Volume 143B, number 4, 5, 6
PHYSICS LETTERS
16 August 1984
M O N T E C A R L O S T U D Y O F SU(3) G A U G E T H E O R Y W I T H N E X T - T O - N E A R E S T N E I G H B O U R I N T E R A C T I O N S O N A 12'; L A T T I C E Ph. de F O R C R A N D Ecole Polytechnique, CPHT, Palaiseau, France
and C. R O I E S N E L CERN. Geneva, Switzerland
Received 2 April 1984
We report results of a Monte Carlo simulation of SU(3) pure gauge theory on a 124 lattice with action involving planar 1 x 1 and 2x 1 Wilson loops. We study the string tension and glueball spectrum and compare with our previous results on a 64 lattice.
In a previous p a p e r [1] we carried out a n u m e r i cal simulation of SU(3) lattice gauge theory on a 64 lattice with the tree-level i m p r o v e d (TI) action [21: S=5~(1-~
R e T r W~)
/3 i~2Y'~ (1 - ½ Re T r WEre),
(1)
where W[] a n d W ~ are the W i l s o n loops associa t e d to the 1 x 1 a n d 2 x 1 p l a q u e t t e s respectively. W e d i d observe a satisfactory scaling b e h a v i o u r for the Creutz ratios X e x t r a c t e d from our largest (3 × 3) loops over a r a t h e r b r o a d range of /3: 3.6 ~3 ~< 4.5. However, the convergence, at fixed /3, o f the successive X ( I , J ) for increasing l o o p a r e a to a limiting value K a 2 d i d n o t seem to be n o t i c e a b l y i m p r o v e d c o m p a r e d to w h a t h a p p e n s with the s t a n d a r d action. M e a n w h i l e it has been shown b y recent n u m e r i c a l simulations [3,4] with i m p r o v e d statistics on " l a r g e " lattices (typically 104-164 ) that sizable a s y m p t o t i c scaling violations for the string tension occur, with the s t a n d a r d W i l s o n action, b e t w e e n / 3 = 5.4 a n d 5.7. M o r e o v e r we a l r e a d y h a d s t r o n g signs of such violations in the b e h a v i o u r of the d e c o n f i n e m e n t t e m p e r a t u r e
with action (1). T h e r e f o r e it b e c a m e necessary to r e p e a t our m e a s u r e m e n t s of the string tension a n d the glueball s p e c t r u m on a larger lattice in o r d e r to m e a s u r e larger l o o p s in lattice units, a n d to o b t a i n reliable results at larger fl, further from the p e a k in the specific heat located, in our case, a r o u n d / 3 = 3.9. In this letter we r e p o r t on a M o n t e C a r l o simulation of SU(3) lattice gauge theory d o n e on a 124 lattice with action (1). W e selected four/3 values in the scaling w i n d o w observed on the 64 lattice, n a m e l y fl = 3.6, 3.9, 4.2 a n d 4.5 a n d p e r f o r m e d respectively runs of 1500, 2100, 1900 a n d 1200 iterations. C o n f i g u r a t i o n s were generated using the p s e u d o - h e a t b a t h m e t h o d of C a b b i b o a n d M a r i n a r i [5], with three SU(2) subgroups, for better decorrelation. To speed up convergence t o w a r d s equilibrium, we started from thermalized 64 configurations that were c o p i e d 16 times into the larger lattice. Details a b o u t the p r o g r a m are given in a n o t h e r p u b l i c a t i o n [6]. In o r d e r to extract the string tension we measured the v a c u u m expectation values of all rectangular W i l s o n l o o p s up to length 6 x 6. W e also m e a s u r e d all correlations b e t w e e n these p l a n a r
0 3 7 0 - 2 6 9 3 / 8 4 / $ 0 3 . 0 0 © Elsevier Science Publishers B.V. ( N o r t h - H o l l a n d Physics Publishing Division)
453
