Journal of Non-Crystalline Solids 106 (1988) 395 398
395
North-Holland, Amsterdam
MOSSBAUER SPECTROSCOPY IN AMORPHOUS METALS: FAILURES AND SUCCESSES U. GONSER, C.T. LIMBACH, F. AUBERTIN U n i v e r s i t a t des Saarlandes, FR 12.1 W e r k s t o f f p h y s i k und W e r k s t o f f t e c h n o l o g i e , 6600 SaarbrOcken, W-Germany M6ssbauer spectroscopy i s an " i d e a l " t o o l f o r probing the l o c a l surroundings of resonance atoms. Consequently i t was thought t h a t the a t o m i s t i c s t r u c t u r e of amorphous metals would be r e v e a l e d by the h y p e r f i n e s p e c t r a . However, the e f f e c t i v e l y i n f i n i t e number o f environments produces an i n f i n i t e number o f s p e c t r a l components. Thus, only d i s t r i b u t i o n s of h y p e r f i n e M6ssbauer parameters are observed. Despite c o n s i d e r a b l e e f f o r t s , M6ssbauer spectroscopy met w i t h the same f a t e as a l l o t h e r methods i n i t s f a i l u r e t o e l u c i d a t e the s t r u c t u r e of any o f the amorphous metals. However, M6ssbauer spectroscopy became the most p o w e r f u l t o o l f o r i n v e s t i g a t i n g or t r a c i n g any type of o r d e r i n g and also where and at what temperature c r y s t a l l i z a t i o n commences and i n what sequence c r y s t a l l i n e phases p r e c i p i t a t e . Very u s e f u l i s the combination o f conversion e l e c t r o n M6ssbauer spectroscopy (CEMS) and ~-ray t r a n s m i s s i o n M6ssbauer spectroscopy, a l l o w i n g the surface and the bulk t o be scanned s i m u l t a n e o u s l y . 1. INTRODUCTION By analogy w i t h " c e n t u r y v i n t a g e s " we might
1950 etecfro-deposition
Brenner,Couch.WiltiQms
1
1952 v~tpour deposition
Bucket, Hitsch
2,3
195B irrodiQtion
Gonser, Okkerse,FujitQ
I,,5
c a l l the amorphous metals and the h i g h - t e m p e r a t u r e (Tc) superconductors " c e n t u r y m a t e r i a l s " .
(d)
Both m a t e r i a l s are o f importance from a s c i e n -
1960 quenching from the melt Duwez. Willens, Klement
6
tific
1969 melt-spinning
7
and also from a t e c h n o l o g i c a l p o i n t of
view. They both r e p r e s e n t d e f e c t s t r u c t u r e s .
Pond, Maddin
1981 n~no-crystot-deposifion Gieiter
B
1983 solid sfo,te reoction
9
Whereas, i n the case o f the high-T c m a t e r i a l s , research i s concentrated on the mechanism o f s u p e r c o n d u c t i v i t y , the main aim of our work on amorphous metals i s s t i l l
focused on the atomic
Yeh. SoJl~wer, Johnson
FIGURE 1 Methods of producing amorphous metals
structure. - t h e small mean-free path of the e l e c t r o n s , r e s u l t i n g i n high e l e c t r i c a l
2. PROBLEMS OF STRUCTURE
resistivity.
Various methods have been used t o produce amorphous metals 1-9 , ( f i g .
1). A major r o l e
has been played by the T80M20 a l l o y s (T = Fe, Co, Ni, C u . . . ;
M = B, P, C, S i . . . )
because they
3. MOSSBAUER SPECTROSCOPY From the beginning M6ssbauer spectroscopy was considered t o be an i d e a l method f o r i n -
are easy t o produce, c o m p a r a t i v e l y s t a b l e and
v e s t i g a t i n g amorphous metals because the hyper-
mostly f e r r o m a g n e t i c . In g e n e r a l , the amorphous
f i n e i n t e r a c t i o n s probe the immediate surround-
metals can be c h a r a c t e r i z e d by the f o l l o w i n g
ing of the resonance atom. Most o f the more
three features:
i n t e r e s t i n g amorphous metals c o n t a i n the i s o -
-their
tope 57Fe which i s the best s u i t e d f o r M6ss-
lack o f m a g n e t o c r y s t a l l i n e a n i s o t r o p y ,
l e a d i n g t o magnetic s o f t n e s s , -their
lack o f d i s l o c a t i o n s and unique Burgers
v e c t o r s , l e a d i n g t o mechanical hardness,
0022 3093/88/$03.50 ~ Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)
bauer spectroscopy. Moreover the specimens obtained by the quenching process have the d e s i r e d t h i c k n e s s and geometry. I t was t h e r e -
396
U. Gonser et al. / M6ssbauer ,spectroscopy in amorphous metals
microcrystalline n a ~ n e 0 97 0 9~ 00
p
~s94
~
097
~0
94
7
c)
unit cell "molecules"
increasing chemical short range order
Bernat {RDP)
1 01~
0 91
(~/$) 6
3 0 3 VELOCITY (mm/s)
bsBOB20
FIGURE 3 Schematic r e p r e s e n t a t i o n of t h r e e a l t e r n a t i v e models used t o i n t e r p r e t experiments on TsoM20 amorphous a l l o y s
6
spectra and t h a t t h e r e i s a r e a l danger o f obFIGURE 2 M6ssbauer spectra of FeRflBpn produced by the m e l t - s p i n n i n g t e c h n i q u e ~ t - V d e c r e a s i n g wheel surface v e l o c i t i e s ((a) 25 m/s, (b) 21.9 m/s, (c) 18.7 m/s (d) 12.5 m/s) and thus decreasing cooling rates
t a i n i n g a r t e f a c t s 10 . In the past, the i n t e r p r e t a t i o n was based e s s e n t i a l l y
o f the data
along t h r e e d i f f e r e n t
l i n e s of assumptiQn: c r y s t a l l i n i t y
(in micro-
or nano-dimensions), elementary u n i t s ,
or ran-
f o r e expected t h a t the a t o m i s t i c s t r u c t u r e o f
dom dense packing of hard spheres (Bernal n~del).
