J. Math. Anal. Appl. 317 (2006) 228–244 www.elsevier.com/locate/jmaa
Multilinear commutators of Calderón–Zygmund operators on Hardy-type spaces with non-doubling measures ✩ Yan Meng, Dachun Yang ∗ School of Mathematical Sciences, Beijing Normal University, Beijing 100875, People’s Republic of China Received 7 May 2004 Available online 5 January 2006 Submitted by William F. Ames
Abstract Under the assumption that µ is a non-negative Radon measure on Rd which only satisfies some growth condition, the authors obtain the boundedness in some Hardy-type spaces of multilinear commutators generated by Calderón–Zygmund operators or fractional integrals with RBMO(µ) functions, where the Hardy-type spaces are some appropriate subspaces, associated to the considered RBMO(µ) functions, of the Hardy space H 1 (µ) of Tolsa. 2005 Elsevier Inc. All rights reserved. Keywords: Multilinear commutator; Calderón–Zygmund operator; Fractional integral; Hardy-type space; RBMO(µ); Non-doubling measure
1. Introduction We will work on the d-dimensional Euclidean space Rd with a non-negative Radon measure µ which only satisfies the following growth condition: there exists a constant C0 > 0 such that µ B(x, r) C0 r n
✩
This project was supported by NNSF (No. 10271015) and RFDP (No. 20020027004) of China.
* Corresponding author.
E-mail addresses:
[email protected] (Y. Meng),
[email protected] (D. Yang). 0022-247X/$ – see front matter 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2005.12.003
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
229
for all x ∈ Rd and r > 0, where B(x, r) = {y ∈ Rd : |y − x| < r}, n is a fixed number and 0 < n d. Since the measure µ is not necessary to satisfy the doubling condition that there exists a constant C > 0 such that µ(B(x, 2r)) Cµ(B(x, r)) for all x ∈ supp(µ) and r > 0, we call such Rd a non-homogeneous space. It is well known that the doubling condition is a key assumption in the analysis on spaces of homogeneous type. However, in recent years, a lot of papers focus on the study of function spaces and the boundedness of Calderón–Zygmund operators in non-homogeneous spaces and indicate that many classical results still hold in nonhomogeneous spaces; see [4–7,10–13] and their references. The analysis on non-homogeneous spaces was proved to play a striking role in solving the long open Painlevé’s problem by Tolsa in [14]; see also [15] for more background. The main purpose of this paper is to establish the boundedness in some Hardy-type spaces of multilinear commutators generated by Calderón–Zygmund operators or fractional integrals with RBMO(µ) functions. Before stating our results, we first recall some necessary notation and definitions. Let K be a function on Rd × Rd \ {(x, y): x = y} satisfying that for x = y, K(x, y) C|x − y|−n , (1.1) and for |x − y| 2|x − x |, δ K(x, y) − K(x , y) + K(y, x) − K(y, x ) C |x − x | , |x − y|n+δ
(1.2)
where δ ∈ (0, 1] and C > 0 is a constant. The Calderón–Zygmund operator associated to the above kernel K and the measure µ is formally defined by (1.3) T (f )(x) = K(x, y)f (y) dµ(y). Rd
This integral may be not convergent for many functions. Thus we consider the truncated operators T for > 0 defined by K(x, y)f (y) dµ(y). T (f )(x) = |x−y|>
We say that T is bounded on L2 (µ) if the operators T are bounded on L2 (µ) uniformly on > 0. By a cube Q ⊂ Rd we mean a closed cube whose sides parallel to the axes and we denote its side length by l(Q). Let α and βd be positive constants such that α > 1 and βd > α n . For a cube Q, we say that Q is (α, β)-doubling if µ(αQ) βµ(Q), where αQ denotes the cube concentric with Q and having side length αl(Q). In what follows, for definiteness, if α and β are not specified, by a doubling cube we mean a (2, 2d+1 )-doubling cube. Especially, for any given the smallest doubling cube in the family {2k Q}k0 . For two cubes cube Q, we denote by Q Q1 ⊂ Q2 , set NQ1 ,Q2
KQ1 ,Q2 = 1 +
µ(2k Q1 ) , l(2k Q1 )n k=1
where NQ1 ,Q2 is the first positive integer k such that l(2k Q1 ) l(Q2 ); see [10] for some basic properties of KQ1 ,Q2 .
