. The first lineage contains the Gobiinae of Pezold (1993) plus microdesmids. The genera within this group possess only one epural, but the phylogeny within this group is still uncertain. The second lineage includes the Gobionellinae, oxudercines, and sicydiines in our study, and further examination of amblyopines should be considered. APPENDIX The alignment of sequences included in this study. The alignment was based on the 12S rRNA secondary structure. Stem numbers are given above stems, with base-paired regions indicated as 1 and 1⬘, 2 and 2⬘, etc. Tertiary interactions are indicated with uppercase letters (e.g., A and A⬘). Lowercase bases within stems indicate bulges. Bases in boldface were excluded from further analysis.
AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAA AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AAG GAG AAG AAG AAG AAG AAG AAG AAG AAG AAG AGG
Boleophthalmus pectinirostris Periophthalmus modestus Sicyopterus longifilis Stiphodon ornata Stenogobius sp. Oligolepis acutipinnis Rhinogobius sp. Redigobius bikolanus Pseudogobiopsis oligactis Brachygobius xanthomelas Gobiopterus brachypterus Nemateleotris magnificus Nemateleorris sp. Pogonoculus zebra Ptereleotris heteroptera Ptereleotris evides Exyrias puntang Istigobius sp. Glossogobius celebius Valenciennea strigatus Amblyeleotris gattata Gobiodon sp. Bortrichthys marmoratus Bostrychus sinensis Ophiocara porocephela Oxyeleotris urophthalmoides Butis sp. Butis butis Butis kilomatadon Butis melanostigma Ophieleotris aporos Ophieleotris sp. Mogurnda mogurnda Mogurnda adspersa Hypseleotris compressa Hypseleotris galii Gobiomorphus australis Eleotris fuscus E. melanosoma E. acanthopoma Philypodon sp. Philypodon grandiceps Odontobutis obscura Scomber australasicus
CAA CAA CAA CAA CAA CAA CAA CAA CAA CAA CAA CAC CAC CAA C–– CAA CAC CAC CAA CAC CAC CAA CAA CAA CAA CAA CAA CAA CAA TAA CAA CAA CAA CAA CAA CAA CAA CAA CAA CAA CAA CAA CAA CAA
1
12S rRNA3 CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG TTTGG TTTAG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTTGG CTAAG TTTGG
TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC TCC
2 TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGG CGG TGG TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA TGA
CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT CTT
1⬘ TACTG TACTG TACTA TACTA TACTA TAATG TAATG TACTG TTCTG TAATA TAGTA TACTG TACTG TAGTG TAGTG TAGTG TACTG TAATG TACTA TACTA TACTG TACTA TACTA TACTA TACTA TACTA TACTA TACTA TGCTA TACTA TACTA TACTA TACTA TACTA TACTA TACTA TACTA TACTA TACTA TACTA TACTA TACTA TACTA TACTG
TCAGCT TCAACT TCAGCT TCAGCT TCAGCA TCAGCT TCAGCT TCAGTT TCAGTT TCATCT TCAGCT TCAGCT TCAGCT TCAGCT TCAGCT TCAGCT TCAGCT TCAGCT TCAACT TCAGCT TCAGTT TCGGCT TCAATT TCAGCT TCAGCT TCAGCT TCAGCT TCAGCT TCAGCT TCAACT TCAACT TCAACT TCAACT TCAACT TCAGCT TCAGCT TCAGCT TCAGCT TCAGCT TCAGCT TCAGCT TCAGCT TCAACT TCAGCT
3 T T T T T T T T T T C T T T T T T T T T T T T T T T G A T T T T T T T T T T T T T C T T
TGAT TGAT TGGT TGGT TGGT TGGT TGGT TGAT TGGT TGAT TGGT TGAT TGAT TGAT TGAT TGAT TGAT TGAT TGAT TGAT TGAT TGAT TGAC TGGC TGGT TGAC TGAT CGAT TGAT TGGT TGGC TGGC TGGC TGGC TGGC TGGC TGGC TGGC TGGC TGGC TGGC TGGC TGGC TAGC
4 TT TT TA TG CA TA TA TG TA TA TA TA TA TA TA TA AA AA TG AA AA TG TA CA CA CA TA TA TA TA CA CA CA CA CA CA CA CA CA CA CA CA CA TA
AA AA AA GA AA AA AA AA AA AA AA AA AA AA AA GA AA GA AA AA AA AA AA AA AA AA AA AA GA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
5 TTTA TTTA TTTA TTTA TTTA TTTA TTTA CTTA TTTA ATTA CTTA TTTA TTTA TTTA TTTA TTTA TTTA CTTA CTTA TTTA TTTA CTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA TTTA CTTA CTTA
TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC TACaTGC CACaTGC CACaTGC CACaTGC CACaTGC CACaTGC CACaTGC CACaTGC CACaTGC CACaTGC CACaTGC CACaTGC CACaTGC TACaTGC CACaTGC
6 A–AGTATCT A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCT A–AGTATCT ATAGTATCT G–AGTATCT A–AGTATCT A–AGTATCC A–AGTATCT A–AGTTTCC A–AGTTTCC G–AGTTTCC A–AGTCTCC A–AGTTTCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCC A–AGTATCT A–AGTATCC A–AGTATCC
GCAACCC–T GCACCCC–T GCAGTCC–T GCAGCCC–T GCAACCC–T GCATCCC–T GCATCCC–T GCACCCC–T GCATCCC–T GCACTCC–C GCACCCCAT GCGGCCC–T GCGACCC–T GCAGCCC–T GCAGCCC–T GCAACCC–T GCACCCC–C GCACCCC–C GCACCCC–C GCACTCC–T GCAACCC–T GCACCCC–C GCATCCC–T GCATCCC–T GCATCCC–T GCATCCC–T GCACCC–T GCATCCC–T GCACCCC–T GCATCCC–T GCGTCCC–T GCGCCCC–T GCACTCC–C GCACTCC–C GCAACCC–T GCAACCC–T GCAACCC–C GCACCCC–T GCATCCC–T GCACCCC–T GCAGCCC–T GCAACCC–T GCATCCC–A GCATCCC–C
GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG GTG
7 AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AA–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AGTAAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT AG–AAT
GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT GCCCT
8 ACTTAT ACACAT ACATAT ACATAT TAATAT ACATAT ACATAC ACTTAT AACATA AACATC ––CATC ACCTGT ACCCGT ACCTAT ACCTAT ACCTAT ACCTAC ATCTAC AAATTT AATACA ACCTCC AAACAC ACAACA ACAACA ACAACA ACAACA ACTGTT ATTGTA ATTGTT ACTGTA ACAGTT ACAGTT ACAGTT ACAGTT ACAGTT ACAGTT ACAATT ACAATT ACAATT ACCGTT AAAGTT AGAGTT AAAACT AACAGT
TCC TCC TCC TCC TCC TCC TCC ACC TCC CCC TTT CCC TCC TCC TCC TCC ACC ACC CCC TGC GCC ATC CCC CCC CCC CCC CCC CCC CTC CTC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCT CAT
9 –CTA–––CC–– –TC–––CCT–– –C–AAACAT–– –C–CCATAC–– –C–GAAACC–– –CCAAACAC–– –CCC––CAC–– –TT–––CAA–– CGC–––––CTC –CTAATCA––– T––CACCTC–– –CTCCTTA––– –CTTTTAA––– –CCATC––––– –TCATC––––– –CCTCC–––– –A–ACCAGT–– –GCACCCCC–– CACAGCCGC–– CTTAACT–T–– ––CACACAT–– –CAGCACTTT– AATTTT––––– AACCCT––––– ATCCCT––––– AACTCT––––– TCTAT–––––– CGCTC–––––– TGCAT–––––– TGTAT–––––– CA––––CTC– CG––––CCCGG CA––––CCCC CA––––CCCC– CT––––CCC–G CT––––CCAAG TC––––CCCA– CCTT––––CCC CCTT––––CC– CCTTTCCTCCC CA––––––ACG CG––––––CCC ATTAT––––AG –CCATAC–––G
GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA ATA GGG GGG GGA GGA GGA GGA GGA GGG GGC GGC GGA GGG GGG GGG GGG GAG GGG GAG GAG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG AGG
