Available online at www.sciencedirect.com
ScienceDirect Cognitive Systems Research xxx (xxxx) xxx www.elsevier.com/locate/cogsys
Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator Peide Liu a,⇑, Qaisar Khan b,⇑, Tahir Mahmood b a
School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan, Shandong 250014, China b Department of Mathematics and Statistic, International Islamic University, Islamabad, Pakistan Received 3 September 2018; received in revised form 11 October 2018; accepted 11 October 2018
Abstract Single-valued neutrosophic (SVN) sets can successfully describe the uncertainty problems, and Schweizer-Sklar (SS) t-norm (TN) and t-conorm (TCN) can build the information aggregation process more flexible by a parameter. To fully consider the advantages of SVNS and SS operations, in this article, we extend the SS TN and TCN to single-valued neutrosophic numbers (SVNN) and propose the SS operational laws for SVNNs. Then, we merge the prioritized aggregation (PRA) operator with SS operations, and develop the singlevalued neutrosophic Schweizer-Sklar prioritized weighted averaging (SVNSSPRWA) operator, single-valued neutrosophic SchweizerSklar prioritized ordered weighted averaging (SVNSSPROWA) operator, single-valued neutrosophic Schweizer-Sklar prioritized weighted geometric (SVNSSPRWG) operator, and single-valued neutrosophic Schweizer-Sklar prioritized ordered weighted geometric (SVNSSPROWG) operator. Moreover, we study some useful characteristics of these proposed aggregation operators (AOs) and propose two decision making models to deal with multiple-attribute decision making (MADM) problems under SVN information based on the SVNSSPRWA and SVNSSPRWG operators. Lastly, an illustrative example about talent introduction is given to testify the effectiveness of the developed methods. Ó 2018 Elsevier B.V. All rights reserved.
Keywords: Single-valued neutrosophic sets; Schweizer-Sklar operations; Prioritized aggregation operator; Multiple-attribute decision making
1. Introduction The main purpose of MADM problems is to select the best alternative from the limited alternatives according to the preference values given by decision makers (DMs) with respect to the criteria. However, because of the complexity of decision environment, it is difficult for DMs to express ⇑ Corresponding authors.
E-mail addresses:
[email protected] (P. Liu), qaisar.phdma46@iiu. edu.pk (Q. Khan).
the preference values by a single real number in practical problems. To deal with such situation, intuitionistic fuzzy set (IFS) proposed by Atanassov (1986) is one of the flourishing generalizations of fuzzy set (FS) introduced by Zadeh (1965) to express uncertain and imprecise information more accurately (Liu, Mahmood, & Khan, 2017; Xu and Yager, 2006; Xu, 2007). However, in some situations, only truth-membership degree (TMD) and falsitymembership degree (FMD) cannot describe the inconsistent information accurately. To deal with such situation, Smarandache (1999) proposed neutrosophic set (NS) which
https://doi.org/10.1016/j.cogsys.2018.10.005 1389-0417/Ó 2018 Elsevier B.V. All rights reserved.
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
2
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
describe the uncertain, imprecise and inconsistent information by TMD, indeterminacy-membership degree (IMD), and FMD. The three functions are independent and are standard or non-standard subsets 0 ; 1þ ½. As the NS has the IMD, therefore it can describe the uncertain information more accurately than FS and IFS, and it is also more consistent with human natural feelings and judgement. But NS is hard to be used in real problem due to the contained non-standard subsets of 0 ; 1þ ½. Therefore, in order to utilize NS easily in real problems, Wang, Smarandache, Zhang, and Sunderraman (2010) developed a SVNS, which is subclass of NS. In real decision making, we need AOs to integrate the given information. In neutrosophic environment, many scholars have developed some AOs. For example, Ye (2014) firstly developed the operational rules for SVNNs and introduced the weighted averaging operator for SVNNs (SVNWA) and geometric average operator for SVNNs. Later on, Peng, Wang, Wang, Zhang, and Chen (2016) found out some limitations in the operational rules developed by Ye (2014), and introduced some improved operational laws for SVNNs, and proposed ordered weighted average for SVNNs (SVNOWA) and ordered weighted geometric operator for SVNNs (SVNOWG). Lu and Ye (2017) further developed some hybrid averaging and hybrid geometric operators for SVNNs and applied them to MADM. After these studies, several researchers developed different AOs, such as Liu, Chu, Li, and Chen (2014) proposed some generalized Hamacher AOs for NS and applied them to multiple-attribute group decision making (MAGDM). Wu, Wu, Zhou, Chen, & Guan, 2018) defined some AOs based on Hamacher TN and TCN and applied them to deal with group decision making under SVN 2-tuple linguistic environment. Garg (2016) developed some AOs based on Frank TN and TCN and applied them to solve MADM problems under SVN environment. Zhang, Liu, and Shi (2016) extended TODIM to neutrosophic environment and applied it to MAGDM problem. Mandal and Basu (2018) developed some vector AOs for solving MADM problems under neutrosophic environment. Recently, Karaaslan and Hayat (2018) proposed some new operational laws for SVN matrices and give their application in MAGDM. Garg (2017) developed some parametric distance measures for SVNSs and give their applications in pattern recognition and medical diagnosis. Abdel-Basset, Mai, and Smarandache (2018), Abdel-Basset, Zhou, Mohamed, and Chang (2018) developed AHP-SWOT, ANP-TOPSIS and VIKOR for NSs and applied them to solve strategic planning, supplier selection and e-government website evaluation problems. Peng and Jingguo (2018) developed MABAC, TOPSIS and new similarity measure for SVNSs and proposed three approaches for MADM. Abdel-Basset, Mohamed, Zhou, and Hezam (2017), Abdel-Basset, Mai, Smarandache, and Chang (2018) developed MAGDM
method based on neutrosophic analytic hierarchy process and neutrosophic association rule mining algorithm for big data analysis. Abdel-Basset, Gunasekaran, Mohamed, and Smarandache (2018), Abdel-Basset, Manogaran, Gamal, and Smarandache (2018) developed a novel method for solving the full neutrosophic linear programming problems, and also developed a hybrid approach based on NSs and DEMATEL to solve supplier selection problems. Some other applications of NS were studied by researchers in (Abdel-Basset and Mai, 2018; AbdelBasset, Mai, & Chang, 2018; Abdel-Basset, Gunasekaran, & Mai, 2018; Chang, Abdel-Basset, & Ramachandran, 2018). All the above-stated operators are established based on the expectation that the aggregated input arguments are independent. But in some situations, it may be possible that there exists interaction between the decision making criteria under neutrosophic environment. To deal with such situation, Liu and Wang (2014) extended Bonferroni mean (BM) to neutrosophic environment and developed some normalized BM operators for SVNNs and applied them to MAGDM. Li, Liu, and Chen (2016) developed some Heronian mean (HM) operators for SVNNs and applied them to MAGDM problems under SVN environment. Yang and Li (2016) and Liu and Tang (2016) applied the power average operator to the neutrosophic environment and proposed a SVN power average operator and a generalized interval neutrosophic (IN) power averaging (GINPA) operator respectively, which have the property that they can remove the negative impact of the extreme evaluation values on the final ranking results. Wang, Yang, and Li (2016) introduced Maclaurin symmetric mean (MSM) operators to take the interrelationship among the aggregated arguments. Liu and You (2017) proposed Muirhead mean (MM) operator to deal with IN information. These existing AOs have not considered the situation in which the criteria have priority relationship among them. To solve this problem, Wu, Wang, Peng, and Chen (2016) extended prioritized aggregation (PA) operators (Yager, 2008) to SVN environment and proposed SVN prioritized weighted averaging (SVNPWA) and SVN prioritized weighted geometric aggregation (SVNPWG) operators, and applied them to MADM. Moreover, Liu and Wang (2016) developed some prioritized ordered weighted average/geometric operator to deal with neutrosophic information. Ji, Wang, and Zhang (2018) combined PA operators with BM operator and introduced some SVN prioritized BM operators by utilizing Frank operations. Recently, Wei and Wei (2018) proposed some PA operators based on Dombi TN and TCN and applied them to MADM. From the above stated AOs, most of these AOs for NS or SVNS are based on algebraic, Hamacher, Frank and Dombi operational laws, which are special cases of
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
Archimedean TN (ATN) and TCN (ATCN). Certainly, ATN and ATCN are the extensions of many TNs and TCNs, which have some special cases chosen to express the union and intersection of SVNS (Liu, 2016). Schweizer-Sklar (SS) operations (Deschrijver and Kerre, 2002) are the special cases from ATN and ATCN, they are with a variable parameter, so they are more flexible and superior than the other operations. However, the most researches about SS mainly concentrated on the fundamental theory and characteristics of Schweizer-Sklar TN (SSTN) and TCN (SSTCN) (Deschrijver, 2009; Zhang, He, & Xu, 2006). Recently, Liu and Wang (2018), Zhang (2018) combine SS operations with interval-valued IFS (IVIFS) and IFS, and proposed power average/geometric operators and weighted averaging operators for IVIFSs and IFSs respectively. From the above discuss, we can know (1) SVNNs are better to describe uncertain information by defining TMD, IMD and FMD than FSs and IFSs in solving the MADM problems; (2) The SS operations are more flexible and superior than the other operations by a variable parameter; (3) there are many MADM problems in which the criteria have priority relationship, and some existing AOs can consider this situation only when the criteria take the form of real numbers. Now, there are no such AOs to deal with MADM problems under SVN information based on SSTN and SSTCN, so, in this paper, we combine the ordinary PA operator with SS operations to deal with the information of SVNNs. Based on the above research motivation, the goals and contributions of this article are shown as follows. (1) Developing single-valued neutrosophic SchweizerSklar prioritized weighted averaging (SVNSSPRWA) operator and single-valued neutrosophic SchweizerSklar prioritized ordered weighted averaging (SVNSSPROWA) operator. (2) Discussing properties and specific cases of these proposed AOs. (3) Proposing two MADM approaches based on the proposed AOs. (4) Verifying the effectiveness and practicality of the proposed approach. To do so, the rest of this article is organized as follows. In Section 2, we initiated some basic ideas of SVNSs, PA operators, Shweizer-Sklar operations. In Section 3, we develop some Schweizer-Sklar operational laws for SVNNs. In Section 4, we propose SVNSSPRAWA and SVNSSPRAOWA operators, and discuss some properties and special cases of the proposed AOs. In Section 5, we propose SVNSSPRAWG and SVNSSPRAOWG
3
operators, discuss some properties and special cases of the proposed AOs. In Section 6, we develop two MADM approaches based on these AOs. In Section 7, we solve a numerical example to show the validity and advantages of the proposed approach by comparing with other existing methods. 2. Preliminaries 2.1. Some concepts of SVNSs In this subpart, we review some basic concepts about SVNSs, SVNNs, score and accuracy functions, and their operational rules. Definition 1 ((Wang et al., 2010)). Let N be the domain set, f in N is with a general element expressed by w. A SVNS SV mathematically symbolized as nD E o f ¼ SV w; TR e ðwÞ; IDSV ðwÞ; FL e ðwÞ jw 2 N ð1Þ SV SV where TR e ðwÞ; ID e ðwÞ and FL e ðwÞ represents truthSV SV SV membership (TM) function, indeterminacy-membership (IM) function and falsity-membership (FM) function, respectively, and they are single subsets of the standard unit
½0; 1.