230
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
Definition 1.1. Let ρ > 1 be some fixed constant. We say that a function b ∈ L1loc (µ) belongs to the space RBMO(µ) if there is a constant B > 0 such that 1 b(x) − m (b) dµ(x) B < ∞, (1.4) sup Q Q µ(ρQ) Q
and if Q1 ⊂ Q2 are doubling cubes, mQ (b) − mQ (b) BKQ ,Q , 1 2 1 2
(1.5)
where the supremum is taken over all cubes centered at some point of supp µ and mQ (b) is the mean value of b on Q, namely, 1 (b) = b(x) dµ(x). mQ µ(Q) Q
The minimal constant B in (1.4) and (1.5) is defined to be the RBMO(µ) norm of b and is denoted by b∗ . The space RBMO(µ) was introduced by Tolsa [11] and he proved there that the definition of RBMO(µ) is independent of the choices of numbers ρ. In the sequel, we will choose ρ = 2. Let T be the Calderón–Zygmund operator defined by (1.3). In what follows, we will always assume that T is bounded on L2 (µ). We now fix a T, which is a weak limit as → 0 of some subsequence of the uniformly L2 (µ) bounded operators T on > 0; see [11, p. 141]. It is easy to deduce that T is still bounded on L2 (µ); moreover, for f ∈ L2 (µ) whose support is not all of Rd , T (f )(x) = K(x, y)f (y) dµ(y) Rd
with the same K as in T , which satisfies (1.1) and (1.2). For such a T, m ∈ N and bi ∈ RBMO(µ), i = 1, 2, . . . , m, we formally define the multilinear commutator Tb by (1.6) Tb (f )(x) = bm , bm−1 , . . . , [b1 , T] · · · (f )(x). A such type of multilinear commutators when µ is the d-dimensional Lebesgue measure was first introduced by Pérez and Trujillo-González in [9]. When µ is a non-doubling measure, it was proved in [10] for m = 1 and in [3] for m > 1 that if T is bounded on L2 (µ) and bi ∈ RBMO(µ) for i = 1, . . . , m, then Tb is bounded on Lp (µ) for 1 < p < ∞. But Tb is not bounded from H 1 (Rd ) to L1 (Rd ) even when µ is the d-dimensional Lebesgue measure and m = 1; see [8]. In this paper, motivated by [8], we will first prove that for any m ∈ N, Tb is bounded from some subspace of H 1 (µ) associated with b into L1 (µ), in analogy with the result established by Pérez in [8] with µ being the d-dimensional Lebesgue measure. In the sequel, for 1 i m, we denote by Cim the family of all finite subsets σ = {σ (1), . . . , σ (i)} of {1, 2, . . . , m} with i different elements. For any σ ∈ Cim , the complementary sequence σ is given by σ = {1, 2, . . . , m} \ σ . Let b = (b1 , b2 , . . . , bm ) be a finite family of locally integrable functions. For all 1 i m and σ = {σ (1), . . . , σ (i)} ∈ Cim , we define b(x) − b(y) σ = bσ (1) (x) − bσ (1) (y) · · · bσ (i) (x) − bσ (i) (y) , b(x) − mQ (b) σ = bσ (1) (x) − mQ (bσ (1) ) · · · bσ (i) (x) − mQ (bσ (i) ) ,
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
and
231
mR (b) − mQ (b) σ = mR (bσ (1) ) − mQ (bσ (1) ) · · · mR (bσ (i) ) − mQ (bσ (i) ) ,
where Q and R are cubes in Rd and x, y ∈ Rd . With this notation, we write b σ ∗ = bσ (1) ∗ · · · bσ (i) ∗ . If σ = {1, . . . , m}, we simply write ∗ = b1 ∗ · · · bm ∗ . b Definition 1.2. Let ρ > 1, 1 < p ∞ and γ , τ ∈ N. Suppose bi ∈ RBMO(µ) for i = 1, 2, . . . , τ . p, τ, γ )-atomic block if A function h ∈ L1loc (µ) is called a (b, (a) (b) (c) (d)
there exists some cube R such that supp(h) ⊂ R; h(y) dµ(y) = 0; Rd τ h(y)b σ (y) dµ(y) = 0 for all 1 i τ and σ ∈ Ci ; Rd for j = 1, 2, there are functions aj supported on cube Qj ⊂ R and numbers λj ∈ R such that h = λ1 a1 + λ2 a2 , and 1/p−1 −γ aj Lp (µ) µ(ρQj ) KQj ,R .