9⬘
398 WANG ET AL.
Boleophthalmus pectinirostris Periophthalmus modestus Sicyopterus longifilis Stiphodon ornata Stenogobius sp. Oligolepis acutipinnis Rhinogobius sp. Redigobius bikolanus Pseudogobiopsis oligactis Brachygobius xanthomelas Gobiopterus brachypterus Nemateleotris magnificus Nemateleorris sp. Pogonoculus zebra Ptereleotris heteroptera Ptereleotris evides Exyrias puntang Istigobius sp. Glossogobius celebius Valencienna strigatus Amblyeleotris gattata Gobiodon sp. Bortrichthys marmoratus Bostrychus sinensis Ophiocara porocephela Oxyeleotris urophthalmoides Butis sp. Butis butis Butis kilomatadon Butis melanostigma Ophieleotris aporos Ophieleotris sp. Mogurnda mogurnda Mogurnda adspersa Hypseleotris compressa Hypseleotris galii Gobiomorphus australis Eleotris fuscus E. melanosoma E. acanthopoma Philypodon sp. Philypodon grandiceps Odontobutis obscura Scomber australasicus
ATTA ATGA AAAA AAAA AAAA AAAA GAAA AAAA AGAA AAAA AGTA GAAA AAAA AAAA AAAA AAAA GAAG GAAT AAAG AAAA AAAA GAAC AACG AACG AACG AACG AACA AACA AACA AACA AACA AACA AATA AATA AACA AACA AACA GACA GACA AACA AACA AACA –TCA –ACA
AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGT AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC AGGaGC
8⬘ A A A A A A A A A A T T C T C C T T G G C T T T C C G T C T T T T T C C T C C T C C A T
GGT GGT GGC GGC GGT GGT GGC GGC GGT GGT GGC GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GAT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT
10 ATAA ATTA ATTA ATTA ATTA ATTA ATTA ATTA ATTA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATTA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA
GGCacAA GGCacAA GGCacGG GGCacGG GGCacGA GGCacGA GGCacAA GGCacAA GGCacAA GGCacGA GGCacGA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAG GGCacAG GGCacAG GGCacAG GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAA GGCacAC
11 CCCCA–A–G CCC––AA–G TTCCCAA–A CCCTACC–G CCCTACA–G CCCTACG–T CCCCAT––G CCC––TGAG CTT––TG–– T––A––A–A C––ACTA–G CCC––TACG CCC––TGCG CCT––CCGA CCT––CCGG CCC––CCGG ––A––CATC TAA––CATT CTT––ATTG CC–––CGAG CCC––TACG CCCATTG–– CTCCCTGC– CCCCCT–TG CCCCTTGTT CCCCCTA–– TTC–––ACA TAT–––ATA CCC–CAATG CCT–CC–CG CCTATTG–– CTTATTG–– CCTATTG–– CCTATTG–– CTTATTGTT CTTATTGTT CTTATTG–– CCCATTG–T CCCATTG–T CCTATTG–T CACAC–G–– CATATTG–– ––TATAGTA TCTTATACA
TTaGCC TTaGCC CCaGCC CCaGCC TCaGCC TCaGCC TTaGCC TTaGCC TTaGCC TCaGCC TCaGCC TTtGCC TTtGCC TTgGCC TTgGCC TCgGCC TTaGCC TTaGCC TTaGCC TTaGCC TTaGCC TTaGCC TTaGCC TTaGCC TTaGCC TTaGCC CTaGCC CTaGCC CTaGCC CTaGCC TTaGCC TTaGCC TTaGCC TTaGCC TTaGCC TTaGCC TTtGCC TTaGCC TAaGCC TTaGCC TTtGCC TTtGCC TTaGCC GAaGCC
11⬘ CACAAC CACAAC CAAAAC CAAAAC CACAAC CAAAAC CACAAC TATAAC TACAAC TAAAAC AAAAAC CAAGAC CACAAC CACAAC CATGAC CACGAC CACGAC CACGAC CACAAC CACAAC CACAAC CACGAC CACAAC TACAAC CACGAC CACGAC CATGAC CATGAC CACGAC CATGAC CACAAC CACAAC CACAAC CACAAC CACGAC CACGAC CACGAC CACGAC CACGAC CACGAC CACGAC CACAAC CACGAC CACGAC
ACC GCC GCC GCC GCC GCC GCC GCC ACC ACC ACC ACC ACC ACC ACC ACC GCC GCC ACC ACC ACC ATC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC GCC
10⬘ TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT
GC GC GC GC GC GC GC GC GC GC GT GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC
12 T–TA T–TA T–TA T–TA T–TA T–TA T–TA T–TA T–AA C–CA AATA T–TA T–TA T–CA T–AA T–CA T–CA T–TT T–TA T–TA C–CA C–TA T–TA T–TA T–TA T–TA T–AA T–AA T–AA T–AA T–CA T–CA T–CA T–CA T–TA T–TA T–CA T–CA T–TA T–CA T–TA T–TG T–CA T–CA
GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC
12⬘ CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC CAC
7⬘ AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC
CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CT CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC
13 CCAAGGG CCAAGGG CCAAGGG TCAAGGG CCAAGG ACAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG CCACGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG CCACGGG CCACGGG CCAAGGG CCACGGG CCAAGGG CCAAGGG TCAAAGA CTAAGGG TCAAGGG TCAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG TCAAGGG TCAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG CCAAGGG
GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG
13⬘ AACTCA AACTCA ACTTCA ACTTCA ACTTCA AATTCA AACTCA AAAGCA AAAGCA AATTCA TCCTCA ACCCCA ACCCCA AATCCA AATCCA AATCCA TACTCA CACTCA AAATCA ATTTCA AAT–CA AACTCA GACTCA AACTCA AACTCA AATTCA ATTTCA ACTTCA ATTTCA ACTTCA AACTCA AACTCA AATTCA AATTCA AACTCA AACTCA AACTCA AACTCA AACTCA AACTCA AACTCA AACTCA ATTTCA AATTCA
GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTG GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTA GCAGTG GCAGTG GCAGTG GCAGTG GCAGTG GCAGTG GCAGTG GCAGTG GCAGTG GCAGTG GCAGTG GCAGTG GCAGTG
6⬘ GTAAACAT ATAAACAT ATAGACAT ATAGACAT ATAGACAT ATAGACAT ATAAACAT ATAAACAT ATAGATAT ATAAACAT ATTAATCT ATATACAT ATACACAT ATAAACAT ATAGACAT ATAAATAT ATAAACAT ATAAACAT ATAAACAT ACAAACAT ATAAACAT ATAAACAT ATAAACAT ATAAACAT ATAGACAT ATAAATAT ATAGACAT ATAAATAT ATAAACAT ATAAATAT ATAAACAT ATAAACAT ATAAACAT ATAAACAT ATAAACAT ATAAACAT ATAAACAT ATAAACAT ATAAACAT ATAAACAT ATAAACAT ATAAACAT ATTAATAT ATTAACAT
TAAGctaTAAGT TAAGctaTAAGT TAAGctaTAAGT TAAGccaTAAGT TAAGccaTAAGT TAAGctaTGAGT TAAGccaTAAGT TAAGcaaTAAGT TAAGcaaTAAGT TAAGcaaTAAGT TAAGcaaTAAGT TAAGccaTAAGT TAAGccaTAAGT TAAGcaaTAAGT TAAGcaaTAAGT TAAGcaaTAAGT TAAGccaTGAGT TAAGctaTGAGT TAAGcaaTAAGT TAAGctaTAAGT TAAGccaTAAGT TAAGctaTAAGT TAAGccaTAAGT TAAGctaTAAGT TAAGccaTAAGT TAAGctaTAAGT TAAGccaTAAGT TAAGccaTAAGT TAAGctaTAAGT TAAGccaTAAGT TAAGccaTAAGT TAAGccaTAAGT TAAGccaTAAGT TAAGccaTAAGT TAAGccaTGAGT TAAGccaTGAGT TAAGccaTGAGT TAAGccaTAAGT TAAGctaTAAGT TAAGccaTTAGT TAAGccaTAAGT TAAGccaTGAGT TAAGccaTAAGT TAAGccaTGAGT
14 GAAA GTAA GAAA GAAA GAAA GAAA GAAA GTAA GAAA GAAA GAAA GTAA GTAA GTAA GCAA GCAA GAAA GAAA GAAA GTAA GCAA GCAA GAAA GTAA GAAA GCAA GTAA GCAA GTAA GCAA GCAA GCAA GCAA GCAA GTAA GTAA GCAA GAAA GAAA GAAA GCAA GCAA GCAA GTAA
PHYLOGENY OF GOBIOID FISHES
399
Boleophthalmus pectinirostris Periophthalmus modestus Sicyopterus longifilis Stiphodon ornata Stenogobius sp. Oligolepis acutipinnis Rhinogobius sp. Redigobius bikolanus Pseudogobiopsis oligactis Brachygobius xanthomelas Gobiopterus brachypterus Nemateleotris magnificus Nemateleorris sp. Pogonoculus zebra Ptereleotris heteroptera Ptereleotris evides Exyrias puntang Istigobius sp. Glossogobius celebius Valenciennea strigatus Amblyeleotris gattata Gobiodon sp. Bortrichthys marmoratus Bostrychus sinensis Ophiocara porocephela Oxyeleotris urophthalmoides Butis sp. Butis butis Butis kilomatadon Butis melanostigma Ophieleotris aporos Ophieleotris sp. Mogurnda mogurnda Mogurnda adspersa Hypseleotris compressa Hypseleotris galii Gobiomorphus australis Eleotris fuscus E. melanosoma E. acanthopoma Philypodon sp. Philypodon grandiceps Odontobutis obscura Scomber australasicus
ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA GCTTGaCTTA ACTTGaCTTA GCTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTCGaCTTA ACTCGaCTTA ACTTGaCTTA ACTTGaCTTA GCTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTCGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTTGaCTTA ACTCGaCTTA ACTTGaCTTA ACTTGaCTTA
14⬘ G G G G G G A G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G A A G G G G A
TT TC TT TT TT TT TT TT TT CT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TT TC TT TC TT TT TT TT TT TT TT TT TT TT TT TT TT TT
5⬘ A–AA A–AA A–A– A–A– A–A– A–AG A–AA A–CA A–CA ATA– ATAC A–AG A–AG A–AG A–AA A–AG A–AC A–AC A–AT A–AC A–TC A–CG A–GA A–AG A–AG A–AG A–AG A–AA A–AG A–AA A–AA A–AA A–AC A–AC A–AG A–AG A–AA A–AG A–AG A–AG A–AA A–AA A–AG A–AA
ATCA ATCA ACCA ACCA ACCA ACCA ACCA ACCA GGCC ATCA ACCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA GTCA GCCA GCCA ACCA GTCA ATCA ATCA ATCA ATCA GCCA GCCA GCCA GCCA GCCA GCCA GCCA GCCA GCCA GCCA GCCA GCCA GCCA GCTA
4⬘ A–G–A– A–G–A– A–G–A– A–G–A– A–G–A– A–A–A– A–GCA– A–G–A– AGA–A– AG––A– AG––A– G–ATA– A–ACA– G–ACA– G–ACA– G–ACA– A–G–A– A–G–A– A–G–A– C–TTA– A–G–A– ATA–A– A–ATA– A–A–A– A–A–A– A–ATA– AATGA– AG––AT AA––A– AG––A– A––CA– A––CA– ATACA– ATACA– A––CA– A––CA– A––CA– A––CA– A––CA– A––CA– A––CA– A––CA– AG–CA– AG––A–
GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GAGCC GGGCC GAGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GGGCC GAGCC GAGCC GAGCC GAGCC GAGCC GAGCC GAGCC GAGCC GAGCC GAGCC GAGCC GAGCC GAGCC GGGGC
15 GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGC GGC AGC AGC AGC AGC AGC AGC GGT GGT
A AAAAC– AAAAC– TAAAC– TAAAC– TAAAC– TAAAC– AAAAC– TAAAC– AAAAC– TAACC– AAAAC– TAAAC– TAAAC– TAAAC– TAAAC– TAAAC– TAAAC– TAAAC– TAAAC– TAAAC– AAACC– CAACCA AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC– AAAAC–
TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG CCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG TCGTG
16 CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA CCA
GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC
B C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC ACC GCC GCC GCC GCC GCC GCC GCC GCC ACC ACC
A⬘
APPENDIX—Continued
GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC
B⬘ GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA GGTTA
TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA AACGG CACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA TACGA
16⬘ GA GA GA GA GA GA GA GA GG GA GG GA GA GA GA GA GA GG GA GA GA AA GA GA GA GA GG GA GA GA GA GA GA GA GA GA GG GG GG GG GA GA GA TA
GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCTC GACCC GGCTC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCCC GGCTC GGCTC GGCTC GGCTC GGCTC GGCTC GACTC GGCTC GGCTC GGCTC GGCTC GGCTC GGCTC GGCTC GGCCC
15⬘ A A A A A A A A A A A A A G G A G A A A A A A A A A A A A A A A A A A A A A A A A A A A
AGTTGACA AGTTGACA AGTTGATA AGTTGATA AGTTGATA AGTTGACA AGTTGACA AATTGACA AATTGACA AGTTGAAA AGTTGATA AGTTGACA AGTTGACA AGTTGACA AGTTGACA AGTTGACA AGTTGACA AGTTGACA AGTTGATA AGTTGATA AATTGACG AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATA AGTTGATG AGTTAATA AGTTGATA AGCTGATA AGTTGACA
3⬘ AACCAAC AAA–ACC AAT–GCC AAT–GCC AAT–GCC AAT–GCC AAC–GCC GAC–ACC GACGCGC TCATA–C TATTA–C GAA–ATC GAA–GCC CAA–GCC CAG–CCC CAA–GCC –AA–ACC CGA–ACC AAC–GTC GAC–ATC GAA–ATC GAT–ACC GAC–ACC GCC–GCC GCC–GCC GCC–GCC GTC–ACC GCC–ATC GCC–ATC GAC–AAC GCT–ACC GCC–ACC GCC–ACC GCC–ACC CTC–TAC GTC–TAC GCC–GTC CTT–CTC TCT–CTC GCC–CTC AAT–ACC GTC–ATC GAC–ACC GAA–CCC
GGC GGC GGC GGC GGC GGC GGC GGC GGC GGT GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GCC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGC GGG
17 GTAAAAA GTAAAAA GTAAAAA GTAAAAA GTAAAAA GTAAAAT GTAAAAT GTAAAAT GTAAAAA GTAAAAA GTAGAAA GTAAAGG GTAAAGG GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGG GTAAAGG GTAAAGA GTAAAGA GTAAAGA GTAAAGG GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGA GTAAAGG GTAAAGG GTAAAGA GTAAAGG ATAAAGG GTAAAGA GTAAAGC
GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTGG GTTG
18 TTA–– TTA–– TTA–– TTA–– CCA–– TTA–– CTATA TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA–– TTA––
400 WANG ET AL.
Boleophthalmus pectinirostris Periophthalmus modestus Sicyopterus longifilis Stiphodon ornata Stenogobius sp. Oligolepis acutipinnis Rhinogobius sp. Redigobius bikolanus Pseudogobiopsis oligactis Brachygobius xanthomelas Gobiopterus brachypterus Nemateleotris magnificus Nemateleorris sp. Pogonoculus zebra Ptereleotris heteroptera Ptereleotris evides Exyrias puntang Istigobius sp. Glossogobius celebius Valenciennea strigatus Amblyeleotris gattata Gobiodon sp. Bortrichthys marmoratus Bostrychus sinensis Ophiocara porocephela Oxyeleotris urophthalmoides Butis sp. Butis butis Butis kilomatadon Butis melanostigma Ophieleotris aporos Ophieleotris sp. Mogurnda mogurnda Mogurnda adspersa Hypseleotris compressa Hypseleotris galii Gobiomorphus australis Eleotris fuscus E. melanosoma E. acanthopoma Philypodon sp. Philypodon grandiceps Odontobutis obscura Scomber australasicus
GTA GTA GTA GTA ATA TTA TTA TAT ATA AAA CTA ATA ATA ATA ATA ATA ATA ATG ATT ATA ATG ATA ATA ATA ATA ATA ATA ATA ATA ATA AGA AGA AGA AGA AGA AGA GGA AGA AGA AGA GGA GGA AAA GGG
19
––AAATACCCAAC ––AACAATTTAAC ––CTATAATTTAC ––CTATATTTTAC ––TGACACATCAC ––CAGTATTTCAC ––CAGTATTGCAC –––AATAGTTTAC TATAGTATTGTAC TAT–AACTTA––T CATCGAATTAAAC –––GCACATGCAC –––GCACAAACAC –––ATAGATAACC –––ATAGGCAAAC –––GTGAACAAAC –––GTTTGTAAAC –––ATAACTAAAC ––TAATTGTAGAC –––GAAATGACAC –AATA––TTAAAC GAAAAACTTATAC –AATA–CTTATAC –AATACCA–AAAC –AGCCCCAAATAC –TACCTTTTATAC –AATATTA–AAAC –TATAGTA–TTAC –AACATAA–ATAC –TACAGTA–ATAC –AAATTC––ATAC –GAACCC––ATAC –AACCTT––TTAC –AACCTT––TTAC –GAACTG––TAAC –AAACTG––TAAC –GACCTA––AAAC –AACCTC––AAAC –AAATTC––AAAC –AATATA––ACAC –GCACCA––AAAC –GTACTA––AAAC AACAGTAA–AAAC –AAAACTCAAAAC
TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAGGC TAAGGC TAAGGT TAAGGT TAAGGT TAAAGC TAAAGC TAAAGC TAAGGC TAAGGC TAAGGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAAGC TAAGGC TAAAGC TAAAGC TAAAGC TAAAGC TAGAGC TAAAGC TTAAGC
20 CAAACACC CAAACACC CAAACACC CAAACATC CAAACATC CAAACATC TAAACATC CGAACACC CGAACACC TAAACATC TAAACACC CGAACATC CGAACATC CGAACATC CGAACATC CGAACATC CGAACACC CAAACACC TAAACACC TAAACATC CGAACACC CGAACACC CGAACATC CGAACATC CGAACATC CGAACACC CGAACATC CGAACACG CGAACATC CGAACACC CGAACATT CGAACATT CGAACATT CGAACATT CGAACATC CGAACATC CGAACATC CAAACATC CAAACATC CAAACACC GGAACGTC CGAACATC TAAACACC CCAATATC
TTC TTC TTC TTC TTC TTC TTC CTC TTC TTC CTC TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC TTT TTC TTC TTC TTC TTC TTC TTC TCC TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC TTC CTC TTC CCC
21 ––AAA ––AAA ––AAA ––AAA ––AAA ––AAA ––AAA ––AAA ––AAA ––TAT ––TAT ––AAG ––AAG ––AAG ––AAG ––AAG ––AAG ––AAG ––AAG ––AAG ––AGG TTAAA ––AAA ––AAG ––AAA ––AAA ––AAA ––AAG ––AGA ––AAA ––AAG ––AAG ––AAA ––AAA ––AAG ––AAG ––AAG ––AAA ––AAA ––ATA ––ACG ––ACA ––AAG ––GGG
GT GC AC AC GC GC GC GC GC GC GT GC GC GC GC GC AC GC GC AC GC GC GC GC GC GC GC AC GC AC GC GC GC GC GC GC GC GC GC GC GC GC GC GC
22 TGTCATAT TGTCATAT TGTCATAC TGTCATAC TGTCATAC TGTCATAC TGTTATAC TGTTATAC TGTCATAC TGTTATAT TGTTATAC TGTCATAC TGTCATAC TGTCATAC TGTCATAC TGTCATAC CGTTATAC CGTCATAC TGTTATAC TGTTATAC TGTCGCAC TGTCGCAC TGTTATAC TGTTATAC TGTTATAC TGTTATAC CGTTATAC TGTTATAA TGTTATAC TGTTATAC TGTTATAC TGTTATAC TGTTATAC TGTTATAC TGTCATAC TGTCATAC TGTCATAC TGTCATAC TGTCATAC TGTCATAC TGTTATAC TGTTATAC CGTTCTAC AGTTATAC
GC GC GT GT GC GC GC GC GC GC CC GC GC GC GC GC GC GT GC GT GC GC GC GC GC GC GT GT GT GT GC GC GC GC GC GC GC GC GC GC GC GC GC GC
22⬘ TATC TCTC TCCC TCTC ACTC TCTC ACCC ACTC CCTT TTAT ACCT ACCC ACCC GCCC ACCC ACCC ATCC ACCC ACCC ACCC AGCT ACCT ACTT ATCC AACC ACCT TATT AATT AATT ACTT ACCC ACCC ACCC ACCC ACCC ACCC ACCC ACCC ACCC ACTT ACCC ACTC AACC TTCC
GAA GAA GAA GAA GAA GAA GAA GAG GAA GAA GAT GAA GAA GAA GGA GAA GAA GAG GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA GAA
21⬘ GGCAGGAAG–AACCCCC GACAGGAAG–CCCTTCC GACAGGAAG–CTCTTCT GACAGGAAG–CTCTTCT GACAGGAAG–CCCCTCC GAGAGGAAG–ATCCCCC GACAGGAGA–CCCCTCC GGCAGGAAGAACCCCCC GGCAGGAAG–CACCCCC GACAGGAAA–TCCTTTT GGTAGGAAA–CTTTTCC GACAGGAAG–CCCTCAC GACAGGAAG–AACTTAC GACAGGAAG–ATCCCCC GACAGGAAG–ACCCCCT GACAGGAAG–ATCTCCT GGCAGGAAG–ACCTCCA GGCAGGAAG–CTCCCCA GACAGGAAA–CCCAACC GACAGGAAG–ACCCCTG GACAGGAAG–ACCCCCA GGCAGGAAG–ATCGCCC GACAGGAAG–ACCCCCT GACAGGAAG–CCCTTCC GACAGGAAG–ACCCTCC GGCAGGAAG–CTCTTCC GCCAGGAAG–ACCCCCC TGTAGGAAG–ACCCCCC GACAGGAAG–ACCCTCC GGCAGGAAG–AACCCCC AATATGAAG–AACCTCC AATATGAAG–CACCCCC AACATGAAG–AACCCTT AACATGAAG–AACCCTT GACATGAAG–AACCCCT GACATGAAG–AACCCCT GACATGAAG–AACCACT GAAATGAAG–ACCTATC GAAATGAAG–ACCTATC GACAGGAAG–ACCTTCC GATAGGAAG–CACTACT GATATGAAG–AACAACT GACAGGAGA–AACCCCC GACACGAAG–GCCCTCC
AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC
23 GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA AAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA
GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT –T GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT
23⬘ G G G G G G G G G A G A A G G G G G A G G G G G G G G G G G G G A A G G G A A G G G G G
GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCCTTA GCCTTA ACCTCA ACCTCA ACCTCA GCTTTA GCTTTA GCTTTA GCCTTA GCTTTA GCCTTA ACTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA GCTTTA ACACTA
20⬘ A–ACAA A–ACAT A–GTTT A–ATTA A–AACA A–TATA A–ACAA A–A–AA A–ATAA AAACAT G–ATAT ACACAC ACATAC ACAAT– ACGATC ATAGCT ACCTCA ACCAAA TACAGT A–CCTA A–CAAA A–CAGC A–ACCT A–ACTT A–ACCT A–ATAT A–A–TA A–AACA A–AATA A–A–TA A–ATCT A–CCCT A–ACAT A–ACAT A–ATCT A–ATCT A–AATT A–AAAT A–AACT A–AAAC A–TAAC A–TACC A–AACC T–TACC
TAC TAC TAC GAC TAT TAT CAT TTT TAT AAT TAT TAT TAT TAT TAT CAT TAT TTT ATT TTT CAT TAT TAT TAT TAT TAT TAT TAT TAT CAT TCT TCT TCT TCT TCT TCT TCT TCT TCT TCT TCT TCT ATT CCC