Volume 143B, number 4, 5, 6
PHYSICS LETTERS
loops up to distance 2 to get masses of glueballs with positive parity at a cost of only a few percent in computer time. After a suitable number of s w e e p s ( 3 0 0 o r so) t o r e a c h e q u i l i b r i u m o n t h e l a r g e r l a t t i c e , w e a n a l y z e d 120, 240, 330 a n d 330 c o n f i g u r a t i o n s r e s p e c t i v e l y a t fl = 3.6, 3.9, 4.2 a n d 4.5. M e a s u r e m e n t s w e r e g r o u p e d i n t o b i n s o f 50 i t e r a t i o n s ( o n a v e r a g e ) f o r e s t i m a t i n g all s t a t i s t i c a l e r r o r s . T o give a n i d e a o f t h e e f f i c i e n c y o f o u r program, one Monte Carlo sweep through the w h o l e l a t t i c e t o o k 12 s a n d o n e c o m p l e t e m e a s u r e m e n t o n o n e c o n f i g u r a t i o n t o o k 26 s. We first discuss results on the string tension. V a c u u m e x p e c t a t i o n v a l u e s , n o r m a l i z e d to u n i t y , o f all r e c t a n g u l a r W i l s o n l o o p s t h a t w e c o u l d m e a s u r e u p t o size 6 × 6 a r e l i s t e d i n t a b l e 1. A l l v a l u e s u p t o size 3 × 3 a r e i n a g r e e m e n t , w i t h i n one standard deviation, with those obtained on the 6 4 l a t t i c e f o r fl = 3.6, 3.9 a n d 4.2 [1]. H o w e v e r , t h e r e is a s i g n i f i c a n t d i s c r e p a n c y a t fl = 4.5 ( 2 0 f o r W ( 1 , 1) a n d 3 a f o r I4,'(3, 3)). S u c h a n e f f e c t is t o be expected, given our previous measurements of
16 August 1984
t h e c r i t i c a l t e m p e r a t u r e f o r N t = 6 [1]. I n d e e d we a l s o m e a s u r e d o n t h e 6 4 l a t t i c e tic = 4.35 + 0.1. In table 2 are listed the derived values for the Creutz ratios
X(I,j)=_Ln
W(I,J)×W(I-1,J-1) (2) W ( I , J - 1) × W ( I - 1, J ) "
Convergence of x(I, J) for loops of increasing a r e a t o w a r d s a l i m i t i n g v a l u e is n o t c l e a r ( e x c e p t at fixed I or J) so we can only extract an upper b o u n d o n t h e r a t i o v ~ / A L w h e r e K is t h e s t r i n g tension. From a weighted average of the X(I, J) w i t h I , J >~ 3 a t fl = 3.6, 3.9 a n d I, J >~ 4 a t fl = 4.2, 4.5 w e get r e s p e c t i v e l y : 25.1+0.8,
25.5+0.5,
21.9+1.3
(3) These values show a significant violation of a s y m p t o t i c s c a l i n g b e t w e e n fl = 3.9 a n d fl = 4.2. H o w e v e r it h a s b e e n e m p h a s i z e d r e c e n t l y [7,8] that the phenomenological procedure of sub-
Table 1 Measured values ( x l 0 5 ) of Wilson loops W(1, J) at fl = 3.6, 3.9, 4.2 and 4.5.
W(I, J) W(1, 1) W(2, 1) W(2, 2) W(3, 1) W(3, 2) W(3, 3) 14z(4, 1) W(4, 2) 14,'(4, 3) W(4, 4) W(5, 1) W(5, 2) w(5, 3) w(5, 4) w(5, 5) w(6, 1) W(6, 2) W(6, 3) W(6, 4) W(6, 5) W(6, 6)
454
B 3.6
3.9
4.2
4.5
46516 + 11 20864 4-12 4163 + 7 9387 4- 9 855 -+ 5 87-+ 4 4231 + 5 178--+ 3 10+ 4
54089 -+ 19 29546 + 29 9670 ___27 16365 4- 26 3391 -+ 15 810-+ 8 9096 + 21 1212-+ 7 204_+ 5 30_+ 6 5054 _+17 430 -+ 5 44-+ 4 11_ 5
59918_+11 37257 + 18 16614_+26 23628 _+21 8051 4- 24 3243 _+20 15052_+21 3989 4-19 1364 -+ 13 489 -+ 7 9565 _+15 1962 + 10 570 -+ 6 180-+ 4 58-+ 4 6093 + 12 977 -+ 6 240 4- 4 66-+ 4 18+ 3
63565 + 7 42222 _ 12 21587_+20 28613 _+14 119614-18 5840 + 18 19480 + 13 6763 -+ 15 2973 _ 15 1388_+11 13271 _+12 3843 _+12 1528 _+10 666 _+ 7 302 _+ 6 9046 _+10 2190 _+10 793 4- 7 320-+ 5 134+ 4 59_+ 5
1915 + 6 39-+ 4
2811 + 11 151 -+ 5 9+ 3
22.3+1.2.