the amorphous metals would be r e v e a l e d by the
For the s e l e c t i o n of the a p p r o p r i a t e model con-
h y p e r f i n e s p e c t r a . However, the spectra o b t a i n -
s t r u c t i o n we might place the extreme views at
ed e x h i b i t e d very broad l i n e s and were also
the corners of a t r i a n g l e
rather similar.
The r e a l i t y
As an example, the M6ssbauer
as shown in f i g u r e 3.
might then be found somewhere i n -
spectrum o f amorphous Fe8oB20 i s shown i n f i -
side the t r i a n g l e .
gure 2a. Contrary t o c r y s t a l l i n e
proceeded by assuming a model which a l l o w s the
materials,
Up t o now s c i e n t i s t s
where we expect uniqueness i n the values of
data t o be f i t t e d .
their
t o reverse the procedure, t h a t i s t o a r r i v e a t
s p e c t r a l p a r a m e t e r s , f o r amorphous systems
the i n f i n i t e infinite
number o f environments produces an
number o f s p e c t r a l components. Thus,
So f a r ,
have
no one has been able
the model by making a unique i n t e r p r e t a t i o n the data. Despite c o n s i d e r a b l e e f f o r t ,
M6ssbauer
i n M6ssbauer spectroscopy, we face d i s t r i b u t i o n s
spectroscopy met w i t h the same f a t e as a l l
of hyperfine fields,
o t h e r methods i n i t s f a i l u r e
interactions and p r i n c i p a l field ral it
isomer s h i f t s ,
quadrupole
(magnitude, asymmetry parameters axes o r i e n t a t i o n s of the e l e c t r i c
gradient).
It
can be shown t h a t i n gene-
i s i m p o s s i b l e t o deduce the c o r r e c t d i -
stribution
f u n c t i o n s from the e x p e r i m e n t a l
of
t o e l u c i d a t e the
s t r u c t u r e of any of the amorphous metals. The problem we are r e a l l y have r e p r o d u c i b i l i t y ibility.
f a c i n g i s t h a t we
as opposed t o i r r e p r o d u c -
Seen m a c r o s c o p i c a l l y , c e r t a i n p r o p e r -
t i e s are r e p r o d u c i b l e , but on the l o c a l or
U. Gonser et al.
/
397
MOssbauer spectroscopy m amorphm~s metal~
&00
80-
crysfo[[ine / ~
~morphous
60 I
40" 20-
0
~0
"
2~
3~
,e[ocdy of the roller (m/s)
He,Ar,...
Air
PHe'PAr'PAir
FIGURE 4 Parameters influencing amorphization by the melt-spinning technique
FIGURE 5 Amorphous f r a c t i o n x versus surface v e l o c i t y , Vu of the wheel in the m e l t - s p i n n i n g process
the start of precipitation and crystallization atomistic scale, the number of environments is
(Fig. 2b). The new lines can be used to ident-
infinite, which quite naturally leads to irre-
ify the phases. In our case, ~-Fe and Fe2B are
producibility. This can be illustrated by a
the first crystalline phases to appear. A fur-
comparison with biology where a species as a
ther reduction of the velocity to 18.7 m/s
whole is reproducible, while, in atomistic
leads to the occurrence of the Fe3B phase (Fig.
terms, every individual within the species is
2c). The crystalline phases were identified
unique, and thus irreproducible.