19⬘ AACT AAAC A–CT ACA– GCC– GAA– TAGC AA–T TA–T TA–T TCA– GAAC GAAG GAAC GAAC GAAC GAAC GAAC GACT GAAT GAAT GACT GACC GACC GACC GACC GACC GACC GACC GACC GAAC GAAC GAAC GAAC GACC GACC GAAC GACC GAAC GAAC GACA GACA GAAC GACC
CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCTC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCAC CCCC
18⬘ GAAA GAAA GAAA GAAA GAAA GAAA GAAA TAAA GAAA GAAA TAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA TAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAA GAAG GAAA
PHYLOGENY OF GOBIOID FISHES
401
Boleophthalmus pectinirostris Periophthalmus modestus Sicyopterus longifilis Stiphodon ornata Stenogobius sp. Oligolepis acutipinnis Rhinogobius sp. Redigobius bikolanus Pseudogobiopsis oligactis Brachygobius xanthomelas Gobiopterus brachypterus Nemateleotris magnificus Nemateleorris sp. Pogonoculus zebra Ptereleotris heteroptera Ptereleotris evides Exyrias puntang Istigobius sp. Glossogobius celebius Valenciennea strigatus Amblyeleotris gattata Gobiodon sp. Bortrichthys marmoratus Bostrychus sinensis Ophiocara porocephela Oxyeleotris urophthalmoides Butis sp. Butis butis Butis kilomatadon Butis melanostigma Ophieleotris aporos Ophieleotris sp. Mogurnda mogurnda Mogurnda adspersa Hypseleotris compressa Hypseleotris galii Gobiomorphus australis Eleotris fuscus E. melanosoma E. acanthopoma Philypodon sp. Philypodon grandiceps Odontobutis obscura Scomber australasicus
GCCAGGaaaCA GCTAGGaaaCA GCTAGGaaaCA GCTAGGaaaCA GCTAGGataCA GCTAGGaaaCA GCTAGGaaaCA GCTAGGgaaCA GCTAGAaaaCA GCTAAGacaCA GCTAGGaaaCA GCTAGGaaaCA GCTAGGaaaCA GCTAGGgaaCA GCTAGGgaaCA GCTAGGgaaCA GCTAAGgcaCA GCTAGGacaCA GCTAGGacaCA GCTAGGgaaCA GCTAGGgaaCA GCTAGGgcaCA GCTAAGaccCA GCTAAGaeaCA GCTAGGacaCA GCTAAGataCA GCTAGGgaaCA GCTAGGgaaCA GCTAGGaccCA GCTAGGgccCA GCTAGGacaCA GCTAGGacaCA GCTAGGataCA GCTAGGataCA GCTGGGacaCA GCTAGGataCA GCTAGGacaCA GCTAGGacaCA GCTAGGacaCA GCTAGGataCA GCTAGGacaCA GCTAGGacaCA ATTAGGacaCA GCTCTGacaCA
24 AAC AAC AAC AAA AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC AAC
TGGG TGGG TGGG CGGG TGGG TGGG TGGG TGGG TGGG TGGG CGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG TGGG
25 ATTAGATAC ATTAGATAC ATTAGATAC AATAAAAAA ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC ATTAGATAC
CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCG CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA
25⬘ CT–A CT–A CT–A AC–A CT–A CT–A CT–A CT–A CT–A CT–A CT–C GT–A CT–A CT–A CTTA CT–A CT–A CT–A CT–A CT–A CT–A GT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A CT–A
TGCCTGGC TGCCTAGC TGCCTAGC AGCCCAAC TGCCTAGC TGCCTGGC TGCTTAGC TGCCTAGC TGCCTAGC TGCTTAGC TGCCCAGC TGCTTAGC TGCCTAGC TGCCTAGC TGCCTAGC TGCCTAGC TGCTTAGC TGCCTAGC TGCCTAGC TGCCTAGC TGCCTAGC TGCCTAGC TGCTTAGC TGCCTAGC TGCCTTGC TGCTTAGC TGCCTAGC TGCCTAGC TGCCTAGC TGCCTAGC TGCCTAGC TGCCTAGC TGCCTAGC TGCCTAGC TGCCCAGC TGCCCAGC TGCCTAGC TGCCCAGC TGCCTAGC TGCCTAGC TGCCTTGC TGCCTAGC TGCCTGAC TGCGTAGC
24⬘ CCTAAACTCA CCTAAACAAA CTTAAACACA CCTAAAAAAA CCTAAACACA CCTAAACACA CTTAAACAGA CCTAAACATA CCTAAACACA CCTAAACCTA CCTAAACACA CCTAAACACA CCTAAACACA CCTAAACATT CCTAAACATC CCTAAACATC CATAAACAAA CTTAAACAAA CCTAAACATA CATAAACATC CCTAAACAAA CCTAAACA–– CCTAAACACA CCTAAACACA CCTAAACACA CTTAAACACA CGTAAACACA CTTAAACACA CCTAAACACA CGTAAACAAA CCTAAACACA CCTAAACACA CCTAAACAAA CCTAAACAAA CATAAACACA CATAAACACA CCTAAACACA CCTAAACACA CCTAAACACA CGTAAACAAA CCTAAACAAA CCTAAACGCA CCTAAACAAA CGTAAACATT
AATCAC GGTAAC GGTGAT AGGGAA GGTGAT GGTGAA AGCAAC AGCAAT AGTGAT AGTGTC AGTGTT AATACT AATACT AATACT AATGCC AATACT AATACC AATACC AATATT AATAGT GGCCCG GACAAT ACCAGT AGCAGC AGTAGC AGCAGC AGCAAC AGCAAA AGCAAT GGCAAT AGTAAC AGTAAC AGTAAC AGTAAC AGTAGT AGTAGT AGTAGC AGTAGT AGTAGT AGTGGC AGTAGC AGTAGC AACGAC GATAGA
26
APPENDIX—Continued
ATC––––TTACACC–– ACCCACCCTACACC–– TAC–TTTACACCT––– CAA–CTTAAAACC––– AT–TTTACACCT–––– CATCTTTACACCT––– CATC––TACACCT––– GACACATACATA–––– TAGTTACACCT––––– TCATAACCTT–––––– TATTTACACC–––––– CC–TTTACAA–––––– CC–TTTACAA–––––– CC–CGCACAC–––––– CC–AGCACAC–––––– TC–AACACAC–––––– CC–CAAACAC––CA–– CC–TGTACAC––CA–– TT–AATACACATTC–– CT–CTTACAA––T––– CCCCGCACACACACAC AATTTTACAACC–––– AAC–CT––TACACCC– AAC–CT––TACACCT– ACT–CT––TACACCT– CCC–CT––CACACCC– A–T–TTACTACACC–– C–C–CCACTACAACC– TGC–ATAATACAAC–– AAT–––––TATA–TA– AGC–CT––CACACCT– AAC–CT––CACACCT– AGT–CT––TACACCT– AGT–CT––TACACCT– AAC–CT––TACACCT– AAC–CT––TACACCT– AAT–CT–CACACCT– AAC–AT––TACACCT– AGT–AT––TACCCCC– AAA–CC––CACCTCT– AA––AG––TAGTCT– AA––GT––TATTTAT– ACCCTTACACCT–––– ATTATACCC–––CTC–
CTCATT TTTATT ATCGCT AACCCC ATCGCT TTCGCT TTTGCT TTTGCT TTCGCT ATTACT TCCACT TGTATT TGTATT TGTATT TGCATT GGTATT GCTATT GTTATT AATACT ACTATT AGCGCT ATTTTT ACTGCT TCTGCT ACTACT ACTGCT ATTGCT CTTGCT CTTGCT TTTGCT GCTACT GTTACT GTTACT GTAACT ACTGCT ACTACT GCTACT ACTACT GCTACT GCCACT GCTACT GCTACT GTCACT TCTATC
26⬘ T T T T T T T T T T T C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
GCC GCC GCC GCC GCC GCC GCC GCC GCC ACC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC GCC
17⬘ A A A A A C A C C A A A A A A A A A A A A A A A T A T C A A A A A A C T C C C A C C A C
GGG GGG GGG AGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGA
27 AACTAC AACTAC AACTAC GAACAA AACTAC AACTAC AACTAC GACTAC AACTAC AACTAC A–CTAC AACAAC AACAAC AACAAC AACAAC AACAAC AACAAC AACAAC AACAAC AACAAC AACAAC AACAAC AACTAC GACTAC AACTAC AACTAC AACTAC TACTAC GACTAC AACTAC AACTAC AACTAC AACTAC AACTAC –ACTAC GACTAC AACTAC AACTAC AACTAC AACTAC AACTAC GACTAC AACTAC TATTAC
GAGC GAGC GAGC CAAC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC AAGC AAGC AAGC AAGC AAGC AAGC AAGC AAGT TAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC GAGC AAGC GAGC
28 TACA CCCA CCCA CCCA CCCA CCCA CCGA CTCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CCCA CGCA CCCA CCCA CTCA CCAA CCAA TCAA CCAA GCAA GCAA CCAA TCAA ATAA ATAA ATAA ATAA ATAA ATAA ATAA ATAA ATAA ATAA AAAA AAAA ACTA ATTA
GCTT GCTT GCTT ACCT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTT GCTC GCTT
28⬘ AAAA– AAAA– AAAA– AAAAA AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– AAAA– GAAA– GAAA–