16 August 1984
PHYSICS LETTERS
Volume 143B, number 4, 5, 6
Table 2 Measured values of Creutz ratios X(I, J) at fl = 3.6,3.9,4.2and4.5.
X(I,J)
fl 3.6
3.9
4.2
4.5
X(2, 2) X(3, 2) X(3, 3) X(4, 2) X(4, 3) X(4, 4) X(5, 2) X(5, 3) X(5, 4) x(5, 5) X(6, 2) X(6, 3) X(6, 4) X(6, 5)
0.810 + 0.002 0.784 + 0.006 0.702 _ 0.047 0.772 + 0.018 0.594+0.403
0.512 + 0.003 0.457 + 0.006 0.384 ± 0.014 0.442 ± 0.008 0.350+0.027
0.332 + 0.002 0.269 +_0.003 0.185 4- 0.007 0.251 ± 0.006 0.164 + 0.013 0.160 5:0.025 0.258 ± 0.007 0.163 ± 0.014 0.127 5:0.030 0.133 _+0.083 0.246 -+_0.008 0.168 + 0.021 0.138 +__0.067
0.262 ± 0.001 0.201 ± 0.002 0.126 ± 0.004 0.186 _ 0.003 0.105 ± 0.007 0.087 _+0.013 0.181 ± 0.004 0.100 ± 0.009 0.069 + 0.016 0.057 _+0.030 0.179 + 0.006 0.094 ± 0.012 0.077 ± 0.022 0.080 ± 0.041
-
-
0.726 ± 0.104 -
0.449 ± 0.014 0.498 ± 0.095 0.460 ± 0.035 -
-
t r a c t i n g the p e r t u r b a t i v e c o n t r i b u t i o n f r o m X ( I , J ) i m p r o v e s t h e c o n v e r g e n c e to K a 2. T o get a n app r o x i m a t e e s t i m a t e of the p e r t u r b a t i v e c o n t r i b u t i o n x P ( I , J ) w e c a n use the c o n t i n u u m results o f ref. [9]. T h e n if w e d e n o t e K ( I , J ) = X ( I , J ) xP(I, J), we do observe that the quantities K ( I , J ) , for p l a q u e t t e s of d i f f e r e n t sizes, a g r e e m u c h b e t t e r a m o n g t h e m s e l v e s a n d are c o n s i s t e n t w i t h a f i x e d string t e n s i o n at e a c h fl value. T h e c o r r e s p o n d i n g r a t i o s v ~ / A L at fl = 3.6, 3.9, 4.2 a n d 4.5 are s i g n i f i c a n t l y l o w e r t h a n in eq. (3), respectively:
g a t e d p l a q u e t t e s to try a n d d e t e r m i n e )t a n d # at fl = 4.2 a n d 4.5, w i t h the results
2 2 . 2 _ 0.2,
17.9___ 0.4.
1 / ~ / ( A L ) T I -~ 19.9 _+ 0.8
( f l = 4.2),
(8a)
(4)
x / K / ( A L ) T ~ = 17.9 + 1.8
(fl = 4.5),
(8b)
21.6 + 0.2,
18.2 4- 0.3,
X = 0.26 _+ 0.02,
t~=0.12+0.01
(fl--4.2), (7a)
X=0.25-t-0.01,
~t= 0.05 _+ 0.01
(fl=4.5). (7b)
T h e c o u l o m b i c t e r m t u r n s o u t to b e v e r y close to t h e v a l u e X - - ~ r / 1 2 [10], a l t h o u g h n o e f f o r t has b e e n m a d e to s e p a r a t e l o n g d i s t a n c e f r o m s h o r t d i s t a n c e effects. T h e l i n e a r t e r m yields
T h e r e m i g h t be a s i z e a b l e s y s t e m a t i c e r r o r in the n u m b e r s o f eq. (7) d u e to t h e a p p r o x i m a t i o n s i n v o l v e d in their d e r i v a t i o n . H o w e v e r a s y m p t o t i c s c a l i n g v i o l a t i o n b e t w e e n fl = 3.9 a n d 4.2 is still there. A n o t h e r c h e c k of t h e v a l u e o f the scale ( A L)TI c o n s i s t s in fitting the w h o l e lattice p o t e n t i a l
w h i c h c o r r e s p o n d s to AMO M = 350 M e V ( t a k i n g ~/K = 420 M e V a n d i g n o r i n g f e r m i o n loops). T h e lattice s p a c i n g of o u r b o x is t h e n a = 0.16 f m at f l = 4 . 2 a n d - - 0 . 1 1 f m at fl---4.5. O u r v a l u e at fl = 4.5 c a n b e c o m p a r e d to the o n e o b t a i n e d in ref. [11] o n a 163 x 32 lattice for fl >~ 6.0 w i t h the s t a n d a r d W i l s o n action, u s i n g t h e s a m e m e t h o d :
VL(R)+
( A L ) w = 9.6 × 10 . 3 ~ .
