Monomials of Entire Algebroid Functions

Monomials of Entire Algebroid Functions

Journal of Mathematical Analysis and Applications 229, 32]40 Ž1999. Article ID jmaa.1998.6135, available online at http:rrwww.idealibrary.com on Mono...

74KB Sizes 0 Downloads 69 Views

Journal of Mathematical Analysis and Applications 229, 32]40 Ž1999. Article ID jmaa.1998.6135, available online at http:rrwww.idealibrary.com on

Monomials of Entire Algebroid Functions Kari Katajamaki* ¨ Department of Mathematics, Uni¨ ersity of Joensuu, P.O. Box 111, 80101 Joensuu, Finland Submitted by H. M. Sri¨ asta¨ a Received May 16, 1997

Hayman has shown that if f is a transcendental entire function and n G 2, then f n f 9 assumes all values except possibly zero infinitely often. We extend his result in three directions by considering an entire algebroid function w, its monomial w n 0 Ž w9. n 1 ??? Ž w Ž k . . n k , and by estimating the growth of the number of a-points of the monomial. Q 1999 Academic Press

1. INTRODUCTION AND RESULTS As Hayman w3, p. 34x noted, the problem of possible Picard values of derivatives of a meromorphic function having no zeros reduces to the problem of whether certain differential polynomials of an entire function necessarily have zeros. In this connection he proved the following theorem: THEOREM A. If f Ž z . is a transcendental entire function and n G 2, then f Ž z . n f 9Ž z . assumes all ¨ alues except possibly zero infinitely often. Clunie w1x showed that Theorem A is also true for n s 1. It is assumed that the reader is familiar with the notation of standard Nevanlinna theory w4x and its algebroid counterpart w9, 11, 12x. A characterization of algebroid functions and the basic results of their value distribution can be found in w6, Sects. 1 and 2x. Sons w10x extended Theorem A to more general differential monomials: THEOREM B.

If f Ž z . is a transcendental entire function and

c Ž z. [ f Ž z.

n0

f 9Ž z .

n1

??? f Ž k . Ž z .

* Supported by the Finnish Academy of Science and Letters. 32 0022-247Xr99 $30.00 Copyright Q 1999 by Academic Press All rights of reproduction in any form reserved.

nk

,

Ž 1.

33

ALGEBROID FUNCTIONS

where n 0 G 2, n k G 1, and n i G 0 for i / 0, k, then, for a / 0,

d Ž a, c . [ 1 y lim sup

N Ž r , 1r Ž c y a . .

- 1.

T Ž r, c .

rª`

In w8x, Theorem A was generalized as follows: THEOREM C. function and set

Let w Ž z . be a n-¨ alued transcendental entire algebroid n

n

c Ž z . [ w Ž z . 0 w9 Ž z . 1 ,

n 0 , n1 g N.

Then if n 0 G 4n y 2 q 2Ž n y 1.Ž n1 y 1., we ha¨ e for each a g C _  04 ,

ž

N r,

1

cya

/

G pT Ž r , w . y S Ž r , w . ,

where p [ n 0 y 4n q 3 y 2Ž n y 1.Ž n1 y 1. G 1. In this paper we will consider monomials as in Theorem B and obtain a result analogous to Theorem C. The proof will be different from that of Theorem C, where the transformation uŽ z . [ 1rw Ž z . was applied. Referring to Ž1., denote

g [ n 0 q n1 q ??? qn k , m [ n1 q 2 n 2 q ??? qkn k , s [ n1 q 3n 2 q ??? q Ž 2 k y 1 . n k . We can now state the result: THEOREM. tion and set

Let w Ž z . be a n-¨ alued transcendental entire algebroid funcn

c Ž z . [ w Ž z . 0 w9 Ž z .

n1

??? w Ž k . Ž z .

nk

,

Ž 2.

where k G 2, n k G 1, and n i G 0 for i / 0, k. Then if k

n0 G k q

k

Ý

Ž i y 1. n i q 2 Ž n y 1. k 2 q 2 q

ž

is2

Ý i 2 ni is1

/

\ m,

we ha¨ e for each a g C _  04 ,

ž

N r,

1

cya

/

G pT Ž r , w . y S Ž r , w . ,

where p [ Ž arŽ a q 2..Ž n 0 y m q 1 y 8Ž n y 1.ra . G nm y 1 G 18Ž n y 1. q 1.