Then we denote |h|H 1,p
(µ) b,τ,γ
= |λ1 | + |λ2 |. 1,p (µ) b,τ,γ
We say that f ∈ H f=
∞
p, τ, γ )-atomic blocks {hk }k∈N such that if there are (b,
hk
k=1
with
∞
k=1 |hk |H 1,p (µ) b,τ,γ
f H 1,p
b,τ,γ
1,p (µ) b,τ,γ
< ∞. The H
= inf |bk |H 1,p (µ) k
b,τ,γ
norm of f is defined by
, (µ)
p, τ, γ )-atomic where the infimum is taken over all the possible decompositions of f in (b, blocks. Remark 1.1. By an argument similar to that in [10], we easily see that the above definition is 1,p independent of the chosen constant ρ > 1. If τ = 0, the space H (µ) is just the atomic Hardy b,τ,γ space introduced by Tolsa in [10] when γ = 1 and when γ > 1 by the authors in [2], which was proved in [2,10] to be the Hardy space H 1 (µ) of Tolsa in [13] with equivalent norms; see also 1,p Definition 1.4 below. However, it is still open if the spaces H (µ) are equivalent for any fixed b,τ,γ τ ∈ N and different γ ∈ N and 1 < p ∞. But we have the following obvious properties that for any τ ∈ N, 1 < p ∞ and γ1 , γ2 ∈ N with 1 γ1 < γ2 , 1,p 1,p (µ) ⊂ H (µ) ⊂ H 1 (µ), b,τ,γ2 b,τ,γ1
H
232
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
and for any τ, γ ∈ N and 1 < p1 < p2 ∞, 1,p2 1,p (µ) ⊂ H 1 (µ) ⊂ H 1 (µ). b,τ,γ b,τ,γ
H 1,∞ (µ) ⊂ H b,τ,γ
Here is one of the main results of this paper. Theorem 1.1. Let 1 < p ∞, m ∈ N and bi ∈ RBMO(µ) for i = 1, 2, . . . , m. Let T and Tb be as in (1.3) and (1.6), respectively. Suppose that T is bounded on L2 (µ). Then the multilinear 1,p commutator Tb is bounded from H (µ) into L1 (µ). b,m,m+1
Remark 1.2. Let us consider the multilinear commutator of the fractional integral operator, Iα;b , defined by m Iα;b (f )(x) = bi (x) − bi (y) Rd
i=1
f (y) dµ(y), |x − y|n−α
(1.7)
where m ∈ N, bi ∈ RBMO(µ) for i = 1, 2, . . . , m and 0 < α < n. By an argument similar to the proof of Theorem 1.1, we can prove the following result for Iα;b and we omit the details by similarity. Theorem 1.2. Let 0 < α < n, 1 < p ∞, m ∈ N, bi ∈ RBMO(µ) for i = 1, 2, . . . , m, and Iα;b 1,p be as in (1.7). Then Iα;b is bounded from H (µ) into Ln/(n−α) (µ). b,m,m+1
In [1], the authors proved that T is bounded on the Hardy space H 1 (µ) if T∗ (1) = 0. Moti1,p (µ) into H 1 (µ) with the vated by this, we now consider the boundedness of Tb from H b,m,m+2 assumption that T ∗ (1) = 0. Here, by T ∗ (1) = 0, we mean that for any bounded function h with b b compact support satisfying (b) and (c) of Definition 1.2, Tb (h)(x) dµ(x) = 0. (1.8) Rd 1,p (µ) b,m,m+2
We point out that for a such function h, it is easy to see that h ∈ H
and therefore,
Tb (h) ∈ by Theorem 1.1. Also, if Tb (h) ∈ then Tb (h) should satisfy (1.8) by the definition of the Hardy space H 1 (µ); see [10,13] or Definition 1.4 below. Thus, in some sense, condition (1.8) is also necessary. We remark that this result is new even when µ is the d-dimensional Lebesgue measure. L1 (µ)
H 1 (µ),
Definition 1.3. Given f ∈ L1loc (µ), we set MΦ f (x) = sup f ϕ dµ, ϕ∼x
Rd
where the notation ϕ ∼ x means that ϕ ∈ L1 (µ) ∩ C 1 (Rd ) and satisfies
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
233
(i) ϕL1 (µ) 1, (ii) 0 ϕ(y) |y − x|−n for all y ∈ Rd , and (iii) |∇ϕ(y)| |y − x|−(n+1) for all y ∈ Rd , where ∇ = (∂/∂x1 , . . . , ∂/∂xd ). Based on Theorem 1.2 of Tolsa in [13], we define the Hardy space H 1 (µ) as follows. Definition 1.4. The Hardy space H 1 (µ) is the set of all functions f ∈ L1 (µ) satisfying that 1 1 Rd f dµ = 0 and MΦ f ∈ L (µ). Moreover, we define the norm of f ∈ H (µ) by f H 1 (µ) = f L1 (µ) + MΦ f L1 (µ) . Another main result of this paper is as follows. Theorem 1.3. Let 1 < p ∞, m ∈ N and bi ∈ RBMO(µ) for i = 1, 2, . . . , m. Let T and Tb be as in (1.3) and (1.6), respectively. Suppose that T is bounded on L2 (µ) and T ∗ (1) = 0 as in b 1,p (1.8). Then Tb is bounded from H (µ) into H 1 (µ). b,m,m+2
In what follows, C always denotes a positive constant that is independent of the main parameters involved but whose value may differ from line to line. For any index p ∈ [1, ∞], we denote by p its conjugate index, namely, 1/p + 1/p = 1. 2. Proof of Theorem 1.1 We begin with some necessary lemmas. Lemma 2.1. Let 1 < p < ∞, m ∈ N and bi ∈ RBMO(µ) for i = 1, 2, . . . , m. Let T and Tb be as in (1.3) and (1.6), respectively. Suppose that T is bounded on L2 (µ). Then Tb is bounded on ∗ , where C > 0 is a constant. Lp (µ) with the norm no more than Cb Lemma 2.1 was proved by Tolsa for the case m = 1 in [10] and by the authors for the cases m > 1 in [3]. The following Lemma 2.2 is a simple corollary of the John–Nirenberg inequality with non-doubling measure; see [10]. Lemma 2.2. Let m ∈ N, bi ∈ RBMO(µ) for i = 1, 2, . . . , m, ρ > 1 and 1 p < ∞. Then there exists a constant C > 0 such that for any cube Q, 1/p m m
p 1 bi (x) − m (bi ) dµ(x) C bi ∗ . Q µ(ρQ) Q i=1
i=1
p, m, m+1)Proof of Theorem 1.1. By a standard argument, it suffices to verify that for any (b, atomic block h as in Definition 1.2 with ρ = 4, Tb (h) is in L1 (µ) with norm no more than C|h|H 1,p (µ) , where C > 0 is a constant independent of h. Let all the notation be the same as b,m,m+1
in Definition 1.2. By our choices, aj , j = 1, 2, now satisfies the following size condition: aj Lp (µ) µ(4Qj )1/p−1 [KQj ,R ]−(m+1) .