402 WANG ET AL.
Boleophthalmus pectinirostris Periophthalmus modestus Sicyopterus longifilis Stiphodon ornata Stenogobius sp. Oligolepis acutipinnis Rhinogobius sp. Redigobius bikolanus Pseudogobiopsis oligactis Brachygobius xanthomelas Gobiopterus brachypterus Nemateleotris magnificus Nemateleorris sp. Pogonoculus zebra Ptereleotris heteroptera Ptereleotris evides Exyrias puntang Istigobius sp. Glossogobius celebius Valenciennea strigatus Amblyeleotris gattata Gobiodon sp. Bortrichthys marmoratus Bostrychus sinensis Ophiocara porocephela Oxyeleotris urophthalmoides Butis sp. Butis butis Butis kilomatadon Butis melanostigma Ophieleotris aporos Ophieleotris sp. Mogurnda mogurnda Mogurnda adspersa Hypseleotris compressa Hypseleotris galii Gobiomorphus australis Eleotris fuscus E. melanosoma E. acanthopoma Philypodon sp. Philypodon grandiceps Odontobutis obscura Scomber australasicus
CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC CCC
27⬘
AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA AAA
GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA GGA
2⬘ CT CT CT CT CT CT CT CT CT CT CT CT CT CT –T CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT CT
TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTAA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA TGGCGgTGCTTTA
29 GACCCCC GACCCCC GACCCCC GACCCCC GACCCCC GACCCCC GACCCCC GACCCCC GTCCCCC GACCCCC GACCCAC GACCCCC GACCCCC GACCCCC GACCCCC GACCCCC GACCCCC GACCCCC GACCCCC GACCCCC GACCCCC GACCCCC GTCCCAC GACCCAC GACCCAC GACCCAC GACCCCC GACCCCC GACCCAC GACCCAC GATCCAC GATCCAC GATCCAC GATCCAC GATCCAC GACCCAC GACCCAC GACCCCC GACCCCC GACCCCC GACCCAC GACCCAC GACCCAC GATCCCC
CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA CTAGA
30 –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG –GG AGG
AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT A–CCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTCCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTCCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGTTCT AGCCTGCTCT
31 AG AG AG AG AG GG AG AG AG AT AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AG AT AT
AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG CAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG AAcCG
32 ATGACCCC ATAACCCC ATACCCCC ATAACCCC ATAACCCC ATAATCCC ATAACCCC ATAATCCC ATAATCCC ATAACCCC ATAACCCC ATACCCC ATACCCC ATACTCC ATACTCCC ATACTCCC ATACTCCC ATACTCCC ATACTCCC ATACTCC ATTCCCCC ATAATCCC ATAATCCC ATAATCCC ATAATCCC ATAATCCC ATGATCCC ATGATCCC ATAATCCC ATAATCCC ATAACCCC ATAACCCC ATAACCCC ATAACCCC ATAACCCC ATAACCCC ATAACCCC ATAACCCC ATAACCCC ATAACCCC ATAACCCC ATAACCCC ATAATCCC ATAACCCC
CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTC CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT CGTT –GTT
32⬘ AAACCTCA AAACCTCA AAACCTCA CAACCTCA AAACCTCA AAACCTTA AAACCTCA TAACCTCA AAACCTCA AAACCTCA TAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA GAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA TAACCTCA CAACCTCA TAACCTCA CAACCTCA AAACCTCA CAACCTCA CAACCTCA CAACCTCA TAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA CAACCTCA TAACCTCA AAACCTCA
CCCTCTC CCCTCTC CCCTCTC CCCTCTC CCCTCTC CCCTCTC CCCTCTC CCCTCCC CCCTCTC CCCTTAC CCCTTCC CCCTCTC CCCTCTC CCCTCCC CCCTCCC CCCTCCC CCCTCCC CCCTCCC CCCTCCC CCTTCTC CCCTCTC CCCCCTC CCCTCCC CCCTCCC CCCTCCC CCCTCCC CCCTCTC CCCTCTC CCCTCCC CCCTCTC CCCTCCC CCCTCCC CCCTCCC CCCTCCC CCTTTTC CCTTTTC CCCTTCC CCCTCCC CCCTCCC CCCTCCC CCCTCTC CCCTCTC CCCTTTC CCCTCCC
33 TTGTATTTT––CCG TTGTCTTTT–CCCG TTGTCTTT––CCCG TTGTCTTT––CCCG TTGT–TTTC–CCCG TTGT–TTTT–CCCG TTGT–TTTC–CCCG TTGT–TTCT–CCCG TTGTCTTTTTCCCG TTGC––TAAAACAG TTGT––CCCCTCCG TTGT–TTTA–CCCG TTGT–TTAA–CCCG TTGT–TTAC–CCCG TTGT–TTAC–CCCG TTGT–TTAT–CCCG TTGT–TTTC–CCCG TTGT–TTAC–CCCG TTGT–TCAT–CCCG TTGT–TTTT–CCCG TTGT–TCTC–CCAG TTGT–TCTTTCCCG TTGC–TTGT–CCCG TTGC–TTAT–CCCG TTGC–TTTT–CCCG TTGC–TTAT–CCCG TTGC–TAAT–CCCG TTGC–TCGT–CCAG TTGC–TTAT–CCCG TTGC–TTAT–CCCG TTGT–CTCC–CCCG TTGT–CTCC–CCCG TTGT–CTCT–CCCG TTGT–CTCT–CCCG TTGT–TTAC–CCCG TTGT–TTAC–CCCG TTGT–TTAA–CCCG TTGT–TTTC–CCCG TTGT–TTCT–CCCG TTGT–TGTC–CCCG TTGT–CCCA–CCCG TTGT–TTTT–CCCG TTGC–CACT–ACCG TTGT–TTTTT–CCG
CCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCACCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTGtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCACCGTCGT GCcTAtaTACCACCGTCGT GCcTAtaTACCACCGTCGT GCcTAtaTACCACCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCGCCGTCGT GCcTAtaTACCACCGTCGT
34 CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA CA
PHYLOGENY OF GOBIOID FISHES
403
Boleophthalmus pectinirostris Periophthalmus modestus Sicyopterus longifilis Stiphodon ornata Stenogobius sp. Oligolepis acutipinnis Rhinogobius sp. Redigobius bikolanus Pseudogobiopsis oligactis Brachygobius xanthomelas Gobiopterus brachypterus Nemateleotris magnificus Nemateleorris sp. Pogonoculus zebra Ptereleotris heteroptera Ptereleotris evides Exyrias puntang Istigobius sp. Glossogobius celebius Valenciennea strigatus Amblyeleotris gattata Gobiodon sp. Bortrichthys marmoratus Bostrychus sinensis Ophiocara porocephela Oxyeleotris urophthalmoides Butis sp. Butis butis Butis kilomatadon Butis melanostigma Ophieleotris aporos Ophieleotris sp. Mogurnda mogurnda Mogurnda adspersa Hypseleotris compressa Hypseleotris galii Gobiomorphus australis Eleotris fuscus E. melanosoma E. acanthopoma Philypodon sp. Philypodon grandiceps Odontobutis obscura Scomber australasicus
GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GT GC GC GC GC GC GT GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC
35
TT TT TT TT TT TC TT TT TT TT TT TT TT TT TT TT TT CT TT TT TT TC TT TT TT TT CT TT TT TC TT TT TT TT CT CT TT TT TT CT TT TT TT TC
ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT GCCCC ACCCT ACCCT ACCCC ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCC ACCCT ACCCT ACCCC ACCCT ACCCT ACCCT ACCCT ACCCT ACCCC ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT ACCCT
36 GTGA GTGA ATGA ATGA ATGA ATGA GTGA GTGA ATGA GTGA TTGA GTGA GTGA GTGA GTGA GTGA GTGA GTGA GTGA ATGA GTGA GTAA GTGA GTGA GTGA GTGA GTGA ATGA ATGA GTGA ATGA ATGA ATGA ATGA GTGA GTGA GTAA GTGA GTGA ATGA GTGA GCAA ATAA GTGA
AGG GGG AGG AGG AGG AGG AGG GGG GGG AGG GGG AGG AGG GGG AGG AGG AGG AGG AGG AGG TGG AGG AGG GGG AGG AGG AGG AGG AGG GGG AGG AGG AGG AGG AGA AGA AGG AGG AGG AGG AGG AGG GGG AGG
36⬘ –GCCCAAA –GCCTATA –ATGCACA –ATGTACA –ATGCACA –ACACACA –ACACATA –ATATACA –ATAAATA –AACTACA –ATCCACA –TTAAATA –CTAAATA –ACTAATA –GCTAATA –GCTAATA –ACTTATA –ACTAATA –ATTTACA –TCTAACA –CCCAACA –TCTAAAA –GCCCATA –CTTTATA –ACTTATA –GCTCATA –ACTAACA –ACCCACA –ACCAACA –ACCAATA –ACTTATA –GCCTATA –CCCCATA –CCCCATA –ACACATA –ACACATA –ACACATA –GTACATA –ACACATA –ACATAAA –ACACACA –CCCCACA –CCCCATA –CCTAATA
GT GT GT GT GT GT GT GC GT GT AT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT GT
36⬘ GA GA AA AA AA GA GA AG AA AA AA AA AA AA AA AA AA AA AA AA AA GG AA AA AA AA AG AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA
GC GC GC GC GC GC GC GC GC AC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC GC
35⬘ ACAATT AGAATT AGAATT AGAATT ATAATT ACAATT ATAATT ACAATT ATAATT ATAATT ATAATT AAAATT AAAATT AGAATT AGAATT AGAATT TAC–AA AAAATT GAAATT AGAATT AAAATT GAAATT AAAATT AAAATT AAAATT AAAATT AAAATT AAAATT AAAATT AAAATT AAAATT AAAATT AAAATT AAAATT AAAATT AAAATT AAAATT AGAATT AAAATT AAAATT ATAATT AAAATT AAAATT AAAATT
GG GG GG GG GG AG GG GG GG GG GC GG GG GG GG GG CC GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG GG
37 TAA–TA TAA–AA TAG–AA TAG–AA TAC–AA TAA–TA TAC–AA CAA–AG TACGAG TAA–AA TCG–CC CAC–AA CAC–AA CAT–AG CAC–AG CAC–AG TAA–TA CAA–AG CAG–AG CAT–AG CAA–AG CAC–AG CAC–AA CAC–AG CAC–AG CAA–AG TAC–AA CAC–AG CAT–AG TAC–AA CAC–AA CAC–AG TAT–TA TAT–AA CAG–AG CAA–AA CAT–AG CAC–AC CAC–AC CAC–AG CAT–AG CAT–AA TAA–TA CAC–AG
CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC
37⬘ TAAA TAAA CAAA CAAA TAAA CAAA TAAA CAAA TAAA CAAA CAAA CAAA CAAA CAAA CAAA CAAA TAAA CAAA CAAA CAAA CAAA TAAA CAAA CAAA TAAA CAAA TAAA TAAA TAAA TAAA CAAA CAAA CAAA CAAA CAAA CAAA CAAA CAAA CAAA CAAA CAAA CAAA TAAC CAGA
34⬘ ACGCCaGGTcgaGGTGTAGC ACGCCaGGTcgaGGTGTAGC ACGCCaGGTcgaGGTGTAGC ACGCCaGGTcgaGGTGTAGC ACGCCaGGTcgaGGTGTAGC ACGCCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGCCaGGTcgaGGTGTAGC ACGCCaGGTcgaGGTGTAGC ACGTCaGGTcaaGGTGTAGC ACGACaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGCCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGCAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC ACGTCaGGTcgaGGTGTAGC
APPENDIX—Continued
CAAC ATAC GTAC GTAC GTAC GTAC GTAC TTAC TAAC ATAT GCAT GCAC GCAC GTAC GTAC GTAC GAAT GCAC GCAC GAAC GTAC TTAT GCAT GCAT GCAT GCAT GTAT CTAC GTAT GTAT GTAT GTAT GTAC GTAC GTAT GTAT GTAT GCAT GCAT GAAT GTAT GTAT ACAC GCAT
GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GCAAAGG GAAAGGG GGGAGGG GGGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GGGAGGG GAGAGGG GAGAAGG GAGAGGG GAGGGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAAGG GAAAAGG GGAAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAGAGGG GAAAGGG GAGAGGG
33⬘ GA GA GA GA GA GA GA GA GA GA AA GA GA GA GA GA GA GA GA GA GA GA GA GA GA AA GA GA AA AA AA AA GA GA GA GA GA GA GA GA GA GA AA GA
AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGGCT AGaAATGGGCT AGaAATGGGCT AGaGATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaGATGGGCT AGaGAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT AGaAATGGGCT
31⬘ ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACATT ACACT ACATT
CACT CACT CACT CACT CACT CACT TACT CCCT TACT TACT CAAT TGCT TACT TACT TACT TGCT TACT TACT TGCT TACT TACT TTCT CACT CACT CACT CACT CACT CACT TACT CACT CACT CACT CACT CACT CACT CACT CACT TGCT TGCT TACT CCCT AACT CCCT CGCT
38 GC–TAC GA–CAC GA–ACC GT–ACC GA–AAC GA–CTC GA–ACC GG–CCC GC–CGC GA–CAC GG–ATC GT–CCC GT–TAC GCCTGC GCCTGC GTCCCC GA–GCC GA–GCC AA–ATT GA–GTC GA–CCC GA–TCC GA–TAC GA–TAC GG–CAC GG–TAC GA–ATC GA–ACC GA–AAC GA–ATC GA–CAC GC–CCC GA–TAC GA–TAC GA–ACC GA–ATC GG–CAC GA–CAC GA–CAC GA–TAC GA–CAC GA–CAC GA–CTC AA–CTT
AGTG AGTG AGTG AGTG AGTG AGTG AGTA AGGG AGTA AGTA AATG AGCA AGTA AGTA AGTA AGCA AGTA AGTA AGCA AGTC AGTA AGCA AGTG AGTG AGTG AGTG AGTG AGTG AGTA AGTG AGTT AGTA AGTA AGTA AGTA AGTA AGTA AGCA AGCA AGTA AGTG AGTT AGGG AGCG