interval
That
TR e ðwÞ : N ! ½0; 1,
is,
SV
ID e ðwÞ : N ! ½0; 1 and FL e ðwÞ : N ! ½0; 1, and the SV SV sum of these three functions must satisfy the condition 0 6 TR e ðwÞ þ IDSV ðwÞ þ FL e ðwÞ 6 3: The triplet SV D ESV TR e ðwÞ; ID e ðwÞ; FL e ðwÞ is said to be a SVN number SV
SV
SV
(SVNN). For computational D E simplicity, we shall denote a SVNN by sv ¼ TR; ID; FL and the set of all SVNNs is designated by H. Definition 2 ((Peng et al., 2016)). Let sv; sv1 and sv3 be any three SVNNs and n > 0: Then some operational laws for SVNNs are defined as follows: D E ð1Þ sv1 sv2 ¼ TR1 þ TR2 TR1 TR2 ; ID1 ID2 ; FL1 FL2 ; ð2Þ
D E ð2Þ sv1 sv2 ¼ TR1 TR2 ;ID1 þ ID2 ID1 ID2 ;FL1 þ FL2 FL1 FL2 ;
ð3Þ nsv ¼ ð4Þ sv ¼
n
n
1 1 TR ; ID ; FL
n
n
n
n
ð3Þ
;
TR ; 1 1 ID ; 1 1 ID
ð4Þ n
:
ð5Þ
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
4
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
D E Definition 3 ((Peng et al., 2016)). Let sv ¼ TR; ID; FL be f can be expressed as a SVNN, a score function SO follows: f ðsvÞ ¼ 1 TRsv þ 2 IDsv FLsv ; SO f ðsvÞ 2 ½0; 1 SO 3
ð6Þ
D E Definition 4 ((Peng et al., 2016)). Let sv ¼ TR; ID; FL be
f1 ¼ Definition 7 ((Wang et al.,D 2010)). Let SV D E E f 2 ¼ TR ; ID ; FL TR e ; ID e ; FL e and SV be e e e SV 1 SV 1 SV 1 SV 2 SV 2 SV 2 two SVNNs. Then the generalized union and intersection are defined as follows: f1 SV
SV 1
f can be expressed as a SVNN, an accuracy function AR follows: f ðsvÞ ¼ TRsv FLsv ; AC f ðsvÞ 2 ½1; 1 AR
ð7Þ
D E Definition 5 ((Peng et al., 2016)). Let sv1 ¼ TR1 ; ID1 ; FL1 D E and sv2 ¼ TR2 ; ID2 ; FL2 be two SVNNs. Then the comparison rules of SVNNs are described as follow: f ðsv2 Þ, then sv2 is greater than sv1 , and f ðsv1 Þ < SO (1) If SO is denoted as sv2 > sv1 ; f ðsv1 Þ ¼ SO f ðsv2 Þ, and AR f ðsv1 Þ < AR f ðsv2 Þ then sv2 (2) If SO is greater than sv1 , and is denoted as sv2 > sv1 ; f ðsv2 Þ, and AR f ðsv1 Þ ¼ AR f ðsv2 Þ then sv1 f ðsv1 Þ ¼ SO (3) If SO is equal to sv2 , and is denoted as sv1 ¼ sv2 : 2.2. PA operator e¼ C e 1; C e 2 ; :::; C e g be Definition 6 ((Yager, 2008)). Let C set of attributes, and assure that there exist prioritization among the attributes expressed by a linear ordering e 2 > ::: > C e g1 > C e g , which indicates that the crie1 > C C e b , if a < b: C e a ðsÞ is e a has a higher priority than C terion C an evaluation value expressing the performance of the e a and satisfies alternative s under the attribute C e C a 2 ½0; 1. If g e 1 ðsÞ; :::; C e g ðsÞ ¼ -a C e a ðsÞ e 1 ðsÞ; C PA C a¼1
ð8Þ
Obviously, the PA operator has been effectively applied to the situation where the attributes are real values. 2.3. Schweizer-Sklar (SS) operations The SS operations consist of the SS product and SS sum, which are special cases of ATT, respectively.
nD [ f 2 ¼ w; Te TR ;TR SV e1 e2 ; eT ;eT SV SV E o Te ID e ;ID e ; Te FL e ;FL e jw 2 N
f1 SV
\ f eT ;eT SV 2 ¼
nD
SV 2
SV 1
SV 2
w; Te TR e ; TR e ; Te SV 1 SV 2 E o Te FL e ; FL e jw 2 N SV 1 SV 2
ð9Þ ID e ; ID e ; SV 1 SV 2 ð10Þ
where Te and Te respectively, express T-norm (TN) and T-conorm (TCN).
The Schweizer-Sklar TN and TCN (Deschrijver and Kerre, 2002) are defined as follows: Te SS ðm; nÞ ¼ ðmq þ nq 1Þq 1
ð11Þ
q q Te SS ðm; nÞ ¼ 1 ðð1 mÞ þ ð1 nÞ 1Þq 1
ð12Þ
where q < 0; m; n 2 ½0; 1. Additionally, when q ¼ 0; we have Te q ðm; nÞ ¼ mn and e T q ðm; nÞ ¼ m þ n mn. That is, SS TN and TCN reduce to algebraic TN and TCN. Now, in the next section, based on TN Te q ðm; nÞ and TCN Te q ðm; nÞ of SS operations, we can give the following definition about SS operations of SVNNs. 3. Schweizer-Sklar operations for SVNNs D E Definition 8. Assume sv1 ¼ TR1 ; ID1 ; FL1 and D E sv2 ¼ TR2 ; ID2 ; FL2 are any two SVNNs. Then based on SS operations, the generalized union and intersection are introduced as follows: D E sv1 e e sv2 ¼ Te TR1 ; TR2 ; Te ID1 ; ID2 ; Te FL1 ; FL2 ; T ;T
ð13Þ D E sv1 e e sv2 ¼ Te TR1 ; TR2 ; Te ID1 ; ID2 ; Te FL1 ; FL2 : T ;T
ð14Þ
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
On the basis of Definition (7) and Eqs. (13), and (14), the SS operations of SVNNs are described as follows ðq < 0Þ:
ð1Þ sv1 SS sv2 ¼
* ð 3Þ
sv´1
¼
1
q1 q q1 q q1 q q q q 1 TR1 þ 1 TR2 1 ; ID1 þ ID2 1 ; FL1 þ FL2 1
and
sv2 ¼
ð1Þ sv1 SS sv2 ¼ sv2 SS sv1 ;
ð19Þ
ð2Þ sv1 SS sv2 ¼ sv2 SS sv1 ;
ð20Þ
ð3Þ ´ðsv1 SS sv2 Þ ¼ ´sv1 SS ´sv2 ; ´ P 0;
ð21Þ
ð4Þ ´1 sv1 SS ´2 sv1 ¼ ð´1 þ ´2 Þsv1 ; ´1 ; ´2 P 0;
ð22Þ
ð 5Þ
ð17Þ
+ q1 q1 q1 ´ q q 1 ´ 1 TR1 ð´ 1Þ ; ´ID1 ð´ 1Þ ; ´FL1 ð´ 1Þ
D E Theorem 1. Let sv1 ¼ TR1 ; ID1 ; FL1 D E TR2 ; ID2 ; FL2 be any two SVNNs, then
sv´1 SS sv´2
´
¼ ðsv1 SS sv2 Þ ;
ð6Þ sv´1 1 SS sv´1 2 ¼ ðsv1 Þ
ð´1 þ´2 Þ
´ P 0;
ð18Þ
4.1. Single valued neutrosophic Schweizer-Sklar prioritized weighted averaging (SVNSSPRAWA) operator Definition 9. A single valued neutrosophic SchweizerSklar prioritized weighted averaging (SVNSSPRWA) operator is a function SVNSSPRWA : H g ! H, which is described as g SVNSSPRWA sv1 ; sv2 ; :::; svg ¼
p¼1
ð23Þ
; ´1 ; ´2 P 0:
ð24Þ
ð15Þ ð16Þ
q1 q1 + q1 ´ ´ q ´TR1 ð´ 1Þ ; 1 ´ 1 ID1 ð´ 1Þ ; 1 ´ 1 FL1 ð´ 1Þ
* ð4Þ ´sv1 ¼
weighted averaging (SVNSSPRAOWA) operator, and discuss some characteristics of these developed aggregation operators.
q1 q1 q1 q q q q q q TR1 þ TR2 1 ; 1 1 ID1 þ 1 ID2 1 ; 1 1 FL1 þ 1 FL2 1
ð2Þ sv1 SS sv2 ¼
5
Tp g
Tp
svp
ð25Þ
p¼1 p1
f ðsvh Þ; ðp ¼ 2; 3; ::::; gÞ. Here, where T 1 ¼ 1; and T p ¼ SO h¼1
4. Single-valued neutrosophic Scheweizer-Sklar prioritized weighted operator In D this part,E for a group of SVNNs svp ¼ TRp ; IDp ; FLp ; ðp ¼ 1; 2; :::; gÞ symbolized by H, we introduce a few new PA operators for SVNNs, namely single valued neutrosophic Schweizer-Sklar prioritized
f ðsvh Þ expresses the score value of SVNN svh : SO Theorem 2. For a group of SVNNs svp ¼ D E TRp ; IDp ; FLp ; ðp ¼ 1; 2; :::; gÞ, the value aggregated by the developed SVNPRWA operator is still a SVNN and is specified by:
1q1 0 1q1 0 1q1 + T T T T T T q C B g C B g C B g g g g q q p p p p p p C C C B B SVNSSPRWA sv1 ;sv2 ;::::;svg ¼ 1 B 1TR þ1 ; ID þ1 ; FL þ1 p g g g p p A @p¼1 g A @p¼1 g A : @p¼1 g p¼1 p¼1 p¼1 Tp Tp Tp Tp Tp Tp *
0
p¼1
p¼1
p¼1
p¼1
p¼1
p¼1
ð26Þ
weighted averaging (SVNSSPRAWA) operator, single valued neutrosophic Schweizer-Sklar prioritized ordered
Proof. We will prove Eq. (26) by utilizing mathematical induction (MI). The following steps of MI have been followed:
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
6
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
Then, for g ¼ b þ 1, according to the operational rules developed for SVNNs in Definition 8, we have
Step 1. For g ¼ 2; we have T
2
SVNSSPRWAðsv1 ; sv2 Þ ¼ T
¼
1
2
T
p¼1
svp ;
p
2
p¼1 T p¼1
p
sv1
2
T
T
p
ð27Þ
sv2
2 p
p¼1
From the operational laws for SVNNs, proposed in Definition 8, we have
*
T1
sv1 ¼
2
Tp
p¼1
0
0
11q1 0
0
11q1 0
0
11q1
q1 B T B T1 CC B T 1 B T1 CC B T 1 B T1 CC q q 1 C B C B C 1B 1 TR1 B 1C ID1 B 1C FL1 B 1C @ 2 @ 2 AA ; @ 2 @ 2 AA ; @ 2 @ 2 AA Tp Tp Tp Tp Tp Tp p¼1
p¼1
p¼1
p¼1
p¼1
+ ;
p¼1
and *
T2
sv2 ¼
2
Tp
p¼1
0
0
11q1 0
0
11q1 0
0
11q1
q1 B T B T2 CC B T 2 B T2 CC B T 2 B T2 CC q q 2 C B C B C 1B 1 TR2 B 1C ID2 B 1C FL2 B 1C @ 2 @ 2 AA ; @ 2 @ 2 AA ; @ 2 @ 2 AA Tp Tp Tp Tp Tp Tp p¼1
p¼1
p¼1
p¼1
p¼1
+ :
p¼1
So, Eq. (27) becomes
00
*
T