(2.1)
234
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
Write
T (h)(x) dµ(x) =
b
Rd
T (h)(x) dµ(x) +
T (h)(x) dµ(x) = M + N.
b
b
Rd \2R
2R
To estimate M, we further decompose M
2
2 T (aj )(x) dµ(x) + |λj |
|λj |
j =1
T (aj )(x) dµ(x) = M1 + M2 .
b
j =1
2Qj
b
2Rj \2Qj
From the Hölder inequality, Lemma 2.1 and (2.1), it follows that M1
2 j =1
2 1/p |λj | Tb (aj ) Lp (µ) µ(2Qj ) Cb∗ |λj |aj Lp (µ) µ(2Qj )1/p j =1
∗ Cb
2
|λj |.
j =1
Let Nj,1 = N2Qj ,2Rj for j = 1, 2. With the aid of the formula that for x, y ∈ Rd , m m
bi (x) − bi (y) = b(x) − mQ j (b) σ mQ j (b) − b(y) σ ,
(2.2)
i=0 σ ∈Cim
i=1
where if i = 0, then σ = {1, 2, . . . , m} and σ = ∅, by (1.1), the Hölder inequality, Lemma 2.2 and (2.1), we easily obtain m Nj,1 2 M2 bi (x) − bi (y) K(x, y)aj (y) dµ(y) dµ(x) |λj | j =1
C
k=1
2
|λj |
j =1
Qj 2
×
Nj,1 m
b(x) − m (b) Qj
σ
i=0 σ ∈Cim k=1 k+1 2 Qj \2k Qj
|λj |
j =1
Qj i=1
m (b) − b(y) |aj (y)| dµ(y) dµ(x) Qj σ |x − y|n
×
C
2k+1 Qj \2k Qj
1/p 1/p m aj (y)p dµ(y) m (b) − b(y) p dµ(y) Qj σ i=0 σ ∈Cim Q j
Nj,1 i l=0 η∈C i k=1 l
×
2k+1 Qj
Qj
1 l(2k Qj )n
b(x) − m
k+1 Q 2 j
(b) η m (b) − mQ j (b) η dµ(x) k+1 2
Qj
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
∗ Cb
2
|λj |aj Lp (µ) µ(2Qj )1/p
j =1
∗ Cb
2
235
Nj,1 m i µ(2k+2 Qj ) K k+1 k n Qj ,2 Qj l(2 Qj ) m i=0 σ ∈Ci k=1
|λj |aj Lp (µ) µ(2Qj )1/p [KQj ,R ]m+1
j =1
∗ Cb
2
|λj |,
j =1
where we have used the fact that for any 1 k Nj,1 , K
k+1 Q Qj ,2 j
CKQj ,R ; see [10].
Now we turn to estimate N. Denote the center of R by xR . The propositions (b) and (c) of Definition 1.2, (2.2), (1.2), the Hölder inequality, Lemma 2.2 and (2.1) lead to m bi (x) − bi (y) K(x, y) − K(x, xR ) h(y) dµ(y) dµ(x) N= R i=1
Rd \2R
m ∞ b(y) − m (b) h(y) C R σ i=0 σ ∈Cim k=1 R
× 2k+1 R\2k R
C
2
|λj |
j =1
δ b(x) − m (b) |x − xR | dµ(x) dµ(y) R σ |x − y|n+δ
m−i b(y) − m (b) m (b) − m (b) Qj Qj R η η
m i=0 σ ∈Cim
l=0 η∈C m−i Q j l
× aj (y) dµ(y) ×
i ∞ s=0 θ∈Csi k=1
l(R)δ l(2k Qj )n+δ
b(x) − m
×
(b) θ m (b) − mR(b) θ dµ(x) k+1 k+1
2
R
R
2
2k+1 R
C
2
p
|λj |aj L (µ)
j =1
×
m−i
l=0 η∈C m−i l
∗ Cb
2 j =1
m
b σ ∗
∞ µ(2k+2 R)l(R)δ
i=0 σ ∈Cim
k=1
l(2k Qj )n+δ
K k+1 R,2
i
R
1/p p b(y) − m (b) m (b) − m (b) dµ(y) Qj Qj R η η
Qj
|λj |aj Lp (µ) µ(2Qj )1/p [KQj ,R ]m
236
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
∗ Cb
2
|λj |.
j =1
Combining the estimates for M and N, we have finished the proof of Theorem 1.1.