1 3

with a [ g y

KARI KATAJAMAKI ¨

34

COROLLARY. With the same hypotheses, we ha¨ e for each a g C _  04 , Q Ž a, c . [ 1 y lim sup

N Ž r , 1r Ž c y a . . T Ž r, c .

rª`

p

F1y

g q 2 Ž n y 1. s

.

2. LEMMAS Let w be a n-valued algebroid function. It has expansions of the general form w Ž z . s w Ž z 0 . q ct Ž z y z 0 . w Ž z . s cyt Ž z y z 0 .

tr l

yt r l

q ???

or

q ??? ,

where t , l g N and l F n . We define the counting functions of branch points and multiple points of w by nZ Ž r , w . [

Ý Ž l y 1.

and

< z
nW Ž r , w . [

Ý Ž t y 1. ,

< z
respectively, and denote by NZ Ž r, w . and NW Ž r, w . the corresponding integrated counting functions. We regard c , w9rw, etc., as functions on the Riemann surface of w; see w7, Sect. 2x. By the proof of w13, Theorem 1x, we have the following lemma: LEMMA 1.

Let w be a nonconstant algebroid function. Then for i g N,

T Ž r , w Ž i. . F T Ž r , w . q iN Ž r , w . q Ž 2 i y 1 . NZ Ž r , w . q S Ž r , w . . We also have the following estimate; see w5, Lemma 3x. LEMMA 2. Let w be a nonconstant algebroid function and c be of the form Ž2.. Then T Ž r , c . F g T Ž r , w . q m N Ž r , w . q s NZ Ž r , w . q S Ž r , w . . The next lemma was proved in w7x. LEMMA 3. Let w be an algebroid function and c be a rational function of w, w9, . . . , w Ž k ., k G 0, with meromorphic coefficients. Then NZ Ž r, c . F NZ Ž r, w .. By w2, pp. 213, 215x, we have the following results: LEMMA 4.

Let w be a nonconstant algebroid function. Then

NW Ž r , w . s N r ,

1

ž / w

q N Ž r , w . q NZ Ž r , w . y m r ,

ž

w w9

/

q SŽ r , w.

Ž 3.

35

ALGEBROID FUNCTIONS

and w9

F N r,

1

q N Ž r , w . q NZ Ž r , w . .

ž / ž /

N r,

w

w

Ž 4.

We can now state and prove the final two lemmas. LEMMA 5. With the hypotheses of the theorem, we ha¨ e k

ž

g y m y 2 Ž n y 1.

Ý i 2 ni is1

/

T Ž r , w. F T Ž r , c . q SŽ r , w. .

Ž 5.

Remark. The left-hand side of Ž5. is G kT Ž r, w . by the hypothesis on n0 . Proof of Lemma 5. Set qi [ Ý kjsi n j for i s 0, 1, . . . , k, and write

csw

q0

w9

q1

w0

q2

???

ž /ž / ž w

w9

qk

wŽk. w Ž ky1.

/

.

Using the lemma on the logarithmic derivative with Lemma 1, we get k

q0 T Ž r , w . F T Ž r , c . q

Ý is1

ž

qi N r ,

w Ž i. w Ž iy1.

/

q SŽ r , w. .

By Ž4. and the inequality NZ Ž r, w . F 2Ž n y 1.T Ž r, w . q O Ž1. Žsee w11, Satz II, p. 210x., we have w9

F N r,

1

ž / ž /

N r,

w

w

q NZ Ž r , w . F Ž 1 q 2 Ž n y 1 . . T Ž r , w . q O Ž 1 . .

Again by Ž4., Lemma 1, and the fact that possible poles of the derivatives of w arise only from branch points of w, we obtain

ž

N r,

w Ž i. w Ž iy1.

/

F N r,

ž

1 w

Ž iy1.

/

q N Ž r , w Ž iy1. . q NZ Ž r , w .

F T Ž r , w . q Ž 2 Ž i y 1 . y 1 . NZ Ž r , w . q 2 NZ Ž r , w . q S Ž r , w . s T Ž r , w . q Ž 2 i y 1 . NZ Ž r , w . q S Ž r , w . F Ž 1 q 2 Ž n y 1. Ž 2 i y 1. . T Ž r , w . q S Ž r , w .

KARI KATAJAMAKI ¨

36 for i s 2, 3, . . . , k. Thus k

q0 T Ž r , w . F T Ž r , c . q

Ý qi Ž 1 q 2 Ž n y 1 . Ž 2 i y 1 . . T Ž r , w . q S Ž r , w . is1

and, since q0 s g and

Ý kis1

qi s m ,

k

ž

g y m y 2 Ž n y 1.