38⬘
404 WANG ET AL.
Boleophthalmus pectinirostris Periophthalmus modestus Sicyopterus longifilis Stiphodon ornata Stenogobius sp. Oligolepis acutipinnis Rhinogobius sp. Redigobius bikolanus Pseudogobiopsis oligactis Brachygobius xanthomelas Gobiopterus brachypterus Nemateleotris magnificus Nemateleorris sp. Pogonoculus zebra Ptereleotris heteroptera Ptereleotris evides Exyrias puntang Istigobius sp. Glossogobius celebius Valenciennea strigatus Amblyeleotris gattata Gobiodon sp. Bortrichthys marmoratus Bostrychus sinensis Ophiocara porocephela Oxyeleotris urophthalmoides Butis sp. Butis butis Butis kilomatadon Butis melanostigma Ophieleotris aporos Ophieleotris sp. Mogurnda mogurnda Mogurnda adspersa Hypseleotris compressa Hypseleotris galii Gobiomorphus australis Eleotris fuscus E. melanosoma E. acanthopoma Philypodon sp. Philypodon grandiceps Odontobutis obscura Scomber australasicus
AAT–ACGGAT AACAACGGAA AACAACGGAA AACAACGGAC AACAACGGAC AACCACGGAC AAC–ACGGAT AATAACGGAA AACTACGGAC AA–TACGGAT AA–AACGGAT AAT–ACGGAC AAT–ACGGAC AAT–ACGGAT AAT–ACGAAT AAC–ACGAAT AAC–ACGGAC AAC–ACGAAT AAC–ACGGAC TAT–ACGGAT AAC–ACGAAT AAT–ACGGAT AACCACGAAC AACTACGGAT AATTACGAAA AACAACGGAC AACTACGGAA AATTACGGAA AATCACGGAA AACCACGGAA TAC–ACGAAT CAC–ACGAAT CAC–ACGGAC CAC–ACGGAC CAC–ACGGAC CAC–ACGGAA CAT–ACGGAAC CAT–ACGAAT CAT–ACGAAT TAC–ACGAAC CAC–ACGAAC CAC–ACGAAC TAT–ACAAAC AATCACGGAC
GATG GATG GATG GATG GATG GATA AATG AATG AATG AATA AATG TTTG TTTG GTTG GTTG GTTG ATTG GCTG GATA ATTG GTTG TTTG GACG AATG GATG GACG GATG GATG GATG GATG GATG GATG GATG GATA GATG GATG GATG GATG GATG GATG GATG GATG AATA GATG
39 GACTGAAAC–AAA CATTGAAAC–AAA CCTTGAAAT–AAA CCTTGAAAT–AAA CGTTGAAAT–AAG ATTTGAAAT–AAA CCTTGAAAC–AGA ATTTGAAAC–AGC CCTTGAAAC–AGA CTTTGAAAT–AAG TTTTGAAAT–ATA CACTGAAAT–AAG CACTGAAAT–AAG CACTGAAAT–AAG CACTGAAAT–GAG CACTGAAAC–GAG CGCTGAAAC–AAG CACTGAAAC–AAG GACTGAAAC–CA– TACTGAAA––AAG CACTGAAAA–AAG CCCTGAAA––AAG CTTTGAAAC–AAG CTTTGAAAC–AAG CTTTGAAAC–AAC CTTTGAAAC–AAG CATTGAAAT–AAT AAATGAAAT–AAG AAATGAAAT–AAG AAATGAAAT–GAA CGTTGAAAC–AAA CATTGAAACCAAA AATTGAAAT–AAA AATTGAAAT–AAA CTTTGAAACCAAA CTTTGAAACAAAA AATTGAAACCAGA CATTGAAACCATG CACTGAAATCAAA CATTGAAATCAGA TGATGAAAT–AAA TGTTGAAAC–AAA ATTGAAAT–AAT AATTGAAACATT
CATC CGTC CATC CATC TATC TATC CATT CATT CATT TAAC CATT CATC CATC CATC CATC CATC CATC CGTC CATC CATT CACC CATC CATC CATC CGTC CATC CATC CATC CATC CATC CATC CATC CATC CATC CATC CATC CATC CATC CATC CATC CATC CATC TATC CATC
39⬘ –T–AAAGGAGGA –C–AAAGGAGGA –C–AAAGGAGGA –T–AAAGGAGGA –T–AAAGGAGGA –T–TAAGGAGGA –T–AAAGGAGGA –T–GAAGGAGGA –T–AAAGGAGGA –T–GAAGGAGGA –T–TAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–AAAGGAGGA –T–GAAGGAGGA –T–GAAGGTGGA –T–GAAGGAGGA –T–GAAGGAGGA –C–GAAGGAGGA –C–AAAGGAGGA AT–AAAGGAGGA –C–GAAGGAGGA –C–AAAGGAGGA –C–AAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –C–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–GAAGGAGGA –T–AAAGGAGGA –T–AAAGGAGGA –T–AAAGGTGGA CTTAAAGGAGGA
TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG TTTAG
30⬘ CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA TAGTA CAGTA TAGTA TAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA CAGTA
AGGGGTG AGGGGAA AGAGGAA AGAAGAG AGAGAGG AG–GGGC AGAGGAG AGAAAAG AGAAAAG AGAAAAA AAGAGAA AGGAGGG AGAGAGG AGAGGGG AGAGGGG AGAGGGG AGAGGAG AGGAGGG AGAGGAG AGGGAAG AGGAGGC AGGAGAG AGAAGAA AGAGGAA AGGAGAA AGAGAAA AGAGGAA AGAGGAA AGAGAAA AGAGGGG AGGAGGA AGGAGGA AGGAGGA AGGAGGA AGGAGGA AGGAAGA AGAAGGA AGAAGGA AGAAGGA AGAAGGA AGAAGGA AGAAGGA AGG–GAG AGTGGAA
40 AA–ATAGAGTG AA–ACAGAGAG AA–ATAGAGAG AA–ACATAGAG AA–ATAGAGTG AA–ATAGAGTG AA––TAGAGCG AA––AAGAGAG AA––AAGAGTG AA––TAGAGAG AG––CAGAGTG AA––TAGAGCG AA––TAGAGCG AA––TAGAGCG AA––TAGAGCG AA––TAGAGAG AA––CAGAGCG AA––TAGAGCG AG––CAGAGCG AA––TAGAGCG AA––TAGAGCG AT––TAGAGCG AAAATAGAGTG AA–TTAGAGCG AA–ATAGAGCG AA––ACAGAGAG AA––TAGAGTG AA––TAGAGTG AA––TAGAGTG AA–TAGAGAG AA–GCAGAGCG AA–GCAGAGCG AA–ACAGAGTG AA–ACAGAGTG AA–ATAGAGCG AA–ATAGAGCG AA–GCAGAGCG GA–ATAGAGAG GA–ATAGAGTG AA–ATAGAGCG AA–CCAGAGCG AA–ACAGAGCG AATACAGAGAG AA––TAGAGTG
TCCCCCT TTCCCCT TCCCTCT TCCCTCT TCCCTCT TCCCCCT CCCCCCT CCTTTCT CTTTTCT TTTTTCT TTCTCTT CCCCCCT CCCCTCT CCCCACT CCCCACT CCCCACT CCCCTCT CCCCCCT CCCCTCT CCTCCCT CCCCCCT CCCTCCT TTCCTCT TTTCCCT TTCCCCT TTCCTCT TTCCCCT TTCCTCT TCTCTCT CCCCCCT TTCCCCT TTCCCCT TTCCCCT TTCCCCT TTCCCCT TTCTCCT TTCCCCT TTCCCCT TTCCCCT TTCCCCT TTCCTCT TTCCCCT TTCCCCT TTCCACT
40⬘ –GAAACTGGCCC –GAAACTGGCCC –GAAACTGGCCC –GAAACTGGCCC –GAAACCGGCCC –GAAACCGGCCC –GAAACTGGCCC –GAAACCGGCCC –GAAACCGGCCC –GAAACTGGCCC –GAAACTGGCCC –GAAATCGCCC –GAAACCGGCCC –GAAACGGCCC –GAAAATGGCCC –GAAAATGGCCC –GAAAACGGCCC –GAAAACGGCCC –GAAAACGGCCC –GAAAACGGCCC –GAAAACGGCCC –GAAACCGGCAC –GAAACTGGCCC –GAAACTGGCCC –GAAACTGGCCC –GAAACTGGCCC –GAAACCGGCCC –GAAACTGGCCC –GAAACTGGCCC –GAAACTGGCCC –GAAACCGGCCC –GAAACCGGCCC –GAAACCGGCCC –GAAACCGGCCC –GAAACCGGCCC –GAAACCGGCCC –GAAACTGGCCC –GAAACTGGCCC –GAAATTGGCCC –GAAACTGGCCC –GAAAATGGCCC –GAAACTGGCCC –GAAACCGGCCC –GAAATCGGCTC
TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGTaCA TGAAGCAAGTaCA TGAAGCGCGTaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGCGCGCaCA TGAAGTGCGTaCA
29⬘ CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC CACCGCC
CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG
41 TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC TCAC
TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC CCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC TCTCCCC
42
PHYLOGENY OF GOBIOID FISHES
405
Boleophthalmus pectinirostris Periophthalmus modestus Sicyopterus longifilis Stipodon ornata Stenogobius sp. Oligolepis acutipinnis Rhinogobius sp. Redigobius bikolanus Pseudogobiopsis oligactis Brachygobius xanthomelas Gobiopterus brachypterus Nemateleotris magnificus Nemateleorris sp. Pogonoculus zebra Ptereleotris heteroptera Ptereleotris evides Esyrias puntang Istigobius sp. Glossogobius celebius Valenciennea strigatus Amblyeleotris gattata Goboidon sp. Bortrichthys marmoratus Bostrychus sinensis Ophiocara porocephela Oxyeleotris urophthalmoides Butis sp. Butis butis Butis kilomatadon Butis melanostigma Ophieleotris aporos Ophieleotris sp. Mogurnda mogurnda Mogurnda adspersa Hypseleotris compressa Hypseleotris galii Gobiomorphus australis Eleotris fuscus E. melanosoma E. acanthopoma Philypodon sp. Philypodon grandiceps Odontobutis obscura Scomber australasicus