2
3. Proof of Theorem 1.3 In order to prove Theorem 1.3, we first recall the following basic fact in [1]. Lemma 3.1. Let MΦ be as in Definition 1.3 and 1 < p < ∞. Then MΦ is bounded on Lp (µ). Proof of Theorem 1.3. Just as in the proof of Theorem 1.1, we only need to verify that for any p, m, m + 2)-atomic block h as in Definition 1.2 with ρ = 4, T (h) is in H 1 (µ) with norm (b, b no more than C|h|H 1,p (µ) , where C > 0 is a constant independent of h. By our choices, for b,m,m+2
j = 1, 2, aj satisfies the following size condition that aj Lp (µ) µ(4Qj )1/p−1 [KQj ,R ]−(m+2) .
(3.1)
T ∗ (1) = 0, b
Theorem 1.1 and Definition 1.4, we deduce that the proof By the assumption that of Theorem 1.3 can be reduced to proving that MΦ T (h) 1 Cb ∗ |h| 1,p . (3.2) b L (µ) H (µ) b,m,m+2
Write MΦ T (h) 1 = MΦ T (h) (x) dµ(x) + b b L (µ)
MΦ Tb (h) (x) dµ(x) = I + II.
Rd \4R
4R
Noting that MΦ is sublinear, we can control I by I MΦ Tb (h) χ8R (x) dµ(x) + MΦ Tb (h) χRd \8R (x) dµ(x) = I1 + I2 . 4R
4R
From the fact that for j = 1, 2, Qj ⊂ R, it follows that for any z ∈ Qj and any y ∈ 2k+1 R \ 2k R, k 3, |y − z| l(2k−2 R). By this fact, (ii) of Definition 1.3, (2.2), (1.1), Lemma 2.2 and (3.1), we obtain T (h)(y)ϕ(y) dµ(y) dµ(x) I2 sup b ϕ∼x
4R
Rd \8R
2
∞
|λj |
j =1
k=3 4R
∞ bi (y) − bi (z) K(y, z)aj (z) dµ(z)
i=1 2k+1 R\2k R Qj
1 dµ(y) dµ(x) |x − y|n 2 m ∞ |λj | C ×
j =1
i=0 σ ∈Cim k=3 4R k+1 2 R\2k R
|[b(y) − mQ j (b)]σ | |x − y|n
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
×
|[m (b) − b(z)] ||a (z)| j j σ Q |y − z|n
Qj
C
2 j =1
dµ(z) dµ(y) dµ(x)
1/p m ∞ p µ(4R) aj Lp (µ) mQ |λj | dµ(z) j (b) − b(z) σ l(2k R)n l(2k R)n m i=0 σ ∈Ci k=3
Qj
b(y) − m
×
dµ(y)
(b) + m (b) − mR(b) + mR(b) − mQ j (b) σ k+1 R 2 2k+1 R
2k+1 R
∗ Cb
2
|λj |aj Lp (µ) µ(2Qj )1/p
j =1 m ∞ i i µ(4R)µ(2k+2 R) K × + KQ j ,R k R)n l(2k R)n R,2k+1 R l(2 m i=0 σ ∈Ci k=3
∗ Cb
2
|λj |.
j =1
To estimate I1 , we write I1
2
4Qj
2
|λj |
j =1
+
MΦ Tb (aj ) χ8R (x) dµ(x)
|λj |
j =1
+
2
MΦ Tb (aj ) χ2Qj (x) dµ(x)
4R\4Qj
|λj |
j =1
MΦ Tb (aj ) χ8R\2Qj (x) dµ(x)
4R\4Qj
= I11 + I12 + I13 . The Hölder inequality, Lemma 3.1, Lemma 2.1 and (3.1) lead to I11
2 j =1
C
237
|λj |µ(4Qj )1/p MΦ Tb (aj ) χ8R Lp (µ)
2 j =1
|λj |µ(4Qj )1/p Tb (aj )Lp (µ)
∗ Cb
2
|λj |aj Lp (µ) µ(4Qj )1/p
j =1
∗ Cb
2 j =1
|λj |.