from the well-known parameters of their M6ssbauer spectra. It is interesting to note that
4. PHASE ANALYSIS
the sequence of crystallization of the various
So far, we have failed to obtain conclusive information on the structure of amorphous metals
phases is different when the amorphous sample is subjected to an annealing heat treatment
by M6ssbauer spectroscopy. On the other hand,
(starting from lower temperatures) or produced
however, M6ssbauer spectroscopy has become the
by reducing the quenching rate (coming from the
most powerful tool for investigating or tracing
melt at higher temperatures). When amorphous
any type of ordering, and also where and at what
Fe8oB20 alloys are annealed the first phase to
temperature crystallization commences and in
crystallize is Fe38 followed by ~-Fe. The cry-
what sequence crystalline phases precipitate.
stallization of Fe2B requires prolonged anneal-
Some of the parameters which influence the
ing at elevated temperature. Contrary to this
amorphization by the melt-spinning technique are
behaviour, the lowering of the quenching rate
shown schematically in figure 4. Of course, the
immediately produces Fe2B and ~-Fe before the
most influential factor is the speed of the
Ee3B phase is formed.
roller surface V quenching
because it determines the
rate11~
The amorphous a l l o y Fe80820 i s a t y p i c a l
Our data allowed us to plot a phase diagram of the amorphous fraction x versus the surface velocity of the rollers (Fig. 5). The area of
example. When the surface v e l o c i t y of the wheel
the amorphous fraction represents effectively
drops below 25 m/s new l i n e s appear i n d i c a t i n g
"our failure", that is, we have no idea of the
398
U. Gonser et al. / MSssbauer ~pectroscopy in amorphous meta[~"
from the surface which was i n contact w i t h the 106•
wheel during p r o d u c t i o n (upper p a r t of Fig. 6).
contact surface
1.0z,
However, the f r e e surface was subjected t o a
~ 1.02.
somewhat lower quenching r a t e and p r e c i p i t a t i o n
1.00= 1.00
o f ~-Fe occurred (lower p a r t of Fig. 6).
"~
In c o n c l u s i o n , i t
bulk
.> ~ 0.90
might be s t a t e d t h a t the
g r e a t success o f M6ssbauer spectroscopy seems
0.80
t o be i n d e t e r m i n i n g where, when and what
v- 0.70-
o r d e r i n g i s found in amorphous metals. • "
'
free
surface
= 1.01o
REFERENCES .,
-..
E
1.00I
)_
,
,
I
I~-~,
1. A. Brenner, D.E. Couch and E.K. W i l l i a m s , J. Res. N a t l . Bur. Stand. 44 (1950) 109.
Vet0cify [ turn/s]
2. W. Buckel and R. H i l s c h , Z. Phys. 132 (1952) 420.
FIGURE 6 y - r a y a b s o r p t i o n spectrum and conversion e l e c t r o n emission spectra of the two surfaces of quenched Fe91Zr 9 a l l o y s
3. W. Buckel and R. H i l s c h , Z. Phys. 138 (1954) 109. 4. U. Gonser and B. Okkerse, J. Phys. Chem.
S o l i d s 7 (1958) 55. amorphous s t r u c t u r e .
However, the c r y s t a l l i n e
area i s extremely w e l l known w i t h regard t o the identity
o f the phases, the sequence of t h e i r
appearance and t h e i r r e l a t i v e i s where our success l i e s ,
abundance. Here
and M6ssbauer spec-
t r o s c o p y has h a r d l y any c o m p e t i t o r s . Very u s e f u l i s the combination of conversion e l e c t r o n M6ssbauer spectroscopy (CEMS) and yray t r a n s m i s s i o n M6ssbauer spectroscopy, a l l o w ing the surface and the bulk t o be scanned s i multaneously. The e m i t t e d conversion e l e c t r o n s can escape from a depth o f about 1000 R. Experiments w i t h the a l l o y Fe91Zr9 might demons t r a t e the s e n s i t i v i t y
within a critical
range
o f the quenching r a t e . The y - r a y a b s o r p t i o n spectrum o f the paramagnetic a l l o y i s shown in the middle p a r t o f Fig. 6. An i d e n t i c a l
con-
v e r s i o n e l e c t r o n emission spectrum i s obtained
5. F.E. F u j i t a and U. Gonser, J. Phys. Soc. Japan 13 (1958) 1068. 6. P. Duwez, R.H. Willens and W. Klement, J. Appl. Phys. 31 (1960) 1136. 7. R. Pond and R. Maddin, Trans. N e t a l l Soc. AIME 245 (1969) 2475. 8. H. G l e i t e r ,
Proceedings 2nd Riso I n t e r n . Symposium on M e t a l l u r g y and M a t e r i a l s Science (1981) p. 15.
9. X.L. Yeh, K. Samwer and W.L. Johnson, Appl. Phys. L e t t e r s 42 (1983) 242. 10. G. Le Caer, J.N. Dubois, H. Fischer, U. Gonser and H.-G. Wagner, Nucl. I n s t r . Methods 85 (1984) 25. 11. C.T. Limbach, F. A u b e r t i n and U. Gonser, Physica B 149 (1988) 263.