sv1
1
2
T
p¼1 p
T
p¼1 p
000 BB@ @@
00
BB B sv2 ¼ 1 @@1 @1 @@
2
2
T
0
T
1
2
q
ID1 @
p¼1 p
1 0 q 1 TR1 A @
1
2
T
p¼1 p
0 T
T
T
1
2
T
11q1 1q 00 C B 1AA A þ @@
p¼1 p
T
q
ID2 @
2
2
p¼1 p
*
0 2
¼ 1@
T
p
2
p¼1 T
1
2
T
11q1 11q 0 0 00 CC B B 1AA AA þ @1 @1 @@
p¼1 p
0 T
T
T
2
2
T
1q1 000 11q1 1q C BB C 1AA A 1A ; @@@ 1q1 0 p
2
p¼1 T
p¼1 p
0 T
q
1
2
T
FL1 @
p¼1 p
T
T
1
2
T
þ 1A ; @
T
p
2
p¼1 T
q
11q1 1q 00 C B 1AA A þ @@
p¼1 p
T
2
TRp
p
2
p¼1 T
p¼1 p
p¼1 p
T
2
2
T
0 T
q
T
2
q
2
p¼1 T
2
FLp
p
T
2
2
T
1q1 11q1 1q + C C 1AA A 1A
p¼1 p
1q1 + p
2
p¼1 T
p¼1 p
T
FL2 @
2
2
T
p¼1 p
þ 1A ; @
1q1 11q1 11q C CC 1AA AA 1A ;
p¼1 p
1q1 0 2
p¼1 p
2
2
T
1 0 q 1 TR2 A @
p¼1 p
p¼1 p
q 2 1 TRp
T
þ 1A
:
p¼1 p
i.e. when g ¼ 2, Eq. (26) is true. Step 2. Assume that for g ¼ b, Eq. (26) is true. i.e.,
SVNSSPRWAðsv1 ; sv2 ; ::::; svb Þ ¼ 0 * q T b b 1 @ b p 1 TRp p¼1 T p¼1
p
T g
1q1 0
p¼1
þ 1A ; @
p
p¼1 T
b
p
T
q
IDp
p
b
p¼1 T p¼1
b
p
T
1q1 0
þ 1A ; @
p
b
p¼1 T p¼1
b
p
T
q
FLp
p
b
p¼1 T p¼1
b
p
T
1q1 + þ 1A
p
b
p¼1 T p¼1
:
ð28Þ
p
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
0
*
0
11q1 0
q1 B T B T bþ1 CC bþ1 B CC sv ¼ 1 1 TR B bþ1 bþ1 @bþ1 @bþ1 1AA bþ1 Tp Tp Tp T bþ1
p¼1
p¼1
0
7
11q1 0
B T bþ1 q B T bþ1 CC B CC ;B @bþ1 IDbþ1 @bþ1 1AA Tp Tp
p¼1
p¼1
p¼1
0
11q1
B T bþ1 q B T bþ1 CC B CC ;B @bþ1 FLbþ1 @bþ1 1AA Tp Tp p¼1
+ ;
p¼1
SVNSSPRWA sv1 ; sv2 ; ::::; svg ¼ 0 1q1 0 1q1 * Tp qC B g B g Tp qC B 1 TRp C IDp C 1B g g @p¼1 A ; @p¼1 A; Tp Tp
and SVNSSPRWAðsv1 ; sv2 ; ::::; svb ; svbþ1 Þ T ¼ SVNSSPRWAðsv1 ; sv2 ; ::::; svb ÞSS bþ1bþ1 svbþ1 Tp
p¼1
0
1q1
B g Tp qC B FLp C @p¼1 g A Tp
p¼1
p¼1
+ :
ð29Þ
p¼1
*
00
0
0
BB B ¼ 1 @@ 1 @1 @ b
T b
b
p¼1 T
1 TRb
q
b
T
b
b
p¼1 T
p¼1 p
1q1 11q 0 0 0 0 q CC B B @ T bþ1 A þ 1 AA þ @1 @1 bþ1 1 TRbþ1 @ T
p¼1 p
00
p¼1 T
T
p¼1 p
bþ1 T
p
bþ1
p¼1 T
1 TRp
q
bþ1 T
1q1 0 p
bþ1
p¼1 T
p¼1 p
T g
T
p¼1
T
g
P 0; such that
p
g
p
p¼1
bþ1 T bþ1
p¼1 p
p
SVNSSPRAWAðsv1 ; sv2 ; sv3 Þ ¼
0 3
1@
T
p
3
p¼1 T p¼1
1 TRp
p
q
p
p¼1 T
degenerates into the following form:
*
3
T
q
p
q
b
T
IDb
b
p¼1 p
b
b
p¼1 T
1q1 1q C þ 1A A
p¼1 p
p¼1 T
T
bþ1 T
IDp
1q1 0
bþ1 T
þ 1A ; @
p
bþ1
p¼1 T
p¼1 p
q
bþ1 T
FLp
p
bþ1
p¼1 T
p¼1 p
1q1 + p
bþ1
p¼1 T
p¼1 p
þ 1A
:
p¼1 p
Example 1. Let sv1 ¼ h0:3;0:4;0:5i, sv2 ¼ h0:4;0:2;0:1i and sv3 ¼ h0:6;0:1;0:2i be three SVNNs. Based on the score f ðsv1 Þ ¼ 0:4667; SO f ðsv2 Þ ¼ function of SVNNs, we get SO f 0:7 and SO ðsv3 Þ ¼ 0:7667, and hence T 1 ¼ 1; T 2 ¼ 0:4667 and T 3 ¼ 0:3267: By using this information ðq ¼ 2Þ, we can get
1q1 0
þ 1A ; @
p
b
p¼1 T
p¼1 p
3
3
T
1q1 1q1 1q 00 0 11q1 1q + q bþ1 T T C B C C bþ1 bþ1 þ 1A A þ @@bþ1 FLbþ1 @ bþ1 1AA A 1A
1q1 0
p¼1 T p¼1
b
T
p¼1 p
¼ 1; then, Eq. (26)
p
p¼1 T
b
b
p¼1 T
þ 1A ; @
p¼1 p
T
FLb
So, when g ¼ b þ 1, Eq. (26) is true. Therefore, Eq. (26) is true for all g: When
b
p¼1 p
0 1@
b
q
b
p¼1 T
p¼1 p
*
T
b
1q1 000 11q1 11q CC C BB b 1 AA AA 1 A ; @@@
p¼1 p
p¼1 p
1q1 000 0 11q1 1q bþ1 T B@ T bþ1 q C C BB b bþ1 þ@ bþ1 IDbþ1 @ bþ1 1AA A 1A ; @@@
T
T
q
TRp
p
3
p¼1 T p¼1
3
p
T
3
þ 1A ; @
p
3
p¼1 T p¼1
p
T
q
FLp
p
3
p¼1 T p¼1
3
p
T
1q1 + þ 1A
p
3
p¼1 T p¼1
p
¼ h0:4226;0:1883;0:1746i:
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
:
8
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
Theorem 3. For a group of SVNNs svp ¼ D E TRp ; IDp ; FLp ; ðp ¼ 1; 2; :::; gÞ, the SVNPRWA operator
and
0q
satisfies the following properties:
T0
g
g
p¼1
(1) (Idempotency) If all svp ðp ¼ 1; 2; :::; gÞ are equal, i.e., D E svp ¼ sv ¼ TR; ID; FL ; then
p¼1
p¼1 p
T0
g
0q
p
T0 g
T0
p¼1
p¼1 T 0
T0
IDp
p
g
p¼1
þ1
6
p
T
g
q
IDp
p
g
þ 1;
p
p¼1 T
p¼1 p
!q1
p
p¼1 T 0
p
g
p¼1 T
T0
g
0q
p
T
g
þ16
p
g
p¼1
p¼1
p¼1 p
T
g
g
p
p¼1 T
q
g
IDp
p¼1 p
T g
!q1 p
p¼1 T
þ1
p¼1 p
ð33Þ
E Proof. Since svp ¼ sv ¼ TR; ID; FL ; for all p: so,
Similarly, we have
1q1 0
0
*
q
IDp ;
p
IDp
p
g
)
D
SVNSSPRWA sv1 ; sv2 ; ::::; svg ¼
T0 g
p¼1
ð30Þ
g
p¼1 T
p
g
)
T
g
0q
IDp 6
p
p¼1 T 0
SVNSSPRWA sv1 ; sv2 ; ::::; svg ¼ sv:
q
Since IDp 6 IDp
1q1 0
1q1
q Tp Tp Tp C B g Tp C B g Tp C B g Tp g g g q q B B 1B g 1 TRp g þ 1C IDp g þ 1C FLp g þ 1C g g A ; @p¼1 A ; @p¼1 A @p¼1 p¼1 p¼1 p¼1 Tp Tp Tp Tp Tp Tp 0
* ¼
p¼1
p¼1
1q1 0
1q1 0
p¼1
1q1
q C B g T Tp B g Tp qC B g qC p B B 1 TR C ID C FL C 1B g g g A ; @p¼1 A ; @p¼1 A @p¼1 Tp Tp Tp p¼1
p¼1
p¼1
p¼1
+ ;
p¼1
+
p¼1
q q1 q q1 q q1 ¼ 1 1 TR ; ID ; FL ; D E ¼ TR; ID; FL :
D 0 0 0E (2) (Monotonicity) If sv0p ¼ TRp ; IDp ; FLp and D E svp ¼ TRp ; IDp ; FLp are two groups of SVNNs, such 0
0
0 0
1q1
T 0p g
B g Tp C g 0q B þ 1C @p¼1 g 0 FLp p¼1 A Tp T 0p
0
p¼1
that sv0p P svp : i.e., TRp P TRp ; IDp 6 IDp ; FLp 6 FLp and for all p; then
p¼1
0
1q1 Tp
B g 6B @
SVNSSPRWA sv01 ; sv02 ; ::::; sv0g P SVNSSPRWA sv1 ; sv2 ; ::::; svg :
p¼1
g
q
FLp
g
p¼1
Tp
p¼1
ð31Þ
Tp g
Tp
C þ 1C A
ð34Þ
p¼1
From Eqs. (32)–(34), we get SVNSSPRWA sv01 ;sv02 ;::::;sv0g P SVNSSPRWA sv1 ;sv2 ;::::;svg :
0
Proof. Since sv0p P svp , which implies TRp P TRp and so
q 0 0 q 1 TRp 6 1 TRp ; and 0 6 1 TRp 6 1 TRp 6 1; q T0 T g g 0 q ) g p 0 1 TRp 6 g p 1 TRp ; p¼1 T p¼1
T0
g
)
g
T0 p¼1 p
p¼1
)
)1
g
T0 p g
p¼1
T0 p¼1 p
g
T0
g
p
p¼1 T 0 p¼1
p
p
p¼1 T
p
p¼1
g 0 q 1 TRp
T0 g
T0 p¼1 p
p¼1
g 0 q 1 TRp
p¼1
g 0 q 1 TRp
T0 p g
T0 p¼1 p T0 g
p
p¼1 T 0 p¼1
p
p
T
g
þ16
g
þ1
p¼1
6
g
q g 1 TRp
p
T g
p
g
1 TRp
p
q
g
þ 1;
p
p¼1
p¼1
P1
T g
p¼1 T
p¼1 T
!q1 þ1
p
p¼1 T
!q1
p
p
T g
g
p¼1 T p¼1
q g 1 TRp
p p
þ1
p
p¼1 T p¼1
T
ð32Þ
!q1 ;
p
T g
!q1
p¼1 T p¼1
þ1
p
:
p
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
D E (3) (Boundedness) Let svp ¼ TRp ; IDp ; FLp be a group g g g ¼ max TR ; min ID ; min FL of SVNNs, and svþ p p p ; p p¼1 p¼1 p¼1 g g g min TRp ; max IDp ; max FLp , then sv p ¼ p¼1
p¼1
9
Definition 10. A SVNPROWA operator is a function SVNPROWA : H g ! H; described as follows: g SVNSSPRWA sv1 ; sv2 ; ::::; svg ¼
p¼1
Tp g
Tp
svfð pÞ
ð37Þ
p¼1
p¼1
p1
f ðsvh Þ; ðp ¼ 2; 3; ::::; gÞ, f is a where T 1 ¼ 1; and T p ¼ SO h¼1
ð35Þ
permutation of ð1; 2; :::; gÞ such that fð pÞ P fð p 1Þ for p ¼ 2; 3; :::; g:
min TRp 6 TRp 6 max TRp ; min IDp 6 IDp 6
D E Theorem 4. For a group of SVNNs svp ¼ TRp ; IDp ; FLp ;
þ
sv 6 SVNSSPRWA sv1 ; sv2 ; ::::; svg 6 sv : Proof. Since g
g
g
g
p¼1 g
p¼1
p¼1
g
ðp ¼ 1; 2; :::; gÞ, the value aggregated by the developed SVNPROWA operator is still a SVNN and is specified by:
max IDp , and min FLp 6 FLp 6 max FLp ; p¼1
p¼1
p¼1
SVNSSPROWA sv1 ; sv2 ; ::::; svg ¼
*
1q1 0
0
q Tp C B g Tp g 1B g 1 TRfðpÞ g þ 1C A @p¼1 p¼1 Tp Tp p¼1
p¼1
1q1 0
Tp C B g Tp g q ;B g IDfðpÞ g þ 1C A @p¼1 p¼1 Tp Tp p¼1
p¼1
1q1
Tp C B g Tp g q ;B g FLfðpÞ g þ 1C A @p¼1 p¼1 Tp Tp p¼1
+
p¼1
ð38Þ
Hence, from property (2), we have SVNSSPRWA sv01 ; sv02 ; ::::; sv0g P SVNSSPRWA sv1 ; sv2 ; ::::; svg : When q ¼ 0; the SVNPRASSWA operator reduces to the PA operator based on the algebraic operational laws for SVNNs. That is,
* SVNSSPROWAðsv1 ; sv2 ; sv3 Þ ¼
0 T
3
1@
p
3
p¼1 T p¼1
1 TRfðpÞ
q
3
T
3
þ 1A ; @
p
3
p¼1
Example 2. Consider the SVNNs given in Example 1, we have T 1 ¼ 1; T 2 ¼ 0:4667 and T 3 ¼ 0:3267: the score values f ðsv2 Þ ¼ 0:7 and SO f ðsv3 Þ ¼ 0:7667. f ðsv1 Þ ¼ 0:4667; SO are SO f ðsv3 Þ > SO f ðsv2 Þ > SO f ðsv1 Þ and hence, So, we have SO svfð1Þ ¼ sv3 ; svfð2Þ ¼ sv2 ; svfð3Þ ¼ sv1 : By using this information ðq ¼ 2Þ, we can get 1q1 0
p¼1 T
p
Proof. Same as Theorem 2, it is omitted.