238
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
For j = 1, 2, denote NQj ,4R simply by Nj,2 . By (ii) of Definition 1.3, the Hölder inequality, Lemma 2.1 and (3.1), we have I12
2
|λj |
j =1
C
2
k=2
2k+1 Qj \2k Qj
|λj |
j =1
C
2 j =1
sup Tb (aj )(y)ϕ(y) dµ(y) dµ(x)
Nj,2
ϕ∼x
2Qj
Nj,2
k=2
2k+1 Qj \2k Qj
1 dµ(x) l(2k Qj )n
T (aj )(y) dµ(y) b
2Qj
Nj,2 µ(2k+1 Qj ) T (aj ) p µ(2Qj )1/p |λj | b L (µ) k n l(2 Qj )
∗ Cb
k=2
2
|λj |aj Lp (µ) µ(2Qj )1/p KQj ,R
j =1
∗ Cb
2
|λj |.
j =1
For I13 , we further decompose it into I13
2
|λj |
j =1
+
+
Nj,2
k=2
2k+1 Qj \2k Qj
MΦ Tb (aj )χ2k+2 Qj \2k−1 Qj (x) dµ(x)
Nj,2
j =1
k=2
2k+1 Qj \2k Qj
2
Nj,2
k=2
2k+1 Qj \2k Qj
2
|λj |
|λj |
j =1
MΦ Tb (aj )χmax{2k+2 Qj ,8R}\2k+2 Qj (x) dµ(x) MΦ Tb (aj )χ2k−1 Qj \2Qj (x) dµ(x)
= E + F + G. The Hölder inequality, Lemma 3.1, (2.2), (1.1), Lemma 2.2 and (3.1) tell us that E
2
Nj,2
|λj |
j =1
C
2
1/p MΦ T (aj )χ k+2 µ 2k+1 Qj 2 Qj \2k−1 Qj Lp (µ) b k=2
1/p k+1 |λj | µ 2 Qj
j =1
C
2 j =1
|λj |
Nj,2
k=2
2k+2 Qj \2k−1 Qj
T (aj )p dµ(y) b
Nj,2 m 1/p µ 2k+1 Qj i=0 σ ∈Cim k=2
1/p
2k+2 Qj \2k−1 Qj
b(y) − m (b) p Qj
σ
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
239
p 1/p × (b) − b(z) K(y, z)a (z) dµ(z) dµ(y) mQ j j σ Qj
C
2
|λj |
j =1
Nj,2 m µ(2k+1 Qj )1/p m (b) − b(z) aj (z) dµ(z) Q σ j l(2k Qj )n m i=0 σ ∈Ci k=2
b(y) − m
×
(b) + m k+2 Q 2 2k+2 Qj j
2k+2 Q
C
Qj
2
j
|λj |
j =1
m
b σ ∗
i=0 σ ∈Cim
1/p p (b) − mQ dµ(y) j (b) σ
Nj,2 i µ(2k+3 Qj ) K k+2 k n Qj ,2 Qj l(2 Qj ) k=2
1/p 1/p aj (z)p dµ(z) m (b) − b(z) p dµ(z) Qj σ
× Qj
∗ Cb
Qj 2
|λj |aj Lp (µ) µ(2Qj )1/p [KQj ,R ]m+1
j =1
∗ Cb
2
|λj |.
j =1
By (ii) of Definition 1.3, (2.2), (1.1), the Hölder inequality, Lemma 2.2 and (3.1), we easily see G
2
|λj |
j =1
2
|λj |
j =1
C
2
Nj,2
k=2
2k+1 Qj \2k Qj
Nj,2
k=2
2k+1 Qj \2k Qj
|λj |
j =1
T (aj )(y)ϕ(y) dµ(y) dµ(x) b
sup
Nj,2 m
ϕ∼x
2k−1 Qj \2Qj
k−2 l=1
2l+1 Qj \2l Qj
k−2
|Tb (aj )(y)| dµ(y) dµ(x) |y − x|n
|[b(y) − mQ j (b)]σ | |y − x|n
i=0 σ ∈Cim k=2 k+1 l=1 l+1 2 Qj \2k Qj 2 Qj \2l Qj
mQ × j (b) − b(z) σ K(y, z)aj (z) dµ(z) dµ(y) dµ(x) Qj
C
2 j =1
Nj,2 k−2 m µ(2k+1 Q) 1 |λj | k n l l(2 Qj ) l(2 Qj )n m
× Qj
i=0 σ ∈Ci k=2
l=1
b(y) − m (b) dµ(y) Qj σ
2l+1 Qj
1/p 1/p aj (z)p dµ(z) m (b) − b(z) p dµ(z) Qj σ Qj
240
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
∗ Cb
2
|λj |
j =1
∗ Cb
2
Nj,2 k−2 m i µ(2k+1 Q) µ(2l+2 Qj ) K l+1 k n l n Qj ,2 Qj l(2 Qj ) l(2 Qj ) m i=0 σ ∈Ci k=2
l=1
|λj |aj Lp (µ) µ(2Qj )1/p [KQj ,R ]m+2
j =1
∗ Cb
2
|λj |.
j =1
An argument similar to the estimate for G can also give us a desired estimate for F. The estimates for E, F and G lead us a desired estimate for I13 . Combining the estimates for I11 , I12 , I13 and I2 yield I=
2 ∗ ∗ |h| 1,p MΦ Tb (h) (x) dµ(x) Cb |λj | = Cb H
(µ) b,m,m+2
j =1
4R
.