lim Ln[W(R,T)/W(R,T-1)] T~oo
(5)
O n e gets
w i t h a l i n e a r p l u s a C o u l o m b t e r m for e a c h fl: V L ( R ) = Vo - X / ( R / a )
+ ~(R/a).
(9)
(6)
W e h a v e e n o u g h a c c u r a t e d a t a p o i n t s for e l o n -
w = 5.8 _ 0.6,
(lO)
s e e m s in a g r e e m e n t
w i t h the t h e o r e t i c a l
(AL)Tt/(AL) which
455
Volume 143B, number 4, 5, 6
PHYSICS LETTERS
value predicted from one-loop perturbation
theory
(AL)TI/(aL)W= Comparison
5.29 + 0.01.
among
(11)
Creutz ratios would yield the
same result. a
standard
variational
masses
momentum
correlations,
from
method
[13-15]
correlations
between
to
get zero-
o p e r a t o r s . T h e set o f o p e r a t o r s selected
in the m i n i m i z a t i o n the rectangular
p r o c e s s w a s q u i t e n a t u r a l l y all
Wilson loops
6 × 6 that we had
W(I, J)
to measure
the string tension. We measured
u p t o size
in order to extract
because
to o n - d i a g -
they give a minimum
m a s s w h i c h is q u i t e s t a b l e w i t h i n o u r e r r o r s :
C,(t) = (O,(t)O,(O)) The corresponding
We now turn to the glueball spectrum. We used glueball
it is s u f f i c i e n t t o r e s t r i c t m i n i m i z a t i o n onal
[121:
16 August 1984
( O , ( 0 ) ) 2.
(12)
effective glue ba ll m a s s at dis-
t a n c e t is u s u a l l y d e f i n e d a s
M,(t)a Our table
[C,(t)/C~(t-
= -Ln
1)].
(13)
d a t a f o r t h e 0 ÷+ g l u e b a l l s t a t e a r e l i s t e d in 3. T h e
error bars
at dis ta nc e
2 are rather
large. A reasonably precise estimate of the glueball mass can be obtained from
both on-diagonal
a n d o f f - d i a g o n a l c o r r e l a t i o n s u p t o d i s t a n c e 2, b u t
Mga
= min {i)
- ½ Ln
[Ci(2)/C~(O)],
Table 3 0 ++ glueball masses M,(t)a from diagonal correlations at /3 = 3.6, 3.9., 4.2 and 4.5 between rectangular Wilson loops distance t = 1 (first entry) and 2 (second entry).