Ý qi Ž 2 i y 1 . is1

/

T Ž r , w. F T Ž r , c . q SŽ r , w. .

But k

Ý

k

qi Ž 2 i y 1 . s

is1

Ý

i

ni

is1

k

Ý

Ž 2 j y 1. s

js1

Ý i 2 ni , is1

so that Ž5. holds. LEMMA 6. With the hypotheses of the theorem, we ha¨ e a G 18Ž n y 1. q1. Proof. Since k G 2, we get

a s n 0 q q1 y nm y 1 k

Gkq

k

k

Ý in i y Ý n i q 2 Ž n y 1. is1

is1

k

k

ž

k2 q 2 q

Ý i 2 ni is1

/

q Ý n i y n Ý in i y 1 is1

is1 k

s k y 1 y Ž n y 1.

k

Ý in i q 2 Ž n y 1. is1

ž

k2 q 2 q

Ý i 2 ni is1

/

k

s k y 1 q Ž n y 1. 2 k 2 q 4 q

ž

Ý Ž 2 i y 1. in i is1

/

G 18 Ž n y 1 . q 1,

and the proof is complete.

3. PROOF OF THE THEOREM AND ITS COROLLARY The function c must be nonconstant by Lemma 5. Let a g C _  04 . The second main theorem Žsee w6, p. 18x. then yields T Ž r , c . F NŽ r , c . q N r ,

1

q N r,

ž / ž c

1

cya

/

q NZ Ž r , c . q S Ž r , c . .

37

ALGEBROID FUNCTIONS

By Lemma 2, we may replace SŽ r, c . by S Ž r, w .. Using also Lemma 3 and noticing that any pole of c must be a branch point of w, we get 1

T Ž r, c . F N r,

q N r,

ž / ž c

1

cya

/

q 2 NZ Ž r , w . q S Ž r , w . .

Ž 6.

Next we estimate the term N Ž r, 1rc .. Let w have an expansion w Ž z . s w Ž z 0 . q ct Ž z y z 0 .

tr l

q ???

Ž 7.

around a point z 0 . Then w9 has an expansion w9 Ž z . s

t l

ct Ž z y z 0 .

Žt y l . r l

q ??? .

Thus we obtain 1

F n r,

1

ž / ž /

n r,

c

w

k

q Ý Ž t y l. q Ý n

q

w/0

is2

ž

1

r,

w Ž i.

/

.

Here q Ý Ž t y l. F Ý Ž t y 1. s n W Ž r , w . y Ý Ž t y 1.

w/0

w/0

s n r,

ws0

1

ž / w

q nW Ž r , w . y n r ,

1

ž / w

.

Integrating logarithmically we get 1

ž /

N r,

c

F 2N r,

1

ž / w

q NW Ž r , w . y N r ,

1

ž / w

k

q

ÝN is2

ž

r,

1 w Ž i.

/

.

The identity Ž3. now gives 1

ž /

N r,

c

F 2N r,

1

ž / w

k

q NZ Ž r , w . q

ÝN is2

ž

r,

1 w Ž i.

/

q S Ž r , w . . Ž 8.

At each zero of w, the function c also has a zero. In fact, if w Ž z 0 . s 0 in Ž7., the expansion of c becomes

c Ž z . s c Ž z y z0 .

Ž gt y m l .r l

q ??? ,

c g C,

KARI KATAJAMAKI ¨

38

where gt y ml G g y mn s a q 1 G 2 by Lemma 6. We thus obtain

an r,

1

ž / w

s

Ý Ž g y mn y 1. ws0

F

Ý Ž gt y ml y 1. F n ws0

1

y n r,

1

ž / ž / r,

c

c

and, integrating logarithmically,

aN r,

1

F N r,

1

y N r,

1

ž / ž / ž / w

c

c

.