AAAC––AAATCAT––CTTA–––ATAAATAAAAGCCTACAAAAACAAA AAAT––ATTTTTTAACCTAAAAATAAATAAAAAACAAAGTTTATAAA AAAG––AGAACATAAC–TGTAAATAAGAAAAAACCTAAA––––TAAA AAAA––CAAACATAAA–TATAAATAAGAAAAAAATAAAA–––ATAAA AAAT––TAATACTAAT–AATAAATAAACATAGAACTAAA–––ACAAA GAAA––AAAAAGTTAA–CATAAATAAA–ACCCAATAAAA–––AGTAA TACA––ATATAGTAA––TAAACATAACTAAGAAGTAACTTCAATAAA GAA–––ACACACAAACAAATAAATAAAGA––––GTAATCAAAATAAA AAA–––AGTTGCCAAGCCTTAAATAAAAA––––ATGATTTAAA–AAA AA–CTTAAACAACATAAT–TATATAAAAA––––ATATCATAAAC–AA AAACACCCTTATTAAACT–TAAATAAAAC––––TTTTTCTAAAAGAA GA––CCACT––GCAATCGATAAATAATAGGCTTAGACTTATAAATAA GA––CCACT––GCAACTAATAAATAATATACCTAGACTTATTAATAA AA––CCAAC––GCAGTAAATAAATAATACGCTTAAGCCGATCTACAA AA––CCAGC––GCAGTAAATAAATAAGCCGATTAAGCCCATCTACAA AA––CTACC––GCAATAAATAAATAATCCGCTTAAGCCTAT–TACAA AA––TAAAC––ACAACTGATAAATAATACAACCTAAA––AAC–ATAA AA––AAAAC––GCAACTAATAAATAATAAAAAA–GAC––ACC–ACAA AA––CAAGCCA–CAAGCCATAAATAATAC––––AAAACTACTACCAA GA––ACACTTAACACCTAATAAATAA–GCACCCAA–––CAAAAATAA GA––AAATC––GCATTATATAAATAATACAACTAAGCCCACCACAAA AAGAC–ATCTAGCA–CCCATACATAATGACTCAACAC–––AAAACAA GAGCT–AA–CAACGCCCAATAAATAAAA–CAATACAACTGCA–––AA AAGCT–AATTAAAGCTTCGTAAATAAAA–CAACAAAACTGCA–––AA AAGCT–AAACATC–CTTAATAAATAAAA–CAATAAAATTGCA–––AA AAGCT–AA–CAACTTTTAATAAATAAAT–CAACAAGACTGCA–––AA AAGCTAATAATTTACAAT–TAAATAAAAATAACAC–CCTGCA–––AA GAGCTAACAAACCCT––TTTAAATAAAAA–ATTAATACTGCA–––AA GAGCTAA–AATAAATAAAATAAATAAAAA–AATATACCTGCA–––AA GAACAATAAGACTACAAC–TAAATAAAAA–GACAGCCACACA––CAA GAGCCTACA–CTCAATCAATAAATAAGC–CCTAACAATCGCA–––AA AAGCCTTCA–C–CACCCCATAAATAAAA–CCTAACAACCGCA–––AA AAGCC–ACA–CTTCACCCATAAATAAAA–CCCAACAATTGCA–––AA AAGCC–ACA–CTTCACCCATAAATAAAA–CCCAACAATTGCA–––AA GAGCTTAAC–ACTACCTATTAAATAAGA–CATAATAACTGCA–––AA GAGCTTAAC–ACTAACTATTAAATAAAT–CATAATAAATGCA–––AA GAGCTAACA–AACAAAC–ATACATAAAA–TTAAATAACTGCA–––AA GAAACCAAA–ACA–AGCCATAAATAAAC–CGCAATAAACATG–––AA GAAACCAAA–ACTCAAATGTAAATAAAC–CACAAAACCTCTA–––AA GAGCTTAAA–TTTTAAACATAAATAAAC–CACAACAACTGTA–––AA GAGCTTAAACACTAAAAATTAAATAAAA–CGTAATAACTGTA–––AA AAGCTTAAACACTAACCTTTAAATAAAA–CATAACAACTGTA–––AA AAATCTATACTGAACCCC–––AACATATAAAAAATA––TTCCACAAA AAGCCCACCCAATTACCTAACATAACTAATTATACCCAAACTGCAAA
GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGG GGGGAGA GGAGAGG
42⬘ CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT CAAGT
APPENDIX—Continued
CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG CG
41⬘ TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACAAGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG TAACATGG
TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACT TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC TAAGTGTACC
43 GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA GGAA
GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGTACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG AGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGTACTTA GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGTACTTG GGTGTACTTG GGTGTACTTG GGTGCACTTG GGTGTACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCACTTG GGTGCGCTTG GGTGCACTTG GGTGCACTTG GGTUCACTTG GGTGCACTTG
43⬘
GAAAAA–AC– GAAAAA–CC– GAAAAA–TC– GAAAAA–CC– GAAAAA–TC– GACAAA–CC– GAAAAA–CC– GAAAAA–CC– GTTCAA–TC– GAAAAA–TC– GAAAAA–TC– GAAAAACCC– GAAAAACCC– GAAAAACCC– GAAAAACCC– GAAAAACCC– GAAAAACCC– GAAAAACCC– GACAA–CCC– GAAAAACCC– GAAAAACCC– GACAAACCCC GAAAAA–CC– GAAAAA–TC– GAAAAA–TC– GAAAAACCTC GAAAAA–CC– GAAAAA–CC– GAAAAA–TC– GAAAAA–CC– GAAAAA–TC– GAAAAA–TC– GAAAAA–TC– GAAAAA–TC– GAAAAA–TC– GAAAAA–TC– GAAAAA–TC– GAAAAA–TC– GAAAAA–TC– GAAAAA–CC– GAAAAA–CC– GAAAAA–CC– GAAAAA–CC– GAAAAA–TC–
412SrRNA
406 WANG ET AL.
Boleophthalmus pectinirostris Periophthalmus modestus Sicyopterus longifilis Stiphodon ornata Stenogobius sp. Oligolepis acutipinnis Rhinogobius sp. Redigobius bikolanus Pseudogobiopsis oligactis Brachygobius xanthomelas Gobiopterus brachypterus Nemateleotris magnificus Nemateleorris sp. Pogonoculus zebra Ptereleotris heteroptera Ptereleotris evides Exyrias puntang Istigobius sp. Glossogobius celebius Valenciennea strigatus Amblyeleotris gattata Gobiodon sp. Bortrichthys marmoratus Bostrychus sinensis Ophiocara porocephela Oxyeleotris urophthalmoides Buris sp. Butis butis Butis kilomatadon Butis melanostigma Ophieleotris aporos Ophieleotris sp. Mogurnda mogurnda Mogurnda adspersa Hypseleotris compressa Hypseleotris galii Gobiomorphus australis Eleotris fuscus E. melanosoma E. acanthopoma Philypodon sp. Philypodon grandiceps Odontobutis obscura Scomber australasicus
4tRNA VAL
AGAGTGTAGCT––TAAGT–AGA–ATAGCATCTCCCTTACACTGAGAAGATTCCCGTGCAAATCGGGCCACACTGA AGAGTGTAGCT––TAAAT–AGT–ATAGCATCTCCCTTACACCGAGAAGATACCCGTGCAAATCGGGCCACACTGA AGAGTGTAGCT––AAAAT–AGT–ATAGCATCTCCCTTACACTGAGAAGATATCCGTGCAAATCGGATCACACTGA AGAGTGTAGCT––AAAAT–AGT–ATAGCATCTCCCTTACACTGAGAAGATACCTGTGCAAATCAGGTCACACTGA AGAGTGTAGCT––AAAAC–AGT–ATAGCATCTCCCTTACACCGAGAAGACACCTGTGCAAATCAGGTCACACTGA AGAGCGTAGCT––AAAAT–AGA–ATGGCATCTCCCTTACACCGAGAAGGTACCTGTGCAAACCAGGTCGCACTGA AGAGCGTAGCT––AAAAT–AGT–ATAGCACCTCCCTTACACCGAGAATGTACCCGTGCAAATCGGGTCGCACTGA AGCACGTAGCT––AAATC–AGA–ATAGCACCTCCCTTACACCGAGAAGACACCTGTGCAAATCAGGTCGCGCTGA AGCTTGTAGCT––AAGAA–AGA–ATAGCGCCTCCCTTACACCGAGAAGACGCCTGTGCAAATCAGACCACGCTGA AATGTGTAGCT––AAATA–––T–ATAGCATCTCTCTTACACTGAGAAGTTCCCTGTGTAATTCAAGGCATACTGA AGCGTGTAGCT––AAATA––GA–ATAGCATCTCCCTTACACTGAGAAGGTCCCCGTGCAAATCGGGACACACTGA AGAGCGTAGCT––AAGCA––GT–ATAGCATCTCCCTTACACCGAGAAGACACCCGTGCAAACCGGGTCGCACTGA AGAGCGTAGCT––AAATA––GT–ATAGCATCTCCCTTACACCGAGAAGACACCCGTGCAAGCCGGGTCGCACTGA AGAGCGTAGCT––AAACA––GC–ATAGCATCTCCCTTACACCGAGAAGGCACCCGTGCAAGCCGGGTCGCACTGA AGAGCGTAGCT––AAGCA––GC–ATAGCGTCTCCCTTACACCGAGAAAGCACCCGTGCAAGTCGGGTCGCACTGA AGAGCGTAGCT––AAGCA––GC–ATAGCATCTCCCTTACACCGAGAAGGCACCCGTGCAAGTCGGGTCGCACTGA AGAGCGTAGCT––AAGTA––GT–CTAGCATCTCCCTTACACCGAGAAGACACCCGTGCAAACCGGGTCGCGCTGA AGAGCGTAGCT––AAACA––GC–ATAGCATCTCCCTTACACCGAGAAGGCACCCGTGCAAGCCGGGTCGCACTGA AGAGCGTAGCT––AAATA––GC–ACAGCATCTCCCTTACACCGAGAAGACACCCGTGCAAACCGGGTCGCGCTGA AGTGCGTAGCT––AAATA––GC–ACAGCATCTCCCTTACACCGAGAAGACACCCGTGCAAATCGGGTCGCGCTGA AGAGCGTAGTTCCAACCT––TT–AAAACTTCTCACTTACACCGAGACAATACTCGTGAAAATCGAGTCGCTCTGA AGAGCGTAGCT––AAAAA––GC–AGAGCATCTCCCTTACACCGAGAAGACACCTGTGCAAATCAGGTCGCACTGA AGAGCGTAGCT––AAGCT–AGC–ATAGCATCTCCCTTACACTGAGAAGGCATCCGTGCAAATCGGATCGCACTGA AGAGCGTAGCT––AAACT–AGT–ATAGCATCTCCCTTACACCGAGAAGACATCCGTGCAAACCGGATCGCACTGA AGAGCGTAGCT––AAACT–AGC–ATAGCATCTCCCTTACACCGAGAAGATATCCGTGCAAACCGGATCGCACTGA AGCGCGTAGCT––AAGCTCAGC–ATAGCATCTCCCTTACACCGAGAAGGCATCCGTGCAAACCGGATCGCACTGA AGAGTGTAGCT––AAACC–AGC–ACAGCGTCTCCCTTACACCGAGAAGACACCCGTGCAAATCGGGTCGCACTGA