p
T
q
IDfðpÞ
p
3
p¼1 T p¼1
3
p
T
1q1 0 3
þ 1A ; @
p
3
p¼1 T p¼1
p
T
q
FLfðpÞ
p
3
p¼1 T p¼1
3
p
T
1q1 + þ 1A
p
3
p¼1 T p¼1
p
¼ h0:5327;0:1256;0:1568i:
SVNSSPRWAq¼0 sv1 ;sv2 ;::::;svg *
g
¼ 1 1 TRp p¼1
T p g T p¼1 p
g
; IDp p¼1
T p g T p¼1 p
g
; FLp p¼1
T p g T p¼1 p
+ ð36Þ
4.2. Single-valued neutrosophic Schweizer-Sklar prioritized ordered weighted averaging operator In this subpart, we consider ordered weighted average (OWA), and propose the SVNSSOWA operator.
D E Theorem 5. For a group of SVNNs svp ¼ TRp ; IDp ; FLp ; ðp ¼ 1; 2; :::; gÞss (1) (Idempotency). If all svp ðp ¼ 1; 2; :::; gÞ are equal, i.e., D E svp ¼ sv ¼ TR; ID; FL ; then SVNSSPROWA sv1 ; sv2 ; ::::; svg ¼ sv:
ð39Þ
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
:
10
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
D 0 0 0E (2) (Monotonicity). If sv0p ¼ TRp ; IDp ; FLp and D E svp ¼ TRp ; IDp ; FLp are two groups of SVNNs, such 0
sv0p
0
0
P svp : i.e., TRp P TRp ; IDp 6 IDp ; FLp 6 FLp that for all p; then SVNSSPROWA
sv01 ; sv02 ; ::::; sv0g
P SVNSSPROWA sv1 ; sv2 ; ::::; svg : ð40Þ
D
p¼1
*
Definition 11. A single valued neutrosophic SchweizerSklar prioritized weighted geometric (SVNSSPRWG) operator is a function SVNSSPRWA : H g ! H, which is described as T p g T p¼1 p
g SVNSSPRWG sv1 ; sv2 ; :::; svg ¼ svp p1
p¼1
0
ð42Þ
p¼1
f ðsvh Þ; ðp ¼ 2; 3; ::::; gÞ. Where T 1 ¼ 1; and T p ¼ SO
E
(3) (Boundedness). Let svp ¼ TRp ; IDp ; FLp be a group of g g g ¼ max TR ; min ID ; min FL SVNNs, and svþ ; p p p p p¼1 p¼1 p¼1 g g g min TRp ; max IDp ; max FLp , then sv p ¼ p¼1
5.1. Single-valued neutrosophic Schweizer-Sklar prioritized weighted geometric (SVNSSPRWG) operator
1q1
h¼1
D E Theorem 6. For a group of SVNNs svp ¼ TRp ; IDp ; FLp ; ðp ¼ 1; 2; :::; gÞ, the value aggregated by the developed SVNPRWG operator is still a SVNN and is specified by:
0
1q1
0
1q1
q g T q g T Tp B g Tp C B g Tp C B g Tp C g q p p B B SVNSSPRWG sv1 ;sv2 ;::::;svg ¼ B TRp g þ 1C 1 IDp g þ 1C 1 FLp g þ 1C g g g @p¼1 A ;1 @p¼1 A ;1 @p¼1 A p¼1 p¼1 p¼1 Tp Tp Tp Tp Tp Tp
p¼1
p¼1
p¼1
p¼1
p¼1
+ :
p¼1
ð43Þ
sv 6 SVNSSPROWA sv1 ; sv2 ; ::::; svg 6 svþ :
ð41Þ
Proof. We will prove Eq. (43) by utilizing MI. The following steps of MI have been followed: Step 1. For g ¼ 2; we have
5. Single-valued neutrosophic Schweizer-Sklar prioritized weighted geometric operator In this part, we develop single-valued neutrosophic Schweizer-Sklar prioritized weighted geometric (SVNSSPRWG) and single-valued neutrosophic Schweizer-Sklar prioritized ordered weighted geometric (SVNSSPROWG) operators. We also discuss some characteristics of the developed aggregation operators.
T 1 2 T p¼1 p
sv1
* ¼
0
0
11q1
2
SVNSSPRWAðsv1 ; sv2 Þ ¼ svp p¼1
T
¼ svp
T
1
2 T p¼1 p
;
ð44Þ
2
2 T p¼1 p
sv2
From the operational laws for SVNNs, proposed in Definition 8, we have
0
0
T p 2 T p¼1 p
11q1
0
0
11q1
q1 B T q1 B T B T1 CC CC CC B T1 B T1 B T1 q 1 1 B B B C C C TR1 B 1C 1 ID1 B 1C 1 FL1 B 1C @ 2 @ 2 @ 2 AA ; 1 @ 2 AA ; 1 @ 2 AA @ 2 Tp Tp Tp Tp Tp Tp p¼1
p¼1
p¼1
p¼1
p¼1
+ ;
p¼1
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
11
and
T 2 2 T p¼1 p
*
sv2
¼
0
11q1
0
0
B T2 B T2 CC B T2 q C B B TR2 B 1C 1 ID2 @ 2 AA ; 1 @ 2 @ 2 Tp Tp Tp p¼1
p¼1
11q1
0
q1
p¼1
0
B T2 CC B T2 C B B 1C 1 FL2 AA ; 1 @ 2 @ 2 Tp Tp p¼1
11q1
0
q1
p¼1
CC B T2 C B 1C AA @ 2 Tp
+ ;
p¼1
So, Eq. (44) becomes
T 1 2 T p¼1 p
sv1
000 * BB ¼ @@@
T 2 2 T p¼1 p
sv2
T
0
00
B BB 1 @@1 @1 @@
T
1
2
T
p¼1
00
0
B BB 1 @@1 @1 @@ *0 2 ¼ @
T
q
p¼1
p
p¼1
1 ID1
1
2
q
1
p
1 FL1
q
1
T
1
2
T
A@
T
1q1
1
p¼1
p
T
2
2
T
T
T
q 2 1 IDp
p
2
p¼1
T
2
i.e., when g ¼ 2, Eq. (43) is true.