Substituting this into Ž8. and recalling Lemma 1, we obtain 1

F

2

1

y N r,

1

ž / ž ž / ž //

N r,

c

N r,

a

c

c

q NZ Ž r , w .

k

q Ý Ž T Ž r , w . q Ž 2 i y 1 . NZ Ž r , w . . q S Ž r , w . . is2

Hence we have

aq2 a

1

ž /

N r,

c

F

2

a

T Ž r , c . q Ž k y 1. T Ž r , w . k

q Ý Ž 2 i y 1 . NZ Ž r , w . q S Ž r , w . , is1

i.e., 1

ž /

N r,

c

F

2

T Ž r, c . aq2 a q Ž Ž k y 1 . T Ž r , w . q k 2 NZ Ž r , w . . q S Ž r , w . . aq2

The inequality Ž6. now gives

a aq2

TŽ r, c . F

a aq2

Ž Ž k y 1 . T Ž r , w . q k 2 NZ Ž r , w . .

q N r,

ž

1

cya

/

q 2 NZ Ž r , w . q S Ž r , w . ,

39

ALGEBROID FUNCTIONS

so that T Ž r , c . F Ž k y 1 . T Ž r , w . q k 2 NZ Ž r , w . q 2 NZ Ž r , w . q

aq2

q

a

ž

N r,

1

cya

/

ž

aq2 a

ž

N r,

1

cya

/

a

NZ Ž r , w .

q SŽ r , w.

F k y 1 q 2 Ž n y 1. Ž k 2 q 2. q q

4

8 Ž n y 1.

a

/

T Ž r, w.

q SŽ r , w. .

Combining this with Ž5., we have k

ž

g y m y 2 Ž n y 1.

Ý i 2 n i y k q 1 y 2 Ž n y 1. Ž k 2 q 2. y

8 Ž n y 1.

a

is1

/

= T Ž r, w. k

s n0 y

ž

is2

q 1y

ž

F

k

Ý Ž i y 1. n i y 2 Ž n y 1.

aq2 a

8 Ž n y 1.

a

ž

N r,

1

cya

ž

k2 q 2 q

Ý i 2 ni is1

y k T Ž r, w.

/ /

/Ž /

T r, w. q SŽ r , w. .

Ž 9.

By Lemma 6 and the hypothesis on n 0 , the left-hand side of Ž9. is ) 59 T Ž r, w ., and we have pT Ž r , w . F N r ,

ž

1

cya

/

q SŽ r , w. ,

where p[

a Ž n0 y m. aq2

q

a y 8 Ž n y 1. aq2

G

1 3

.

This completes the proof. Proof of the Corollary. By Lemma 2, we have T Ž r , c . F Ž g q 2 Ž n y 1. s . T Ž r , w . q S Ž r , w . .

Ž 10 .

KARI KATAJAMAKI ¨

40

Let a g C _  04 . By Ž10. and the theorem, there exists a set E of finite linear measure such that lim rfE

N Ž r , 1r Ž c y a . . T Ž r, c .

G lim rfE

s

Ž p y o Ž 1. . T Ž r , w . Ž g q 2 Ž n y 1. s q o Ž 1. . T Ž r , w . p

g q 2 Ž n y 1. s

.

The corollary is proved.

REFERENCES 1. J. Clunie, On a result of Hayman, J. London Math. Soc. 42 Ž1967., 389]392. ¨ 2. F. Gackstatter, Uber die logarithmische Ableitung einer algebroiden Funktion, J. Reine Angew. Math. 257 Ž1972., 210]216. 3. W. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 Ž1959., 9]42. 4. W. Hayman, ‘‘Meromorphic Functions,’’ Clarendon Press, Oxford, 1964. 5. Y. He and X. Xiao, Meromorphic and algebroid solutions of higher-order algebraic differential equations, Sci. Sinica Ser. A 26 Ž1983., 1034]1043. 6. K. Katajamaki, ¨ Algebroid solutions of binomial and linear differential equations, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 90 Ž1993., 1]48. 7. K. Katajamaki, ¨ Value distribution of certain differential polynomials of algebroid functions, Arch. Math. Ž Basel . 67 Ž1996., 422]429. 8. K. Katajamaki, ¨ Value distribution of some monomials of entire algebroid functions, Complex Variables Theory Appl. 34 Ž1997., 415]420. ¨ 9. H. Selberg, Uber die Wertverteilung der algebroiden Funktionen, Math. Z. 31 Ž1930., 709]728. 10. L. Sons, Deficiencies of monomials, Math. Z. 111 Ž1969., 53]68. ¨ 11. E. Ullrich, Uber den Einfluß der Verzweigtheit einer Algebroide auf ihre Wertverteilung, J. Reine Angew. Math. 167 Ž1932., 198]220. 12. G. Valiron, Sur la derivee Bull. Soc. Math. France 59 Ž1931., ´ ´ des fonctions algebroıdes, ´ ¨ 17]39. 13. K. Yosida, On algebroid-solutions of ordinary differential equations, Japan. J. Math. 10 Ž1934., 199]208.