N-soliton solutions and double Wronskian solution of the non-isospectral AKNS equation

N-soliton solutions and double Wronskian solution of the non-isospectral AKNS equation

Chaos, Solitons and Fractals 26 (2005) 905–912 www.elsevier.com/locate/chaos N-soliton solutions and double Wronskian solution of the non-isospectral...

156KB Sizes 0 Downloads 115 Views

Chaos, Solitons and Fractals 26 (2005) 905–912 www.elsevier.com/locate/chaos

N-soliton solutions and double Wronskian solution of the non-isospectral AKNS equation Ye-peng Sun *, Jin-bo Bi, Deng-yuan Chen Department of Mathematics, Shanghai University, Shanghai 200444, People’s Republic of China Accepted 12 January 2005

Communicated by Prof. M. Wadati

Abstract The bilinear equation of the non-isospectral AKNS equation is derived. The N-soliton solutions and the double Wronskian solution are obtained through the Hirota method and the Wronskian technique, respectively. A non-isospectral Schro¨dinger equation and its multi-soliton solutions are given by reducing.  2005 Elsevier Ltd. All rights reserved.

1. Introduction Soliton theory is widely used in mathematics, physics, chemistry, biology and so on. It is one of the most important topics to search for soliton solutions of non-linear evolution equations in the soliton theory. In order to search for the soliton solutions, various methods have been developed. Some of the most important methods are the inverse scattering transform [1,2], the Darboux transformation [3,4], the Hirota method [5], the Wronskian technique [6–8] and so on. The AKNS equation is one of the most important models exhibiting the soliton phenomenon [9]. In this paper, we try to search for N-soliton solutions and double Wronskian solution of the non-isospectral AKNS equation through the Hirota method and the Wronskian technique, respectively. The Hirota method and the Wronskian technique are two efficient methods to search for multi-soliton solutions of non-linear evolution equations [10–12]. Both of them are based on the bilinear equation. Hence, it is very important to transform the non-linear evolution equation into the bilinear equation through the dependant variable transformation. However, it is very difficult as well. In this paper, we consider the non-isospectral AKNS equation [13]:

*

qt ¼ xðqxx þ 2q2 rÞ  2qx þ 2qo1 qr;

ð1aÞ

rt ¼ xðrxx  2qr2 Þ þ 2rx  2ro1 qr:

ð1bÞ

Corresponding author. E-mail address: [email protected] (Y.-p. Sun).

0960-0779/$ - see front matter  2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2005.01.032

906

Y.-p. Sun et al. / Chaos, Solitons and Fractals 26 (2005) 905–912

Its Lax pair is



ux ¼ Mðv; gÞu;

Mðv; gÞ ¼

ut ¼ N ðv; gÞu; N ðv; gÞ ¼

g r

 q ; g

2g2 x þ xqr þ o1 qr 2xgr þ xrx þ r

ð2aÞ ! 2xgq  xqx  q ; 2g2 x  xqr  o1 qr

ð2bÞ

where q and r are potential functions, g is a spectral parameter, o ¼ oxo ; oo1 ¼ o1 o ¼ 1. This paper is organized as follows. In Section 2, we derive the bilinear equation of Eq. (1) and obtain its N-soliton solutions through the Hirota method. In Section 3, the double Wronskian solution is verified. In Section 4, a non-isospectral Schro¨dinger equation and its multi-soliton solutions are given by reducing.

2. The bilinear equation and N-soliton solutions In this section, we derive the bilinear equation of Eq. (1) and obtain its N-soliton solutions through the Hirota method. Through the dependent variable transformation q¼

g ; f



h : f

ð3Þ

Eq. (1) is transformed into the following bilinear equation: Dt g  f ¼ xD2x g  f  2gx f ;

ð4aÞ

Dt h  f ¼ xD2x h  f þ 2hx f ;

ð4bÞ

D2x f  f ¼ 2gh;

ð4cÞ

where D is the well-known Hirota bilinear operator defined by Dmt Dnx f  g ¼ ðot  ot0 Þm ðox  ox0 Þn f ðt; xÞgðt0 ; x0 Þjt0 ¼t;x0 ¼x : Expanding f, g and h as the series f ðt; xÞ ¼ 1 þ f ð2Þ e2 þ f ð4Þ e4 þ    þ f ð2jÞ e2j þ    ;

ð5aÞ

gðt; xÞ ¼ gð1Þ e þ gð3Þ e3 þ    þ gð2jþ1Þ e2jþ1 þ    ;

ð5bÞ

hðt; xÞ ¼ hð1Þ e þ hð3Þ e3 þ    þ hð2jþ1Þ e2jþ1 þ    ;

ð5cÞ

substituting Eq. (5) into (4) and comparing the coefficients of the same power of e yields ð1Þ ð1Þ gð1Þ t ¼ xg xx  2g x ;

ð6aÞ

ð3Þ ð1Þ ð2Þ gð3Þ  f ð2Þ  xD2x gð1Þ  f ð2Þ  2ðgð1Þ þ gð3Þ t þ xg xx ¼ Dt g x f x Þ; . . . ;