1 FL2
q
1
T
2
2
T
T
A@
p
2
p¼1 T
p
p¼1
p
1q1 11q1 11q + CC C A A 1 AA 1A
0 T
2
2
T
p¼1
0
1q1 11q1 11q CC C 1AA AA 1A ;
0
A@
p
þ 1A ; 1 @
p
1
p¼1
2
2
p¼1
q
p
2
T
1q1
p¼1 T
p
1 ID2
p¼1
p¼1 T
p
2
p¼1
0
þ 1A 1 @
p
p¼1
p
2
2
p¼1 T
p
T 2
T
0 11q1 11q 0 00 CC B B 1AA AA þ @1 @1 @@
2
T
q
TR2 @
2
p
0 p¼1
2
T 2
T
0 11q1 11q 0 00 C C B B 1AA AA þ @1 @1 @@
0 T
1q1 11q1 1q C C 1AA A 1A ;
0
p¼1
A@
p
TRp
p
2
p¼1 T
p
1
p¼1
T
p¼1
T 2
T
p
00 T
q
TR1 @
1
2
T
p¼1
00
11q1 1q 00 C B 1AA A þ @@
0
1 FLp
q
p
2
T
1q1 + þ 1A
p
2
p¼1 T
p
p¼1
:
p
Then, for g ¼ b þ 1, according to the operational rules developed for SVNNs in Definition 8, we have
Step 2. Assume that for g ¼ b, Eq. (43) is true, i.e.,
*
0
1q1
0
1q1
0
1q1
q b T q b T Tp B b Tp C B b Tp C B b Tp C q b p p B B SVNSSPRWGðsv1 ;sv2 ;::::;svb Þ ¼ B b TRp b þ 1C 1 IDp g þ 1C 1 FLp g þ 1C @p¼1 A ;1 @p¼1 A ;1 @p¼1 A b b p¼1 p¼1 p¼1 Tp Tp Tp Tp Tp Tp p¼1
p¼1
p¼1
p¼1
+ :
p¼1
p¼1
ð45Þ
T bþ1 bþ1 T p¼1 p
svbþ1
*
0
11q1
0
0
0
B T bþ1 q B T bþ1 CC B T bþ1 B CC B ¼ B 1 IDbþ1 @bþ1 TRbþ1 @bþ1 1AA ;1 @bþ1 Tp Tp Tp p¼1
p¼1
p¼1
q1
11q1
0
B T bþ1 CC B T bþ1 B CC B 1 FLbþ1 @bþ1 1AA ;1 @bþ1 Tp Tp p¼1
p¼1
11q1
0
q1
CC B T bþ1 CC B @bþ1 1AA Tp
+ ;
p¼1
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
12
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
Example 3. Let sv1 ¼ h0:5;0:2;0:4i, sv2 ¼ h0:7; 0:3; 0:4i and sv3 ¼ h0:3; 0:4; 0:6i be three SVNNs. Based on the score f ðsv1 Þ ¼ 0:6333; SO f ðsv2 Þ ¼ function of SVNNs, we get SO
and SVNSSPRWGðsv1 ; sv2 ; ::::; svb ; svbþ1 Þ T bþ1 bþ1 T p¼1 p
¼ SVNSSPRWGðsv1 ; sv2 ; ::::; svb ÞSS svbþ1
1q1 000 1q1 1q 00 11q1 1q 0 * C BBB b T B T CC CC C Bbþ1 T bþ1 T q q b C BB C BB bþ1 CC C B ¼ BBB b b TRb b b þ 1C TR 1 1 C þBB C C; bþ1 A @ A A @ @ A @ bþ1 A A @@ p¼1 p¼1 p¼1 bþ1 Tp Tp Tp Tp p¼1
00
0
p¼1
0
B BB 1 @@1 @1 @ b
T b
b
p¼1 T p¼1
00
0
0
b B BB 1 @@1 @1 @
T b
1 IDb
q
T
b
b
T
b
p
p¼1
0
T
T
p
p¼1
q
T
p
p¼1
1q1 11q1 11q CC C 1AA AA 1A ;
0 @
p
T b
b
T
p¼1
0 1q1 11q 0 0 0 q T C B C B þ 1A AA þ @1 @1 @bþ1bþ1 1 FLbþ1 @
b
p¼1 T
0
B CC B þ 1A AA þ @1 @1 @bþ1bþ1 1 IDbþ1
b
p¼1
1 FLb
0
q
b
p¼1 T
q
p¼1
1 1 11q
p
b
p¼1 T p¼1
p¼1
p
T b
1q1 11q1 11q + CC C 1AA AA 1A
b
T
p¼1
p
p
1q1 1q1 1q1 0 0 0 * + q bþ1 T q bþ1 T Tp C C C Bbþ1 T p Bbþ1 T p Bbþ1 T p q bþ1 p p C C C B B B ¼ @ bþ1 TRp bþ1 þ 1A ; 1 @ bþ1 1 IDp bþ1 þ 1A ; 1 @ bþ1 1 FLp bþ1 þ 1A : p¼1 p¼1 p¼1 p¼1 p¼1 p¼1 Tp Tp Tp Tp Tp Tp p¼1
p¼1
p¼1
p¼1
T g
T
p¼1
g
P 0; such that
p
T g
p
¼ 1; the Eq. (43)
p
p¼1 T p¼1
p¼1
f ðsv3 Þ ¼ 0:4333, and hence T ¼ 1; T ¼ 0:6667 and SO 1 2 0:6333 and T 3 ¼ 0:42222: By using this information ðq ¼ 2Þ, we can obtain
So, when g ¼ b þ 1, Eq. (43) is true. Therefore, Eq. (43) is true for all g: When
p¼1
p
degenerates into the following form:
SVNSSPRWG sv1 ; sv2 ; ::::; svg ¼
*
0
1q1
0
1q1
T
q
3
p¼1 T p¼1
3
TRp
p p
1q1
q C q C B g Tp B g Tp B g Tp qC B C ;1 B C ;1 B C TR 1 ID 1 FL p p pA @p¼1 g @p¼1 g @p¼1 g A A Tp Tp Tp p¼1
*0 3 SVNSSPRWGðsv1 ; sv2 ; sv3 Þ ¼ @
0
T
p¼1
1q1
þ 1A ; 1 @
3
p¼1 T p¼1
0 3
p p
T 3
p¼1 T p¼1
p
:
ð46Þ
p¼1
q 3 1 IDp
p
+
T
1q1
þ 1A ; 1 @
3
p¼1 T p¼1
0 3
p p
T
q 3 1 FLp
p
3
p¼1 T p¼1
p
T
1q1 + þ 1A
p
3
p¼1 T p¼1
:
p
¼ h0:4537;0:2856;0:4648i:
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
D E Theorem 7. For a group of SVNNs svp ¼ TRp ; IDp ; FLp ;
13
SVNSSPRWGq¼0 sv1 ;sv2 ;::::;svg
ðp ¼ 1; 2; :::; gÞ, the SVNPRWG operator satisfies the following properties:
* ¼
g
TRp
T p g T p¼1 p
g
;1 1 IDp
p¼1
T p g T p¼1 p
p¼1
;1 1 FLp g
T p g T p¼1 p
p¼1
(1) (Idempotency). If all svp ðp ¼ 1; 2; :::; gÞ are equal, i.e., D E svp ¼ sv ¼ TR; ID; FL ; then SVNSSPRWG sv1 ; sv2 ; ::::; svg ¼ sv:
ð50Þ
5.2. Single-valued neutrosophic Schweizer-Sklar prioritized ordered weighted geometric operator
ð47Þ
D 0 0 0E (2) (Monotonicity). If sv0p ¼ TRp ; IDp ; FLp and svp ¼ D E TRp ; IDp ; FLp are two groups of SVNNs, such that 0
0
Definition 12. A SVNPROWG operator is a function SVNPROWG : H g ! H; described as follows: T p g T p¼1 p
g SVNSSPROWG sv1 ; sv2 ; ::::; svg ¼ svfð pÞ
0
sv0p P svp : i.e., TRp P TRp ; IDp 6 IDp ; FLp 6 FLp for all p; then
p1 h¼1
permutation of ð1; 2; :::; gÞ such that fð pÞ P fð p 1Þ for p ¼ 2; 3; :::; g:
ð48Þ
D E Theorem 8. For a group of SVNNs svp ¼ TRp ; IDp ; FLp ;
D E (3) (Boundedness). Let svp ¼ TRp ; IDp ; FLp be a group of g g g ¼ max TR ; min ID ; min FL SVNNs, and svþ p p p ; p p¼1 p¼1 p¼1 g g g min TRp ; max IDp ; max FLp , then sv p ¼ p¼1
ð51Þ
p¼1
f ðsvh Þ; ðp ¼ 2; 3; ::::; gÞ, f is a where T 1 ¼ 1; and T p ¼ SO
SVNSSPRWG sv01 ; sv02 ; ::::; sv0g P SVNSSPRWG sv1 ; sv2 ; ::::; svg :
p¼1
+
ðp ¼ 1; 2; :::; gÞ, the value aggregated by the developed SVNPROWG operator is still a SVNN and is specified by:
p¼1
1q1 1q1 0 + Tp Tp Tp q q C C C B g Tp B g Tp B g Tp g g g q C ;1 B C C B SVNSSPROWG sv1 ;sv2 ;::::;svg ¼ B TR þ 1 1 ID þ 1 ;1 1 FL þ 1 fðpÞ f ðp Þ fðpÞ g g g A A A : @p¼1 g @p¼1 g @p¼1 g p¼1 p¼1 p¼1 Tp Tp Tp Tp Tp Tp *
1q1
0
p¼1
0
p¼1
p¼1
p¼1
p¼1
p¼1
ð52Þ
sv 6 SVNSSPRWG sv1 ; sv2 ; ::::; svg 6 svþ :
ð49Þ
Proof. Same as Theorem 6, it is omitted. Example 4. Consider the SVNNs given in Example 3, we have T 1 ¼ 1; T 2 ¼ 0:6333 and T 3 ¼ 0:42222: the score values f ðsv2 Þ ¼ 0:6667 and SO f ðsv3 Þ ¼ f ðsv1 Þ ¼ 0:6333; SO are SO f f f 0:4333. So, we have SO ðsv2 Þ > SO ðsv1 Þ > SO ðsv3 Þ and hence, svfð1Þ ¼ sv2 ; svfð2Þ ¼ sv1 ; svfð3Þ ¼ sv3 : By using this information ðq ¼ 2Þ, we can obtain
When q ¼ 0; the SVNPRASSWG operator reduces to the PG operator based on the algebraic operational laws for SVNNs. That is,
*0 3 SVNSSPROWGðsv1 ;sv2 ;sv3 Þ ¼ @
T
p
3
p¼1 T
p¼1 p
q
3
TRfðpÞ
T
1q1 p
3
p¼1 T
p¼1 p
0 3
þ 1A ;1 @
T
p
3
p¼1 T
p¼1 p
q 3 1 IDfðpÞ
T
1q1 p
3
p¼1 T
p¼1 p
0 3
þ 1A ;1 @
T
p
3
p¼1 T
p¼1 p
1 FLfðpÞ
q
3
T g
1q1 + p
p¼1 T
þ 1A
p¼1 p
¼ h0:4710;0:3007;0:4648i:
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
14
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
D E Theorem 9. For a group of SVNNs svp ¼ TRp ; IDp ; FLp ; ðp ¼ 1; 2; :::; gÞ, the SVNPROWG operator satisfies the following properties: (1) (Idempotency). If all svp ðp ¼ 1; 2; :::; gÞ are equal, i.e., D E svp ¼ sv ¼ TR; ID; FL , then SVNSSPROWG sv1 ; sv2 ; ::::; svg ¼ sv:
ð53Þ D
0
0
0E
and (2) (Monotonicity). If sv0p ¼ TRp ; IDp ; FLp D E svp ¼ TRp ; IDp ; FLp are two groups of SVNNs, such 0
0
0
that sv0p P svp : i.e., TRp P TRp ; IDp 6 IDp ; FLp 6 FLp for all p; then SVNSSPROWG sv01 ; sv02 ; ::::; sv0g P SVNSSPROWG sv1 ; sv2 ; ::::; svg : D
ð54Þ
p¼1
6.1. The method based on SVNSSPRWA operator In the following, a process for ranking and selecting the most preferable alternative(s) is provided as follows. Step 1. Standardize the decision matrix. First, the decision making information mrs in the matrix M ¼ mrs hg must be standardized. Consequently, the attribute can be grouped into the cost and benefit types. For benefit type attribute, the assessment information does not need to changed, but for cost type attribute, it must be modified with the complement set. The decision matrix can be standardized by the following formula:
mrs ¼
8 > <
D
TRrs ; IDrs ; FLrs
E
D E > : FL ; 1 ID ; TR rs rs rs
for benefit type attribute H rs for cost type attribute H rs ð56Þ
E
(3) (Boundedness). Let svp ¼ TRp ; IDp ; FLp be a group of g g g ¼ max TRp ; min IDp ; min FLp i; SVNNs, and svþ p p¼1 p¼1 p¼1 g g g sv min TRp ; max IDp ; max FLp , then p ¼ p¼1
TRrs 2 ½0;1;IDrs 2 ½0;1;FLrs 2 ½0;1;0 6 TRrs þ IDrs þ FLrs 6 3; ðr ¼ 1; 2; :::; g;s ¼ 1; 2; :::; hÞ. The goal of this problem is to rank the alternatives.
Step 2. Determine the values of T rs ðr ¼ 1; 2; :::; h; s ¼ 1; 2; :::; gÞ by using the following formula:
p¼1
sv 6 SVNSSPROWG sv1 ; sv2 ; ::::; svg 6 svþ :
ð55Þ
6. The MADM methods based on the proposed aggregation operators In this part, we shall use the SVNPRWA and SVNPRWG operators with SVNNs to solve the MADM problem. The following presumptions or notations are utilized to express the MADM problems. n Let the discrete o set of alternatives be expressed by G ¼ G1 ; G2 ; :::; Gh , and
the n set of oattributes be expressed by H ¼ H 1 ; H 2 ; :::; H g , and that there is a prioritization among the attributes represented by the linear-ordering H 1 > H 2 > :::: > H g1 > H g , the specified attribute H n has a higher priority than Hm if n < m: Assume that M ¼ mrs hg ¼ TRrs ; IDrs ; FLrs is the SVNN decision hg
matrix, where TRrs ; IDrs and FLrs express the TM function, IM function and FM function respectively, such that
T rs ¼
s1 Y
f mrl ðr ¼ 1; 2; :::; h; s ¼ 2; 3; ::::; gÞ SO
ð57Þ
l¼1
where T r1 ¼ 1 for r ¼ 1; 2; :::; h: Step 3. Use the decision information from decision matrix M ¼ mrs hg and the SVNSSPRWA operator given in Eq. (26), D E mr ¼ TRr ; IDr ; FLr ¼ SVNSSPRWA mr1 ; mr2 ; :::; mrg
ð58Þ
to get the overall SVNN mr ðr ¼ 1; 2; :::; hÞ. Step 4. Determine the score values f mr ðr ¼ 1; 2; :::; hÞ SO of the overall SVNNs mr ðr ¼ 1; 2; ::::; hÞ by Definition 3 to rank all the alternatives Gr ðr ¼ 1; 2; :::; hÞ. Step 5. Rank all the alternatives Gr ðr ¼ 1; 2; :::; hÞ and select best one utilizing Definition 5. Step 6. End.