(3.3)
Now we turn to the estimate for II. Invoking that T ∗ (1) = 0, we obtain b
II = Rd \4R
Rd \4R
sup Tb (h)(y) ϕ(y) − ϕ(xR ) dµ(y) dµ(x) ϕ∼x Rd
sup Tb (h)(y) ϕ(y) − ϕ(xR ) dµ(y) dµ(x) ϕ∼x 2R
+ Rd \4R
sup ϕ∼x
Tb (h)(y) ϕ(y) − ϕ(xR ) dµ(y) dµ(x)
Rd \2R
= II1 + II2 . Note that for any z ∈ 2R, x ∈ 2k+1 R \ 2k R, k 2, |x − z| l(2k−2 R). This together with (iii) of Definition 1.3 and the mean value theorem leads to l(R) ϕ(y) − ϕ(xR ) C (3.4) l(2k−2 R)n+1 for y ∈ 2R. By (3.4), (2.2), (1.1), the Hölder inequality, Lemmas 2.1 and 2.2, and (3.1), we have II1
2
|λj |
j =1
+
2
k=2
2k+1 R\2k R
|λj |
j =1
C
2 j =1
∞
|λj |
sup ϕ∼x
∞
k=2
2k+1 R\2k R
2R\2Qj
sup ϕ∼x
m ∞
T (aj )(y)ϕ(y) − ϕ(xR ) dµ(y) dµ(x) b T (aj )(y)ϕ(y) − ϕ(xR ) dµ(y) dµ(x) b
2Qj
i=0 σ ∈Cim k=2 k+1 2 R\2k R
Nj,2 −1 l(R) k n+1 l(2 R) l=1
b(y) − m (b) Qj
2l+1 Qj \2l Qj
σ
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
m (b) − b(z) |aj (z)| dµ(z) dµ(y) dµ(x) Qj σ |y − z|n
× Qj
+C
2
|λj |
j =1
C
2
|λj |
j =1
l=1
k=2
2k+1 R\2k R
l(R) T (aj ) χ2Q 1 dµ(x) j L (µ) b k n+1 l(2 R)
m ∞ µ(2k+1 R)l(R) l(2k R)n+1 m i=0 σ ∈Ci k=2
Nj,2 −1
×
∞
1 l l(2 Qj )n
b(y) − m (b) dµ(y) Qj σ
2l+1 Qj
aj (z) m (b) − b(z) dµ(z) Qj σ
× Qj
+C
2
|λj |
j =1
∗ Cb
∞ µ(2k+1 R)l(R) T (aj ) χ2Q p µ(2Qj )1/p j L (µ) b k n+1 l(2 R) k=2
2
∞ µ(2k+1 R)l(R)
|λj |aj Lp (µ) µ(2Qj )1/p
j =1
k=2
l(2k R)n+1
Nj,2 −1
µ(2l+2 Qj ) m K Qj ,2l+1 Qj l(2l Qj )n
×
l=1
+C
2
|λj |aj Lp (µ) µ(2Qj )1/p
j =1
∗ Cb
2
|λj |aj Lp (µ) µ(2Qj )1/p [KQj ,R ]m+1
j =1
∗ Cb
2
|λj |.
j =1
We further estimate II2 by ∞ II2 = sup k=2
ϕ∼x
2k+1 R\2k R
∞
k=2
2k+1 R\2k R
+
Tb (h)(y) ϕ(y) − ϕ(xR ) dµ(y) dµ(x)
Rd \2R
MΦ Tb (h)χ2k+2 R\2k−1 R (x) dµ(x)
∞
k=2
2k+1 R\2k R
sup
T h(y)ϕ(xR ) dµ(y) dµ(x) b
ϕ∼x 2k+2 R\2k−1 R
241
242
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
+
+
∞
k=2
2k+1 R\2k R
T (h)(y) ϕ(y) + ϕ(xR ) dµ(y) dµ(x)
sup
b
ϕ∼x
∞
k=2
2k+1 R\2k R
Rd \2k+2 R
sup
T (h)(y) ϕ(y) + ϕ(xR ) dµ(y) dµ(x) b
ϕ∼x 2k−1 R\2R
= II21 + II22 + II23 + II24 . From the Hölder inequality, Lemma 3.1, (b) and (c) of Definition 1.2, (2.2), (1.2), Lemma 2.2 and (3.1), we can deduce that II21
∞ 1/p MΦ T (h)χ k+2 k−1 p µ 2k+1 R 2 R\2 R L (µ) b k=2 ∞
C
1/p µ 2k+1 R
k=2
m bi (y) − bi (z) K(y, z) − K(y, xR )
2k+2 R\2k−1 R
p 1/p × h(z) dµ(z) dµ(y)
m ∞ 1/p C µ 2k+1 R
R i=1
i=0 σ ∈Cim k=2
b(y) − m (b) p R
σ
2k+2 R\2k−1 R
1/p p mR(b) − b(z) σ K(y, z) − K(y, xR ) h(z) dµ(z) dµ(y) × C
R m
∞ µ(2k+1 R)1/p l(R)δ
i=0 σ ∈Cim k=2
l(2k R)n+δ
m (b) − b(z) h(z) dµ(z) R σ
×
1/p b(y) − m (b) p dµ(y) R σ
2k+2 R
R
C
2
|λj |
j =1
×
m i=0 σ ∈Cim
∞ i µ(2k+3 R)l(R)δ K k+2 R k n+δ R, 2 l(2 R) k=2
1/p 1/p aj (z)p dµ(z) m (b) − b(z) p dµ(z) R σ
Qj
∗ Cb
b σ ∗
Qj 2
|λj |aj Lp (µ) µ(2Qj )1/p [KQj ,R ]m
j =1
∗ Cb
2
|λj |.