w(1, 1) 14/(2, 1) w(2, 2) w(3, 1)
3.6
3.9
4.2
4.5
2.13 ± 0.12 1.47 ± 0.63 2.13±0.11 1.62 ± 0.75 3.11 ± 0.30 2.45 ± 0.18
1.78 ± 0.11 1.59 _ 0.55 1.54+0.10 1.20 __+0.40 1.77 ± 0.11 1.30 ± 0.36 1.57 ± 0.11 1.14 ± 0.34 2.07_+0.12 1.06 ± 0.44 3.36 ± 0.27
2.15 ± 0.13 1.98+0.14 1.34 ± 0.54 1.92 ± 0.12 1.15 ± 0.33 2.09 ± 0.16 1.03 ± 0.48 1.83±0.15 0.78 -+ 0.34 2.46 -+0.17 0.82 ± 0.35 2.29 5:0.20 0.94 _+0.54 2.02 ± 0.17 0.93 ± 0.44 2.46 -+ 0.19 0.75 -+ 0.41 2.56 ± 0.25 1.10 _+0.67 2.55 ± 0.15 0.99±0.51 3.06 ± 0.27 0.74 _+0.46 3.10 _+0.42 2.88±0.19
2.66 ± 0.13 2.31 ±0.10
-
w(3, 2)
-
w(3, 3) w(4, 1) w(4, 2)
-
w(4, 3) w(5, 1) w(5, 2) w(5, 3)
-
W(6, 1) W(6, 2)
456
-
1.76 -+0.11 1.03 _+0.32 3.41 ± 0.44 2.07 ± 0.10 1.05 ± 0.41 2.59 ± 0.16 1.06 ± 0.62
2.23 ± 0.13 1.86 ± 0.57 2.26 _.+0.08 2.47 ± 0.68 2.01 ±0.10 1.81 ± 0.46 2.09 ± 0.06 1.35 ± 0.30 2.37 ± 0.08 2.12 ± 0.55 1.99 ± 0.09 1.97 ± 0.46 2.02 -+0.06 1.42 + 0.36 2.62 ± 0.06 2.22 _+0.08 2.37 _+0.06 2.92 _+0.12 2.58 ±0.12
(14)
W(I,
J), at
Volume 143B, number 4, 5, 6
PHYSICS LETTERS
Then, a s s u m i n g a s y m p t o t i c scaling, we get:
M(O++)/(AL)x,
= 54_+ 9, 53 + 6, 74 +_ 1 3 , 1 3 4 + 12,
(15)
respectively at 13 = 3~6, 3.9, 4.2 a n d 4.5. These n u m b e r s c o n f i r m our results on the 64 lattice [1]. A s y m p t o t i c scaling a p p e a r s to be satisfied a t / 3 = 3.6 a n d 3.9, b u t such a result should be i n t e r p r e t e d with caution, due to the vicinity of the p e a k in the specific heat. D e p a r t u r e from scaling at higher 13 is p r e s u m a b l y mostly due to spin-wave effects. W e w o u l d need better statistics at d i s t a n c e 2 to check scaling up to 13 = 4.2 with a r e a s o n a b l e accuracy. If we use eq. (11) the 0 ++ glueball mass in physical units is M ( 0 + + ) = 1200 MeV. W e can also get a r o u g h e s t i m a t e of the 0 ++ glueball size f r o m the average ( I ) of the eigenvector of the c o r r e l a t i o n m a t r i x built from the ( I x 1) W i l s o n loops, b o t h at d i s t a n c e 0 a n d 1. Results so o b t a i n e d a p p e a r i n d e p e n d e n t of d i s t a n c e a n d consistent with scaling a t / 3 = 3.6 a n d 3.9, respectively 1.9 a and 2.8 a, which c o r r e s p o n d s to a physical size o f a b o u t 0.45 fm. W e have also l o o k e d for excited glueball states with positive parity. As with the 64 lattice, we f o u n d no sign of scaling except for the 2 ++ state at d i s t a n c e 1, where results are consistent with a s y m p t o t i c scaling at /3 = 3.6 a n d 3.9, n a m e l y M ( 2 + + ) / ( A L ) v l = 122 _+ 13 a n d 133 _+ 8. Of course these n u m b e r s should be c o n s i d e r e d o n l y as upper bounds. A s a final check of the scaling b e h a v i o u r of the T I action, we tried to c o m p a r e our results for X(2, 2), X(3, 2), X(3, 3) o b t a i n e d on a 64 lattice with spacing a, with the c o r r e s p o n d i n g expressions c a l c u l a t e d on a 124 lattice with spacing a/2. F i n i t e size effects are m i n i m i z e d in such a c o m p a r i s o n so that the shift in 13 necessary to m a t c h the 2 sets of values c o r r e s p o n d s rather precisely to a change of scale b y a factor 2 [16,17]. A s y m p t o t i c scaling w o u l d require a shift A/3 ----0.64. N o w the corres p o n d e n c e seems to be the following: /3(124) = 4.5 ---,/3(64 ) = 4.04,
(16a)
/3(124) = 4.2 - o / 3 ( 6 . 4 ) = 3.74,
(16b)
/3(124) = 3.9 ---, 13(6 4) < 3.