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
6.2. The method based on SVNSSPRWA operator
Table 1 Decision matrix M of Example 5.
Steps 1 and 2 are same. Step 3. Use the decision information permitted decision matrix M ¼ mrs hg and the SVNSSPRWG operator given in Eq. (42) D E mr ¼ TRr ; IDr ; FLr ¼ SVNSSPRWG mr1 ; mr2 ; :::; mrg
15
ð59Þ
To get the overall SVNN mr ðr ¼ 1; 2; :::; hÞ. Step 4. Determine the score values f mr ðr ¼ 1; 2; :::; hÞ SO of the overall SVNNs mr ðr ¼ 1; 2; ::::; hÞ by Definition 3 to rank all the alternatives Gr ðr ¼ 1; 2; :::; hÞ. Step 5. Rank all the alternatives Gr ðr ¼ 1; 2; :::; hÞ and select best one utilizing Definition 5. Step 6. End.
7. An illustrative example In this part, we use a numerical example of selecting third-party logistics (TPL) providers with SVNNs (Ji et al., 2018) to show the effectiveness and advantages of the developed approach. Example 5. An electronic commerce distributer expects to select a suitable TPL provider. Initially, four providers (alternatives) Gr ðr ¼ 1; 2; :::; 4Þ are available for selection and are evaluated by experts with respect to the following four attributes (1) customer satisfaction H 1 ; (2) service cost H 2 ; (3) market reputation H 3 ; and (4) operational experience in the industry H 4 . The following priority relationship H 1 > H 2 > H 3 > H 4 among the four attributes is considered by the electronic commerce distributer. The assessment values of the four providers with respect to the four attributes are provided by expert in the form of SVNNs and listed in Table 1. Step 1. Normalize the decision matrix. Since H 1 , H 3 and H 4 are of benefit type, and H 2 is of cost type attribute. Hence, by using Eq. (56), the normalized decision matrix is given in Table 2. Step 2. Determine the values of T rs ðr ¼ 1; 2; :::; 4; s ¼ 1; 2; :::; 4Þ by using the formula (57), and get
G1 G2 G3 G4
H1
H2
H3
H4
h0:7; 0:1; 0:2i h0:9; 0:1; 0:1i h0:5; 0:1; 0:4i h0:4; 0:3; 0:2i
h0:3; 0:9; 0:5i h0:3; 0:8; 0:4i h0:1; 0:8; 0:7i h0:2; 0:9; 0:6i
h0:3;0:2; 0:1i h0:5; 0:3; 0:2i h0:6; 0:2; 0:2i h0:7; 0:2;0:1i
h0:5;0:1; 0:4i h0:3; 0:2;0:4i h0:8; 0:1; 0:3i h0:2; 0:2;0:5i
Table 2 Normalize decision matrix M. G1 G2 G3 G4
H1
H2
H3
H4
h0:7; 0:1; 0:2i h0:9; 0:1; 0:1i h0:5; 0:1; 0:4i h0:4; 0:3; 0:2i
h0:5; 0:1; 0:3i h0:4; 0:2; 0:3i h0:7; 0:2; 0:1i h0:6; 0:1; 0:2i
h0:3;0:2; 0:1i h0:5; 0:3; 0:2i h0:6; 0:2; 0:2i h0:7; 0:2;0:1i
h0:5;0:1; 0:4i h0:3; 0:2;0:4i h0:8; 0:1; 0:3i h0:2; 0:2;0:5i
2
1
0:800
0:700
0:6667
3
6 61 6 T rs ¼ 6 61 4
0:6667
7 0:6333 0:6667 7 7 7 0:800 0:7333 7 5
1
0:6333
0:7667 0:8000
0:900
Step 3. Use the SVNSSPRWA given in Eq. (58) to get the overall SVNN mr ðr ¼ 1; 2; :::; 4Þ (assume q ¼ 2), and obtain m1 ¼ h0:5852;0:1095;0:1712i; m2 ¼ h0:8266;0:1479;0:3213i; m3 ¼ h0:6965;0:1234;0:1779i; m4 ¼ h0:5597;0:1678;0:1628i: Step 4. Determine the score f of the overall SO mr ðr ¼ 1; 2; :::; 4Þ mr ðr ¼ 1; 2; ::::; 4Þ by Definition 3, and have
values SVNNs
f m1 ¼ 0:7682; SO f m2 ¼ 0:7858; SO f m3 SO f m4 ¼ 0:7430: ¼ 0:7984; SO So, we get m3 > m2 > m1 > m4 : Step 5. According to score values, ranking order of alternatives is G3 > G2 > G1 > G4 : So the best provider is G3 , while the worst one is G4 : Similarly, we solve the above Example 5 by utilizing SVNSSPWG operator:
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
16
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
Step 1 and step 2 are same. Step 3. Use the SVNSSPRWG operator to get the overall SVNN mr ðr ¼ 1; 2; :::; 4Þ. (assume q ¼ 2), and have
m1 ¼ h0:4493;0:1253;0:2681i;
G3 and the worst choice is G2 . When the value of the
m2 ¼ h0:4364;0:1980; 0:2643i;
parameter q decreases from 0 then the best choice is G3
m3 ¼ h0:6055;0:1502;0:2900i; m4 ¼ h0:3289;0:2208;0:3088i: Step 4. Determine f mr ðr ¼ 1; 2; :::; 4Þ of SO mr ðr ¼ 1; 2; ::::; 4Þ, and have
parameter q in step 3, to rank the alternatives. The score values and ranking order are described in Tables 3 and 4. As from Table 3, we can notice that the ranking orders by utilizing SVNSSPWA operator are slightly different when the parameter q takes the distinct values. When the value of the parameter q tends to zero, the best choice is
the the
score overall
values SVNNs
while the worst one is G4 . We can also see from Table 3, when the value of the parameter decreases the score values become bigger and bigger. From Table 4, we can see that the ranking orders by utilizing SVNSSPWG operator do not change for different values of the parameter q, the best choice is G3 , while the worst one is G4 . We can also notice from Table 4, when the value of the parameter q decreases, the score values become smaller and smaller. Generally, different DMs can set different values of the parameter q according to their actual need.
f m1 ¼ 0:6853; SO f m2 ¼ 0:6580; SO f m3 ¼ 0:7218; SO f m4 ¼ 0:5998: SO So, m3 > m1 > m2 > m4 : Step 5. According to score values, ranking order of alternatives is G3 > G1 > G2 > G4 : So, the best provider is G3 , while the worst one is G4 : 7.1. Effect of the parameter q on decision result of this example In order to see the effect of the parameter q on the decision-making result, we set the distinct values for the
Example 6 ((Wei and Wei, 2018)). In order to reinforce the academic education, the school of management in a Chinese university wants to introduce excellent overseas teachers. This introduction caught much attention from the school, university president, dean of management school and human resource officer sets of a panel of decision makers who will take the whole responsibility for this introduction. The panel made strict assessment for five alternatives (candidates) Gr ðr ¼ 1; 2; :::; 5Þ from four characteristics (attributes) namely, morality H 1 ; research potential H 2 ; skill of teaching H 3 , education background H 4 . The president of the university has absolute priority in decision making, and the dean of the school of management is next. In addition, this introduction will be in a strict
Table 3 Score values and ranking order for different values of q.utilizing SVNSSPWA operator for example 5. q q!0 q ¼ 1 q ¼ 2 q ¼ 7 q ¼ 20 q ¼ 100 q ¼ 200
Score values f m1 ¼ 0:7350; SO f m2 ¼ 0:6853; SO f m3 ¼ 0:7607; SO f m4 ¼ 0:6950: SO f m1 ¼ 0:7526; SO f m2 ¼ 0:7480; SO f m4 ¼ 0:7211: f m3 ¼ 0:7806; SO SO f m2 ¼ 0:7858; f m1 ¼ 0:7682; SO SO f m3 ¼ 0:7984; SO f m4 ¼ 0:7430: SO f f SO m1 ¼ 0:8070; SO m2 ¼ 0:8384; f m3 ¼ 0:8404; SO f m4 ¼ 0:7967: SO f m1 ¼ 0:8244; SO f m2 ¼ 0:8571; SO f m4 ¼ 0:8207: f m3 ¼ 0:8578; SO SO f m1 ¼ 0:8316; SO f m2 ¼ 0:8648; SO f m4 ¼ 0:8309: f m3 ¼ 0:8649; SO SO f m2 ¼ 0:8657; f m1 ¼ 0:8325; SO SO f m3 ¼ 0:8658; SO f m4 ¼ 0:8321: SO
Ranking order G3 > G1 > G4 > G2 : G3 > G1 > G2 > G4 : G3 > G2 > G1 > G4 : G3 > G2 > G1 > G4 : G3 > G2 > G1 > G4 : G3 > G2 > G1 > G4 : G3 > G2 > G1 > G4 :
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
17
Table 4 Score values and ranking order for different values of q utilizing SVNSSPWG operator. q
Score values f m2 ¼ 0:6895; f m1 ¼ 0:7069; SO SO f m4 ¼ 0:6446: f m3 ¼ 0:7349; SO SO f m2 ¼ 0:6722; f m1 ¼ 0:6961; SO SO f m4 ¼ 0:6214: f m3 ¼ 0:7282; SO SO f m2 ¼ 0:6580; f m1 ¼ 0:6853; SO SO f m3 ¼ 0:7218; SO f m4 ¼ 0:5998: SO f m2 ¼ 0:6163; f m1 ¼ 0:6447; SO SO f m4 ¼ 0:5367: f m3 ¼ 0:6953; SO SO f m1 ¼ 0:6069; SO f m2 ¼ 0:5747; SO f m4 ¼ 0:4961: f m3 ¼ 0:6639; SO SO f m2 ¼ 0:5419; f m1 ¼ 0:5754; SO SO f m3 ¼ 0:6397; SO f m4 ¼ 0:4727: SO f m1 ¼ 0:5710; SO f m2 ¼ 0:5376; SO f m3 ¼ 0:6365; SO f m4 ¼ 0:4697: SO
q!0 q ¼ 1 q ¼ 2 q ¼ 7 q ¼ 20 q ¼ 100 q ¼ 200
Ranking order G3 > G1 > G2 > G4 : G3 > G1 > G2 > G4 : G3 > G1 > G2 > G4 : G3 > G1 > G2 > G4 : G3 > G1 > G2 > G4 : G3 > G1 > G2 > G4 : G3 > G1 > G2 > G4 :
accordance with the principle of combining ability with political integrity. The prioritization among the attributes
m1 ¼ h0:5151; 0:4787; 0:1176i;
is as follow, H 1 > H 2 > H 3 > H 4 : The decision makers