j =1
An argument similar to the estimate for II21 can also give us a desired estimate for II22 .
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
243
Finally, we estimate II23 . By (b) and (c) of Definition 1.2, (ii) of Definition 1.3, (2.2), (1.2), the Hölder inequality, Lemma 2.2 and (3.1), we obtain ∞ ∞ m K(y, z) − K(y, xR ) bi (y) − bi (z) II23 k=2
2k+1 R\2k R
l=k+2
× h(z) dµ(z)
i=1
2l+1 R\2l R R
1 1 dµ(y) dµ(x) + n |y − x| |xR − x|n 2 m ∞ ∞ µ(2k+1 R) l(R)δ C |λj | l(2k R)n l(2l R)n+δ m j =1
×
i=0 σ ∈Ci k=2 l=k+2
b(y) − m (b) dµ(y) R σ
2l+1 R
m (b) − b(z) aj (z) dµ(z) R σ
Qj
∗ Cb
2
|λj |aj Lp (µ) µ(2Qj )1/p
j =1
×
m
[KQj R ]m−i
i=0 σ ∈Cim
∞ ∞ i µ(2k+1 R) µ(2l+2 R)l(R)δ K l+1 R k n l n+δ R, 2 l(2 R) l(2 R) k=2 l=k+2
∗ Cb
2
|λj |.
j =1
An argument similar to the estimate for II23 can also give us a desired estimate for II24 . Combining the estimates for II21 , II22 , II23 and II24 , we obtain a desired estimate for II2 . The estimates for II1 and II2 tell us that II = MΦ Tb (h) (x) dµ(x) C|b|H 1,p (µ) . (3.5) Rd \4R
b,m,m+2
The estimates (3.3) and (3.5) lead to (3.2) and this completes the proof of our theorem.
2
References [1] W. Chen, Y. Meng, D. Yang, Calderón–Zygmund operators on Hardy spaces without the doubling condition, Proc. Amer. Math. Soc. 133 (2005) 2671–2680. [2] G. Hu, Y. Meng, D. Yang, New atomic characterization of H1 space with non-doubling measures and its applications, Math. Proc. Cambridge Philos. Soc. 138 (2005) 151–171. [3] G. Hu, Y. Meng, D. Yang, Multilinear commutators of singular integrals with non-doubling measures, Integral Equations Operator Theory 51 (2005) 235–255. [4] F. Nazarov, S. Treil, A. Volberg, Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Not. 15 (1997) 703–726. [5] F. Nazarov, S. Treil, A. Volberg, Accretive system T b-theorems on nonhomogeneous spaces, Duke Math. J. 113 (2002) 259–312. [6] F. Nazarov, S. Treil, A. Volberg, The T b-theorem on non-homogeneous spaces, Acta Math. 190 (2003) 151–239. [7] J. Orobitg, C. Pérez, Ap weights for nondoubling measures in Rn and applications, Trans. Amer. Math. Soc. 354 (2002) 2013–2033. [8] C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 (1995) 163–185.
244
Y. Meng, D. Yang / J. Math. Anal. Appl. 317 (2006) 228–244
[9] C. Pérez, R. Trujillo-González, Sharp weighted estimates for multilinear commutators, J. London Math. Soc. (2) 65 (2002) 672–692. [10] X. Tolsa, BMO, H 1 and Calderón–Zygmund operators for non-doubling measures, Math. Ann. 319 (2001) 89–149. [11] X. Tolsa, Littlewood–Paley theory and the T (1) theorem with non-doubling measures, Adv. Math. 164 (2001) 57– 116. [12] X. Tolsa, A proof of the weak (1, 1) inequality for singular integrals with non-doubling measures based on a Calderón–Zygmund decomposition, Publ. Mat. 45 (2001) 163–174. [13] X. Tolsa, The space H 1 for nondoubling measures in terms of a grand maximal operator, Trans. Amer. Math. Soc. 355 (2003) 315–348. [14] X. Tolsa, Painlevé’s problem and the semiadditivity of analytic capacity, Acta Math. 190 (2003) 105–149. [15] J. Verdera, The fall of the doubling condition in Calderón–Zygmund theory, Publ. Mat. (2002) 275–292 (extra volume).