(16c)
16 August 1984
Because of the difficulty of m e a s u r i n g large l o o p s at low r , o n l y 2 a n d 1 x - r a t i o s could be used as i n p u t at fl(124) = 4.2 a n d 3.9 respectively, thus increasing the error at low ft. Nonetheless, the m e a s u r e d shifts Aft p r o v i d e an i n d e p e n d e n t indic a t i o n of a sizeable a s y m p t o t i c scaling violation in the m i d d l e of our scaling window, with a crossover to strong c o u p l i n g between fl = 3.3 a n d 3.9. In conclusion, this study of the SU(3) p u r e gauge theory on a 124 lattice with action (1) confirms the picture f o u n d in our previous work. Sizeable scaling violations have been o b s e r v e d between /3 = 3.9 a n d 4.2 for all physical quantities we could extract, i.e. string tension a n d deconfinem e n t temperature. F o r higher /3, our results are n o t accurate e n o u g h to decide whether scaling violations increase [18], decrease or even d i s a p pear. F o r lower/3 a s y m p t o t i c scaling a p p e a r s to be satisfied a m o n g o u r 2 d a t a p o i n t s (/3 = 3.6 a n d 3.9) for the string tension a n d the glueball mass: this is m o s t likely an i n d i c a t i o n that we enter the crossover region to strong coupling shortly below fl = 3.9. O u r m e a s u r e m e n t of the glueball mass is therefore s o m e w h a t inconclusive. W e can, however, check universality b y evaluating, at /3 = 3.9, the string tension, the glueball mass a n d the critical t e m p e r a t u r e ; they are in the ratios : M0++ : Tc --0 1 : 2.1 + 0.3 : 0.58 4- 0.03.
(17)
These results are quite consistent with universality. F i n a l l y it is rather d i s t u r b i n g that very similar scaling b e h a v i o u r s of v ~ a n d Tc are o b s e r v e d with a c t i o n (1) a n d with W i l s o n ' s action [3,19]. W i t h b o t h actions a s y m p t o t i c scaling is violated b y m u c h m o r e than is expected from higher o r d e r terms in the C a l l a n - S y m a n z i k / 3 - f u n c t i o n [20]. W e gratefully a c k n o w l e d g e the g r a n t i n g of c o m p u t e r time on the C R A Y - 1 S of C C V R . The C P U time used for this w o r k was a p p r o x i m a t e l y 35 h. W e t h a n k R. Petronzio for r e a d i n g the m a n u s c r i p t .
References [1] Ph. de Forcrand and C. Roiesnel, Phys. Lett. 137B (1984) 213. [2] P. Weisz, Nucl. Phys. B212 (1983) 1. 457
Volume 143B, number 4, 5, 6
PHYSICS LETTERS
[3] F. Gutbrod, P. Hasenfratz, Z. Kunszt and I. Montvay, Phys. Lett. 128B (1983) 415. [4] M. Fukugita, T. Kaneko, T. Niuya and A. Ukawa, University of Tokyo preprint INS-REP-473 (1983). [5] N. Cabbibo and E. Marinari, Phys. Lett. l19B (1982) 387. [6] Ph. de Forcrand, D. Lellouch and C. Roiesnel, in preparation. [7] G. Curci and R. Petronzio, Phys. Lett. 132B (1983) 133. [8] S. Belforte, G. Curci, P. Menotti and G. Paffuti, Phys. Lett. 137B (1984) 207. [9] R. Kirschner, J. Kripfganz, J. Ranft and A. Schiller, Nucl. Phys. B210 (1982) 567. [10] M. Luscher, K. Symanzik and P. Weisz, Nucl. Phys. B173 (1980) 365. [11] D. Barkai, K.J.M. Moriarty and C. Rebbi, BNL preprint BNL-34462 (1984).
458
16 August 1984
[12] w . Bernreuther and W. Wetzel, Phys. Lett. 132B (1983) 382; P. Weisz and B. Wohlent, unpublished. [13] M. Falcioni et al, Phys. Lett. ll0B (1982) 295. [14] K. Ishikawa, G. Schierholz and M. Teper, Phys. Lett. ll0B (1982) 399. [15] B. Berg and A. Billoire, Nucl. Phys. B221 (1983) 109. [16] M. Creutz, Phys. Rev D23 (1981) 1815. [17] A. Hasenfratz, P. Hasenfratz, U. Heller and F. Karsch, Phys. Lett. 140B (1984) 76. [18] F. Gutbrod and I. Montvay, Phys. Lett. 136B (1984) 411. [19] T. t~elik, J. Engels and H. Satz, Bielefeld preprint BI-TP83/23. [20] R.K. Ellis and G. Martinelli, LNF preprint LNF-84/l(P).