m3 ¼ h0:5626; 0:4490; 0:1764i; m4 ¼ h0:7246; 0:1434; 0:1681i; m5 ¼ h0:5366; 0:5754; 0:1462i:
assess possible 5 alternatives Gr ðr ¼ 1; 2; :::; 5Þ with respect to the 4 attributes H s ðs ¼ 1; 2; :::; 4Þ and construct the following SVN decision matrix given in Table 5. Step 1. Normalize the decision matrices by using Eq. (56). Since all the attributes are of benefit type so there is no need to normalize it. Step 2. Determine the values of T rs ðr ¼ 1; 2; :::; 5; s ¼ 1; 2; :::; 4Þ by using the formula (57), and get 2
1
6 61 6 6 T rs ¼ 6 61 6 61 4 1
0:5333
0:3556
0:8000
0:6133
0:6333
0:3167
0:8000
0:5600
0:5333
0:2667
0:1011
3
f mr Step 4. Determine the score values SO ðr ¼ 1; 2; :::; 5Þ of the overall SVNNs mr ðr ¼ 1; 2; ::::; 5Þ by using Definition (3), and have f m1 ¼ 0:6396; SO f m2 ¼ 0:7963; SO f m3 SO f m4 ¼ 0:8044; SO f m5 ¼ 0:6050: ¼ 0:6458; SO So, m4 > m2 > m3 > m1 > m5 :
7 0:3435 7 7 7 0:1404 7 7 7 0:3435 7 5 0:0948
Step 5. According to score values, ranking order of alternatives is G4 > G2 > G3 > G1 > G5 : So, the best candidate is G4 , while the worst one is G5 : Similarly, we solve the above Example 6 by the SVNSSPWG operator:
Step 3. Use the SVNSSPRWA given in Eq. (58) to get the overall SVNN mr ðr ¼ 1; 2; :::; 5Þ (assume q ¼ 2), and obtain Table 5 Decision matrix M of Example 6. G1 G2 G3 G4 G5
m2 ¼ h0:7209; 0:2000; 0:1320i;
H1
H2
H3
H4
h0:5;0:8;0:1i h0:7;0:2;0:1i h0:6;0:5;0:2i h0:8;0:1;0:3i h0:5;0:5;0:4i
h0:6;0:3;0:3i h0:7;0:2;0:2i h0:5;0:7;0:3i h0:6;0:3;0:2i h0:4;0:8;0:1i
h0:3;0:6;0:1i h0:7;0:2;0:4i h0:5;0:3;0:1i h0:6;0:2;0:1i h0:7;0:6;0:1i
h0:5;0:7;0:2i h0:8;0:2;0:1i h0:6;0:3;0:2i h0:6;0:2;0:2i h0:5;0:8;0:2i
Step 1 and step 2 are same. Step 3. Use the SVNSSPRWG operator given Equation (Step 3) to get the overall SVNN mr ðr ¼ 1; 2; :::; 5Þ (assume q ¼ 2), and have m1 ¼ h0:4498; 0:7400; 0:1745i; m2 ¼ h0:7104; 0:2000; 0:2269i; m3 ¼ h0:5477; 0:5821; 0:2233i; m4 ¼ h0:6554; 0:2051; 0:2265i; m5 ¼ h0:4790; 0:7022; 0:3042i:
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
18
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
f mr Step 4. Determine the score values SO ðr ¼ 1; 2; :::; 5Þ of the overall SVNNs mr ðr ¼ 1; 2; ::::; 5Þ by using Definition 3, and get f m1 ¼ 0:5118; SO f m2 ¼ 0:7612; SO f m3 SO f m5 ¼ 0:4909: f m4 ¼ 0:7412; SO ¼ 0:5808; SO So, m2 > m4 > m3 > m1 > m5 : Step 5. According to score values ranking order of alternatives is G2 > G4 > G3 > G1 > G5 : So, the best candidate is G2 , while the worst one is G5 : 7.2. Effect of the parameter q on decision result of this example 6 In order to see the effect of the parameter q on the decision-making result, we set the distinct values for the
parameter q in step 3, to rank the alternatives. The score values and ranking order are described in Tables 6 and 7, and Figs. 1 and 2. From Table 6, we can notice that the ranking orders by utilizing SVNSSPWA operator are slightly different when the parameter q takes the distinct values. When the value of the parameter q is -1 and tends to zero, the best choice is G2 . When the value of the parameter q decreases from -1 then the best choice is G4 . We can also see from Table 6, when the value of the parameter decreases the score values become bigger and bigger. From Table 7, we can see that the ranking orders by utilizing SVNSSPWG operator do not change for different values of the parameter q, the best choice is G2 . We can also notice from Table 7, when the value of the parameter q decreases, the score values become smaller and smaller. Generally, different DMs can set different values of the parameter q according to their actual need.
Table 6 Score values and ranking order for different values of q utilizing SVNSSPWA operator for example 6. q q!0 q ¼ 1 q ¼ 2 q ¼ 7 q ¼ 20 q ¼ 100 q ¼ 200
Score values f m1 ¼ 0:5935; SO f m2 ¼ 0:7828; SO f m3 ¼ 0:6195 SO f m4 ¼ 0:7716; SO f m5 ¼ 0:5652: ; SO f m1 ¼ 0:6179; SO f m2 ¼ 0:7908; SO f m3 ¼ 0:6325 SO f m4 ¼ 0:7887; SO f m5 ¼ 0:5877: ; SO f m2 ¼ 0:7963; SO f m3 ¼ 0:6458 f m1 ¼ 0:6396; SO SO f m4 ¼ 0:8044; SO f m5 ¼ 0:6050: ; SO f f m3 ¼ 0:6913 f SO m1 ¼ 0:6916; SO m2 ¼ 0:8110; SO f m5 ¼ 0:6521: f m4 ¼ 0:8433; SO ; SO f f f m3 ¼ 0:7181 SO m1 ¼ 0:7170; SO m2 ¼ 0:8248; SO f m5 ¼ 0:6829: f m4 ¼ 0:8588; SO ; SO f f m3 ¼ 0:7304 f SO m1 ¼ 0:7301; SO m2 ¼ 0:8317; SO f m4 ¼ 0:8651; SO f m5 ¼ 0:6967: ; SO f f f m3 ¼ 0:7318 SO m1 ¼ 0:7317; SO m2 ¼ 0:8325; SO f m5 ¼ 0:6983: f m4 ¼ 0:8659; SO ; SO
Ranking order G2 > G4 > G3 > G1 > G5 : G2 > G4 > G3 > G1 > G5 : G4 > G2 > G3 > G1 > G5 : G4 > G2 > G1 > G3 > G5 : G4 > G2 > G3 > G1 > G5 : G4 > G2 > G3 > G1 > G5 : G4 > G2 > G3 > G1 > G5 :
Table 7 Score values and ranking order for different values of q utilizing SVNSSPWG operator for example 6. q q!0 q ¼ 1 q ¼ 2 q ¼ 7 q ¼ 20 q ¼ 100 q ¼ 200
Score values f m1 ¼ 0:5463; SO f m2 ¼ 0:7688; SO f m3 ¼ 0:5985 SO f f ; SO m4 ¼ 0:7503; SO m5 ¼ 0:5241: f m1 ¼ 0:5271; SO f m2 ¼ 0:7651; SO f m3 ¼ 0:5894 SO f m5 ¼ 0:5067: f m4 ¼ 0:7457; SO ; SO f m1 ¼ 0:5118; SO f m2 ¼ 0:7612; SO f m3 ¼ 0:5808 SO f m4 ¼ 0:7412; SO f m5 ¼ 0:4909: ; SO f m2 ¼ 0:7414; SO f m3 ¼ 0:5514 f m1 ¼ 0:4651; SO SO f m4 ¼ 0:7224; SO f m5 ¼ 0:4470: ; SO f m2 ¼ 0:7170; SO f m3 ¼ 0:5255 f m1 ¼ 0:4268; SO SO f m5 ¼ 0:4188: f m4 ¼ 0:6959; SO ; SO f f m3 ¼ 0:5053 f SO m1 ¼ 0:4053; SO m2 ¼ 0:7033; SO f m5 ¼ 0:4037: f m4 ¼ 0:6728; SO ; SO f f m3 ¼ 0:5027 f SO m1 ¼ 0:4026; SO m2 ¼ 0:7017; SO f m4 ¼ 0:6697; SO f m5 ¼ 0:4019: ; SO
Ranking order G2 > G4 > G3 > G1 > G5 : G2 > G4 > G3 > G1 > G5 : G2 > G4 > G3 > G1 > G5 : G2 > G4 > G3 > G1 > G5 : G2 > G4 > G3 > G1 > G5 : G2 > G4 > G3 > G1 > G5 : G2 > G4 > G3 > G1 > G5 :
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
19
Fig. 1. Chart for different values of parameter q utilizing SVNSSPWA operator in Example 6.
Fig. 2. Chart for different values of parameter q utilizing SVNSSPWG operator in Example 6.
7.3. Comparison with the other methods In order to further show the effectiveness of the proposed methods based on the proposed AOs, in this article, we solve Example 6 by seven existing methods based on different aggregation operators under SVN environment. SVN weighted averaging (SVNWA) operator proposed by Ye (2014), SVNWA operator proposed by Peng et al. (2016) based on improved operational laws for SVNNs, SVN-MABAC (Peng and Jingguo, 2018), SVN-TOPSIS (Peng and Jingguo, 2018), SVN prioritized weighted averaging (PRWA) operator developed by Wu et al. (2016), SVN Dombi prioritized weighted averaging (PRWA) operator developed by Wei and Wei (2018) and SVNN normalized BM (SVNNBM) operator developed by Liu and Wang (2014). The score values and ranking order are given in Table 8. The weight vector of attributes for these methods is obtained using the PRA operator. From Table 8, we can see that when value of the parameter q tends to zero, the ranking orders obtained by the proposed method based on the proposed aggregation oper-
ators are same with the other five methods. This shows that our method is valid. Further, when we set the parameter value q ¼ 2, then, the ranking order is same as that obtained from the methods developed in (Peng and Jingguo, 2018) and (Wei and Wei, 2018) based on SVNTOPSIS and SVN Dombi prioritized averaging operators. Moreover, the comparison among our method with the existing seven methods can be pointed out as follows: (1) The methods developed by Ye (2014) and Peng et al. (2016) are based on SVNWA operators. These aggregation operators are based on algebraic operations, while the aggregation operators in this article are based on Schweizer-Sklar operations. Although the best alternative is same, however, when we change the value of the parameter q the best alternative changed. That’s why our method is more flexible and effective than Ye (2014) and Peng et al. (2016). (2) The method of Wu et al. (2016) is based on SVN prioritized weighted averaging operator. This is a special case of the developed aggregation operators, when the value of the parameter tends to Zero.