ð6bÞ

ð1Þ ð1Þ hð1Þ t ¼ xhxx þ 2hx ;

ð7aÞ

ð3Þ ð1Þ ð2Þ  f ð2Þ þ xD2x hð1Þ  f ð2Þ þ 2ðhð1Þ þ hð3Þ hð3Þ t  xhxx ¼ Dt h x f x Þ; . . . ;

ð7bÞ

fxxð2Þ ¼ gð1Þ hð1Þ ;

ð8aÞ

2fxxð4Þ ¼ D2x f ð2Þ  f ð2Þ  2ðgð1Þ hð3Þ þ gð3Þ hð1Þ Þ; . . . :

ð8bÞ

Taking gð1Þ ¼

n X j¼1

xj ðtÞenj ;

ð0Þ

nj ¼ k j ðtÞx þ nj ;

ð9aÞ

Y.-p. Sun et al. / Chaos, Solitons and Fractals 26 (2005) 905–912

hð1Þ ¼

n X

907

ð0Þ

rj ðtÞegj ;

gj ¼ lj ðtÞx þ gj ;

ð9bÞ

j¼1

then the N-soliton solution of Eq. (1) is obtained. For n = 1, Eq. (9) becomes hð1Þ ¼ r1 ðtÞeg1 :

gð1Þ ¼ x1 ðtÞen1 ;

Solving Eqs. (6)–(8), we have f ð2Þ ¼ 

x1 ðtÞr1 ðtÞ ðk 1 ðtÞ þ l1 ðtÞÞ2

en1 þg1 ;

ð10aÞ

f ðmÞ ¼ 0;

m ¼ 4; 6; . . . ;

ð10bÞ

gðnÞ ¼ 0;

hðnÞ ¼ 0; n ¼ 3; 5; . . . ;

ð10cÞ

k 1;t ðtÞ ¼ k 21 ðtÞ;

x1;t ðtÞ ¼ 2x1 ðtÞk 1 ðtÞ;

l1;t ðtÞ ¼ l21 ðtÞ;

r1;t ðtÞ ¼ 2r1 ðtÞl1 ðtÞ;

k 1 ðtÞ ¼

l1 ðtÞ ¼ 

1 ; t þ a1

1 ; t þ b1

x1 ðtÞ ¼

r1 ðtÞ ¼

1 ðt þ a1 Þ2 1

ðt þ b1 Þ2

;

ð10dÞ

ð10eÞ

;

here a1 and b1 are two arbitrary constants. From (3), we have q¼

x1 ðtÞen1 ; 1 þ x1 ðtÞr1 ðtÞen1 þg1 þh13

where eh13 ¼  ðk

1 2 1 ðtÞþl1 ðtÞÞ



r1 ðtÞeg1 ; 1 þ x1 ðtÞr1 ðtÞen1 þg1 þh13

ð11Þ

. Thus, the one-soliton solution is given. For n = 2, Eq. (9) becomes hð1Þ ¼ r1 ðtÞeg1 þ r2 ðtÞeg2 :

gð1Þ ¼ x1 ðtÞen1 þ x2 ðtÞen2 ; From Eqs. (6)–(8), we work out

f ð2Þ ¼ x1 ðtÞr1 ðtÞen1 þg1 þh13 þ x1 ðtÞr2 ðtÞen1 þg2 þh14 þ x2 ðtÞr1 ðtÞen2 þg1 þh23 þ x2 ðtÞr2 ðtÞen2 þg2 þh24 ;

ð12aÞ

f ð4Þ ¼ x1 ðtÞx2 ðtÞr1 ðtÞr2 ðtÞen1 þn2 þg1 þg2 þh12 þh13 þh14 þh23 þh24 þh34 ;

ð12bÞ

gð3Þ ¼ x1 ðtÞx2 ðtÞr1 ðtÞen1 þn2 þg1 þh12 þh13 þh23 þ x1 ðtÞx2 ðtÞr2 ðtÞen1 þn2 þg2 þh12 þh14 þh24 ;

ð12cÞ

hð3Þ ¼ x1 ðtÞr1 ðtÞr2 ðtÞen1 þg1 þg2 þh13 þh14 þh34 þ x2 ðtÞr1 ðtÞr2 ðtÞen2 þg1 þg2 þh23 þh24 þh34 ;

ð12dÞ

f ðmÞ ¼ 0;

m ¼ 6; 8; . . . ;

ð12eÞ

gðnÞ ¼ 0;

hðnÞ ¼ 0;