AGAGCGTAGCT––AAAC––AGC–ACAGCGTCTCCCTTACACCGAGAAAATATCCGTGCAAATCGGATCGCACTGA AGAGCGTAGCT––AAACT–AGC–ACAGCATCTCCCTTACACCGAGAAGACATCCGTGCAAATCGGATCGCACTGA AGAGCGTGGCT––AAGCA–AGC–ACAGCATCTCCCTTACGCCGAGAAGACATCCGTGCAAACCGGATCGCACTGA AGAGCGTAGCT––AAACT–AGA–ATAGCATCTCCCGTACACCGAGAAGACATCCGTGCAAACCGGATCGCACTGA AGAGCGTAGCT––AAATT–AGA–ATAGCATCTCCCTTACACCGAGAAGACATCCGTGCAAACCGGATCGCACTGA AGAGCGTAGCT––AAATT–AGA–ATAGCATCTCCCTTACACCGAGAAGACATCCGTGCAAACCGGATCGCACTGA AGAGCGTAGCC––AAATT–AGA–ATAGCGTCTCCCTTACACCGAGAAGACATCCGTGCAAACCGGATCGCACTGA AGAGCGTAGCT––AAATT–AGA–ATAGCATCTCCCTTACACCGAGAAGATATCCGTGCAAACCGGATCGCACTGA AGCGCGTAGCT––AAATT–AGA–ATAGCATCTCCCTTACACCGAGAAGATGTCCGTGCAAACCGGATCGCACTGA AGCGCGTAGCT––AAACT–AGG–ATAGCATTTCCCTTACACCGAAAAGATACCCGTGCAAATCGAGTCGCACTGA AGAACGTAGCT––AAACT–AGCTATAGCATCTCCCTTACACCGAGAAGATGCCCGTGCAAATCGGGCCGAACTGA AGAACGTAGCT––AAACT–AGCTATAGCATCTCCCTTACACCGAGAAGATGTCCGTGCAAACCGGACCGAACTGA AGACCGTAGCT––TAACT–AGC–ATAGCATCTCCCTTACACCGAGAAGATGTCCGTGCAAATCGGACCGGACTGA AGTGTGTAGCT––AAAAGCAGG–ATAGCATTTCCCTTACACCGAAAAAGTGCCCGTGCAAACCGGGTCGCACTGA AGAGCGTAGCT––AAAAGCAGG–ATAGCGTTTCCCTTACACCGAAAAAGTGCCCGTGCAAACCGGGTCGCACTGA AGAACGTAGCT––AAAAT–AGT–ATAGCATCTCCCTTACACCGAGAAGTCGCCCGTGCAAACCGAGCCGCACTGA AGAGTATAGCT––AAAAT–AGT–ATAGCATTTCCCTTACACTGAAAAGTCATCCGTGCGAGCCGGATTACCCTGA
tRNA VAL3
PHYLOGENY OF GOBIOID FISHES
407
408
WANG ET AL.
ACKNOWLEDGMENTS The authors express their sincere thanks to Dr. Frank Pezold, Northeast Louisiana University and Dr. Tan Heok Hui and Dr. Peter Ng, University of Singapore for kindly providing fish samples. We also extend our appreciation to Po-Hsin Chen and Chien-Hsen Kuo for specimen collection. Professor Chaolun A. Chen, Academia Sinica provided many useful comments on the manuscript. This study was supported by the National Science Council (NSC), Taiwan to S.C.L (Grant NSC 89-2611-B001-001).
REFERENCES Akihito, Prince. (1971). On the supratemporals of Gobiid fishes. Jpn. J. Ichthyol. 18: 57– 62. Birdsong, R. S., Murdy, E. O., and Pezold, F. K. (1988). A study of the vertebral column and median fin osteology in gobioid fishes with comments on Gobioid relationships. Bull. Mar. Sci. 42: 174 –214. Douzery, E., and Catzeflis, F. M. (1995). Molecular evolution of the mitochondrial 12S rRNA in Ungulata (Mammalia). J. Mol. Evol. 41: 622– 636. Gatesy, J., Amato, G., Vrba, E., Schaler, G., and Desalle, R. (1997). A cladistic analysis of mitochondrial ribosomal DNA from Bovidae. Mol. Phylogenet. Evol. 7: 303–319. Harrison, I. J. (1989). Specialization of gobioid palatopterygoquadrate complex and its relevance to gobioid systematics. J. Nat. Hist. 23: 325–353. Hoese, D. F. (1967). Morphological differences between the families Gobiidae and Eleotridae. Abstr. Annu. Mtg. Am. Soc. Ichthyol. Herpetol. 47: 13. Hoese, D. F. (1984). Gobioidei: Relationships. In “Ontogeny and Systematics of Fishes” (H. G. Moser, W. J. Richard, D. M. Cohen, M. P. Fahay, A. W. Kendall, Jr., and S. L. Eichardson, Eds.), pp. 588 –591, Spec. Publ. No. 1, Am. Soc. Ichthyol. Herpetol., Allen Press, Lawerence, Ks. Hoese, D. F., and Gill, A. G. (1993). Phylogenetic relationships of eleotridid fishes (Perciformes: Gobioidei). Bull. Mar. Sci. 52: 415– 440. Kjer, K. M. (1995). Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: An example of alignment and data presentation from the frogs. Mol. Phylogenet. Evol. 4: 314 –330. Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Paabo, S., Villablanca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86: 6196 – 6200. Kumar, S., Tamura, K., and Nei, M. (1993). “MEGA—Molecular evolutionary genetics analysis, vers. 1.01”. Pennsylvania State University, University Park, PA. Lavergne, A., Douzery, E., Stichler, T., Catzeflis, F. M., and Springer, M. S. (1996). Interordinal mammalian relationships: Evidence for
paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences. Mol. Phylogenet. Evol. 6: 245–258. Ledje, C., and Arnason, U. (1996). Phylogenetic relationships within Caniform carnivores based on analysis of the mitochondrial 12S rRNA gene. J. Mol. Evol. 43: 641– 649. Miller, P. J. (1973). The osteology and adaptive features of Rhyacichthys aspro (Teleostei: Gobioidei) and the classification of gobioid fishes. J. Zool. London 171: 397– 434. Montgelard, C., Catzeflis, F. M., and Douzery, E. (1997). Phylogenetic relationships of Artiodactyls and Cetaceans as deduced from the comparision of cytochrome b and 12S rRNA mitochondrial sequences. Mol. Biol. Evol. 14: 550 –559. Murdy, E. O. (1989). A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobidae: Oxudercinae). Rec. Aust. Mus. Suppl. 11: 1–93. Nelson, J. S. (1994). “Fishes of the World,” Wiley, New York. Parenti, L. R., and Thomas, K. R. (1998). Pharyngeal jaw morphology and homology in Sicydiine gobies (Teleostei: Gobiidae) and allies. J. Morphol. 237: 257–274. Penzo, E., Gandolfi, G., Bargelloni, L. Colombo, L., and Patarnello, T. (1998). Messinian salinity crisis and the origin of freshwater lifestyle in western Mediterranean gobies. Mol. Biol. Evol. 15: 1472– 1480. Pezold, F. (1993). Evidence for monophyletic gobiinae. Copeia 1993: 634 – 643. Richards, C. M., and Moore, W. S. (1996). A phylogeny for the African treefrog family Hyperoliidae based on mitochondrial rDNA. Mol. Phylogenet. Evol. 5: 522–532. Simons, A. M., and Mayden, R. L. (1998). Phylogenetic relationships of the western North American phoxinins (Actinopterygii: Cyprinidae) as inferred from mitochondrial 12S and 16S ribosomal RNA sequences. Mol. Phylogenet. Evol. 9: 308 –329. Sitnikova, T., Rzhetsky, A., and Nei, M. (1995). Interior-branch and bootstrap tests of phylogenetic trees. Mol. Biol. Evol. 12: 319 –333. Springer, V. G. (1983). Tyson belos, new genus and species of western Pacific fish (Gobiidae, Xenisthminae), with discussions of gobioid osteology and classification. Smithson. Contrib. Zool. 390: 1– 40. Springer, M. S., and Douzery, E. (1996). Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules. J. Mol. Evol. 43: 357–373. Swofford, D. L. (2000). PAUP: Phylogenetic Analysis Using Parsimony, Version 4.05 Sinauer, Sunderland, MA. Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512–526. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673– 4680. Wang, H. Y., Tsai, M. P., Tu, M. C., and Lee, S. C. (2000). Universal primers to amplify the complete vertebrate mitochondrial 12S rRNA. Zool. Stud. 39: 61– 66.