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
20
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
Table 8 Score values and ranking orders with different methods. Methods SVNWA operator (Ye, 2014)
SVNWA operator (Peng et al., 2016) SVNDPAW (Wei and Wei, 2018) q ¼ 2 SVN-TOPSIS (Peng and Jingguo, 2018) SVN-MABAC (Peng and Jingguo, 2018) SVNPWA operator (Wu et al., 2016) SVNNBM operator (p=q=1) (Liu and Wang, 2014) SVNSSPRWA operator (in this article) (q ! 0) SVNSSPRWA operator (in this article) (q ¼ 2)
Score values f m1 ¼ 0:5532; SO f m2 ¼ 0:7698; SO f m3 ¼ 0:6001 SO f m4 ¼ 0:7580; SO f m5 ¼ 0:5301: ; SO f f m3 ¼ 0:6195 f SO m1 ¼ 0:5934; SO m2 ¼ 0:7828; SO f m4 ¼ 0:7716; SO f m5 ¼ 0:5652: ; SO f f m3 ¼ 0:6529 f SO m1 ¼ 0:6540; SO m2 ¼ 0:7973; SO f m5 ¼ 0:6136: f m4 ¼ 0:8080; SO ; SO C m1 ¼ 3:3557;C m2 ¼ 0:8123;C m3 ¼ 2:7509; C m4 ¼ 0:4144;C m5 ¼ 3:8097: Q m1 ¼ 0:2637;Q m2 ¼ 0:6122;Q m3 ¼ 0:2176; Q m4 ¼ 0:5891;Q m5 ¼ 0:1903: f m2 ¼ 0:7828; SO f m3 ¼ 0:6195 f m1 ¼ 0:5934; SO SO f m4 ¼ 0:7716; SO f m5 ¼ 0:5652: ; SO f m2 ¼ 0:774729; SO f m3 ¼ 0:60837 f m1 ¼ 0:565597; SO SO f m5 ¼ 0:5391: f m4 ¼ 0:754169; SO ; SO f m1 ¼ 0:5935; SO f m2 ¼ 0:7828; SO f m3 ¼ 0:6195 SO f m4 ¼ 0:7716; SO f m5 ¼ 0:5652: ; SO f m2 ¼ 0:7963; SO f m3 ¼ 0:6458 f m1 ¼ 0:6396; SO SO f m4 ¼ 0:8044; SO f m5 ¼ 0:6050: ; SO
(3) The method developed by Liu and Wang (2014) is based on the SVNNNWBM operator, to solve the same example, we set p ¼ q ¼ 1, then the ranking order is same as the one obtained by the developed aggregation operators, when the value of the parameter tends to zero. This shows the effectiveness of the proposed approach based on the developed aggregation operator. But the advantage of the developed method in this article is that it can deal with the situation in which the attributes are with the prioritized relationship. (4) The methods developed by Peng and Jingguo (2018) is based on SVN-TOPSIS and SVN-MABAC method in which the weights of the attributes are obtained via gray system theory and cannot consider the prioritized relationship among the attributes. (5) The method developed by Wei and Wei (2018) is based on Dombi prioritized aggregation for SVNSs. The Dombi prioritized aggregation operator also consists of parameter, but the decision makers can considered the parameter greater than zero, while in the proposed aggregation operators in this article the decision makers can considered the parameter values less than zero. Certainly, the developed methods in this article are more general and flexible by the parameter, and are more advanced to be used in practical decision-making problems. 8. Conclusion Since SVNNs are a better tool to define uncertain information more accurately than the FS and IFS. In this article, we investigated some Schweizer-Sklar prioritized
Ranking order G2 > G4 > G3 > G1 > G5 : G2 > G4 > G3 > G1 > G5 : G4 > G2 > G1 > G3 > G5 : G4 > G2 > G3 > G1 > G5 : G2 > G4 > G1 > G3 > G5 : G2 > G4 > G3 > G1 > G5 : G2 > G4 > G3 > G1 > G5 : G2 > G4 > G3 > G1 > G5 : G4 > G2 > G3 > G1 > G5 :
aggregation operator based on SVNNs and proposed two methods to deal with single-valued neutrosophic information. First, we have developed some new aggregation operators and studied their desirable properties such as idempotency, monotonicity and boundedness. Moreover, we have analyzed some special cases of the developed operators, and have presented two MADM methods based on the proposed aggregation operators to deal with SVN information. Lastly, some practical examples are given to show the verification of the developed methods and to demonstrate the effectiveness and practicality of the developed approaches and a comparison analysis is also given to verify the developed methods. In future we shall combine SSTN and SSTCN with several generalizations of NSs such as interval neutrosophic sets, Double-valued neutrosophic sets, multi-valued neutrosophic sets and develop different aggregation operators such as Bonferroni mean operators, Heronian mean operators, Maclaurin symmetric mean operators for SVNNs. In addition, we will also apply the proposed method to solve some real decision problems (Abdel-Basset and Mai, 2018; Abdel-Basset, Mai, et al., 2018; Abdel-Basset, Gunasekaran, et al., 2018; Chang et al., 2018; Guan, Zhao, & Du, 2017). Acknowledgement This paper is supported by National Natural Science Foundation of China (Nos.71771140, 71471172), the Special Funds of Taishan Scholars Project of Shandong Province (No. ts201511045), Shandong Provincial Social Science Planning Project (Nos. 17BGLJ04, 16CGLJ31 and 16CKJJ27), and Key research and development program of Shandong Province (No. 2016GNC110016).
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
References Abdel-Basset, M., Gunasekaran, M., & Mai, M. (2018). Internet of Things (IoT) and its impact on supply chain: A framework for building smart, secure and efficient systems. Future Generation Computer Systems, 86, 614–628. Abdel-Basset, M., Gunasekaran, M., Mohamed, M., & Smarandache, F. (2018). A novel method for solving the fully neutrosophic linear programming problems. Neural Computing and Applications. https:// doi.org/10.1007/s00521-018-3404-6. Abdel-Basset, M., & Mai, M. (2018). The role of single valued neutrosophic sets and rough sets in smart city: Imperfect and incomplete information systems. Measurement, 124, 47–55. Abdel-Basset, M., Mai, M., & Chang, V. (2018). NMCDA: A framework for evaluating cloud computing services. Future Generation Computer Systems, 86, 12–29. Abdel-Basset, M., Mai, M., & Smarandache, F. (2018). An extension of neutrosophic AHP–SWOT analysis for strategic planning and decision-making. Symmetry, 10(4), 1–16. Abdel-Basset, M., Mai, M., Smarandache, F., & Chang, V. (2018). Neutrosophic association rule mining algorithm for big data analysis. Symmetry, 10(4), 1–15. Abdel-Basset, M., Manogaran, G., Gamal, A., & Smarandache, F. (2018). A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Design Automation for Embedded Systems, 22(3), 257–278. Abdel-Basset, M., Mohamed, M., Zhou, Y., & Hezam, I. (2017). Multicriteria group decision making based on neutrosophic analytic hierarchy process. Journal of Intelligent & Fuzzy Systems, 33(6), 4055–4066. Abdel-Basset, M., Zhou, Y., Mohamed, M., & Chang, V. (2018). A group decision making framework based on neutrosophic VIKOR approach for e-government website evaluation. Journal of Intelligent & Fuzzy Systems, 34(6), 4213–4224. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96. Chang, V., Abdel-Basset, M., & Ramachandran, M. (2018). Towards a reuse strategic decision pattern framework–from theories to practices. Information Systems Frontiers. https://doi.org/10.1007/s10796-0189853-8. Deschrijver, G. (2009). Generalized arithmetic operators and their relationship to t-norms in interval-valued fuzzy set theory. Fuzzy Sets and Systems, 160(21), 3080–3102. Deschrijver, G., & Kerre, E. E. (2002). A generalization of operators on intuitionistic fuzzy sets using triangular norms and conorms. Notes on IFS, 8(1), 19–27. Garg, H. (2016). Novel single-valued neutrosophic aggregated operators under frank norm operation and its application to decision-making process. International Journal for Uncertainty Quantification, 6(4). Garg, H. (2017). Some new biparametric distance measures on singlevalued neutrosophic sets with applications to pattern recognition and medical diagnosis. Information, 8(4), 162. Guan, H., Zhao, A., & Du, J. (2017). Enterprise green technology innovation behaviour. Beijing: Economic Science Press. Ji, P., Wang, J. Q., & Zhang, H. (2018). Frank prioritized Bonferroni mean operator with single-valued neutrosophic sets and its application in selecting third-party logistics providers. Neural Computing and Applications, 30(3), 799–823. Karaaslan, F., & Hayat, K. (2018). Some new operations on single-valued neutrosophic matrices and their applications in multi-criteria group decision making. Applied Intelligence, 1–21. Li, Y., Liu, P., & Chen, Y. (2016). Some single valued neutrosophic number heronian mean operators and their application in multiple attribute group decision making. Informatica, 27(1), 85–110. Liu, P. (2016). The aggregation operators based on archimedean tConorm and t-Norm for single-valued neutrosophic numbers and their
21
application to decision making. International Journal of Fuzzy Systems, 18(5), 849–863. Liu, P., Chu, Y., Li, Y., & Chen, Y. (2014). Some generalized neutrosophic number hamacher aggregation operators and their application to group decision making. International Journal of Fuzzy Systems, 16(2), 242–255. Liu, P., Mahmood, T., & Khan, Q. (2017). Multi-attribute decisionmaking based on prioritized aggregation operator under hesitant intuitionistic fuzzy linguistic environment. Symmetry, 9(11), 270. Liu, P., & Tang, G. (2016). Some power generalized aggregation operators based on the interval neutrosophic sets and their application to decision making. Journal of Intelligent & Fuzzy Systems, 30(5), 2517–2528. Liu, P., & Wang, Y. (2014). Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Computing and Applications, 25(7–8), 2001–2010. Liu, P., & Wang, Y. (2016). Interval neutrosophic prioritized OWA operator and its application to multiple attribute decision making. Journal of Systems Science and Complexity, 29(3), 681–697. Liu, P., & Wang, P. (2018). Some interval-valued intuitionistic fuzzy Schweizer-Sklar power aggregation operators and their application to supplier selection. International Journal of Systems Science. https://doi. org/10.1080/00207721.2018.1442510. Liu, P., & You, X. (2017). Interval neutrosophic Muirhead mean operators and their application in multiple attribute group decisionmaking. International Journal for Uncertainty Quantification, 7(4), 303–334. Lu, Z., & Ye, J. (2017). Single-valued neutrosophic hybrid arithmetic and geometric aggregation operators and their decision-making method. Information, 8(3), 84. Mandal, K., & Basu, K. (2018). Vector aggregation operator and score function to solve multi-criteria decision making problem in neutrosophic environment. International Journal of Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-018-0819-4. Peng, X., & Jingguo, D. (2018). Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Computing and Applications, 29(10), 939–954. Peng, J. J., Wang, J. Q., Wang, J., Zhang, H. Y., & Chen, X. H. (2016). Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. International Journal of Systems Science, 47(10), 2342–2358. Smarandache, F. (1999). A unifying field in logics: Neutrosophic logic. In Philosophy (pp. 1–141). American Research Press. Wang, H., Smarandache, F., Zhang, Y. Q., & Sunderraman, R. (2010). Single valued neutrosophic sets. Infinite Study. Wang, J. Q., Yang, Y., & Li, L. (2016). Multi-criteria decision-making method based on single-valued neutrosophic linguistic Maclaurin symmetric mean operators. Neural Computing and Applications. https://doi.org/10.1007/s00521-016-2747-0. Wei, G., & Wei, Y. (2018). Some single-valued neutrosophic dombi prioritized weighted aggregation operators in multiple attribute decision making. Journal of Intelligent & Fuzzy Systems. https://doi. org/10.3233/JIFS-171741. Wu, X. H., Wang, J. Q., Peng, J. J., & Chen, X. H. (2016). Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. International Journal of Fuzzy Systems, 18(6), 1104–1116. Wu, Q., Wu, P., Zhou, L., Chen, H., & Guan, X. (2018). Some new Hamacher aggregation operators under single-valued neutrosophic 2tuple linguistic environment and their applications to multi-attribute group decision making. Computers & Industrial Engineering, 116, 144–162. Xu, Z. (2007). Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems, 15(6), 1179–1187. Xu, Z., & Yager, R. R. (2006). Some geometric aggregation operators based on intuitionistic fuzzy sets. International Journal of General Systems, 35(4), 417–433.
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005
22
P. Liu et al. / Cognitive Systems Research xxx (xxxx) xxx
Yager, R. R. (2008). Prioritized aggregation operators. International Journal of Approximate Reasoning, 48(1), 263–274. Yang, L., & Li, B. (2016). A multi-criteria decision-making method using power aggregation operators for single-valued neutrosophic sets. Infinite Study. Ye, J. (2014). A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. Journal of Intelligent & Fuzzy Systems, 26(5), 2459–2466. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Zhang, L. (2018). Intuitionistic fuzzy averaging Schweizer-Sklar operators based on interval-valued intuitionistic fuzzy numbers and its applications. 2018 Chinese Control and Decision Conference (CCDC). IEEE. Zhang, X., He, H., & Xu, Y. (2006). A fuzzy logic system based on Schweizer-Sklar t-norm. Science in China Series F: Information Sciences, 49(2), 175–188. Zhang, M., Liu, P., & Shi, L. (2016). An extended multiple attribute group decision-making TODIM method based on the neutrosophic numbers. Journal of Intelligent & Fuzzy Systems, 30(3), 1773–1781.
Please cite this article as: P. Liu, Q. Khan and T. Mahmood, Multiple-attribute decision making based on single-valued neutrosophic Schweizer-Sklar prioritized aggregation operator, Cognitive Systems Research, https://doi.org/10.1016/j.cogsys.2018.10.005