ð12fÞ

n ¼ 5; 7; . . . ;

where k j;t ðtÞ ¼ k 2j ðtÞ;

xj;t ðtÞ ¼ 2xj ðtÞk j ðtÞ;

rq;t ðtÞ ¼ 2rq ðtÞlq ðtÞ;

lq;t ðtÞ ¼ l2q ðtÞ;

eh12 ¼ ðk 1 ðtÞ  k 2 ðtÞÞ2 ;

k j ðtÞ ¼

lq ðtÞ ¼ 

1 ; t þ aj

1 ; t þ bq

eh34 ¼ ðl1 ðtÞ  l2 ðtÞÞ2 ;

xj ðtÞ ¼

rq ðtÞ ¼

ehj;qþ2 ¼ 

1 ðt þ aj Þ2 1

ðt þ bq Þ2

ðj ¼ 1; 2Þ;

;

ðq ¼ 1; 2Þ;

;

1 ðk j ðtÞ þ lq ðtÞÞ2

;

ðj; q ¼ 1; 2Þ:

Setting e = 1, then the series Eq. (5) becomes f2 ¼ 1 þ f ð2Þ þ f ð4Þ ;

g2 ¼ gð1Þ þ gð3Þ ;

h2 ¼ hð1Þ þ hð3Þ :

Substituting Eq. (13) into (3), we obtain the two-soliton solution of Eq. (1).

ð13Þ

908

Y.-p. Sun et al. / Chaos, Solitons and Fractals 26 (2005) 905–912

In general, we have fn ¼

X

A1 ðlÞ exp

" 2n X

l¼0;1

gn ¼

X

" A2 ðlÞ exp

l¼0;1

hn ¼

"

X

A3 ðlÞ exp

l¼0;1

lj ðnj þ ln xj ðtÞÞ þ

2n X

j¼1

16j
2n X

2n X

lj ðnj þ ln xj ðtÞÞ þ

j¼1

16j
2n X

2n X

lj ðnj þ ln xj ðtÞÞ þ

# ð14aÞ

lj lq hjq ; #

ð14bÞ

lj lq hjq ; #

ð14cÞ

lj lq hjq ;

16j
j¼1

where k j;t ðtÞ ¼ k 2j ðtÞ;

xj;t ðtÞ ¼ 2xj ðtÞk j ðtÞ;

rq;t ðtÞ ¼ 2rq ðtÞlq ðtÞ;

lq;t ðtÞ ¼ l2q ðtÞ;

ehjq ¼ ðk j ðtÞ  k q ðtÞÞ2 ; ehj;nþq ¼ 

1 ðk j ðtÞ þ lq ðtÞÞ2

k j ðtÞ ¼

lq ðtÞ ¼ 

1 ; t þ aj

1 ; t þ bq

ehðnþjÞðnþqÞ ¼ ðlj ðtÞ  lq ðtÞÞ2 ; ;

nnþj ¼ gj ; xnþj ðtÞ ¼ rj ðtÞ;

xj ðtÞ ¼

rq ðtÞ ¼

1 ðt þ aj Þ2 1

ðt þ bq Þ2

ðj ¼ 1; . . . ; nÞ;

;

;

ðq ¼ 1; . . . ; nÞ;

ðj < q ¼ 2; 3; . . . ; nÞ;

ð15aÞ

ð15bÞ ð15cÞ

ðj; q ¼ 1; 2; . . . ; nÞ;

ð15dÞ

ðj ¼ 1; 2; . . . ; nÞ;

ð15eÞ

A1(l), A2(l) and A3(l) take over all possible combinations of lj = 0, 1 (j = 1, 2, . . ., 2n) and satisfy the following condition n X

lj ¼

j¼1

n X

lnþj ;

j¼1

n X

lj ¼ 1 þ

j¼1

n X

lnþj ;

j¼1



n X j¼1

lj ¼

n X

lnþj ;

ð16Þ

j¼1

respectively.

3. The double Wronskian solution Let us first specify some properties of the Wronskian determinant. As is well-known, the double Wronskian determinant [8] is W N ;M ðu; wÞ ¼ detðu; ox u; . . . ; oNx 1 u; w; ox w; . . . ; oM1 wÞ; x where u = (u1(x), u2(x), . . ., uN+M(x))T and w = (w1(x), w2(x), . . ., wN+M(x))T. In the most known examples, the two determinantal identities are often used [6]. The one is jD; a; bjjD; c; dj  jD; a; cjjD; b; dj þ jD; a; djjD; b; cj ¼ 0; where D is an N · (N  2) matrix and a, b, c and d represent N column vectors. The other is ! N N X X ja1 ; . . . ; aj1 ; baj ; ajþ1 ; . . . ; aN j ¼ bj ja1 ; . . . ; aN j; j¼1

ð17Þ

ð18Þ

j¼1

where aj (1 6 j 6 N) are N column vectors and baj denotes (b1a1j, b2a2j, . . ., bNaNj)T. Employing the Wronskian technique, we have Theorem 1. The non-isospectral AKNS equation (4) has the double Wronskian solution g ¼ 2W N þ2;M ðu; wÞ;

f ¼ W N þ1;Mþ1 ðu; wÞ;

h ¼ 2W N ;Mþ2 ðu; wÞ;

ð19Þ

Y.-p. Sun et al. / Chaos, Solitons and Fractals 26 (2005) 905–912

909

where uj ¼ xj ðtÞ expð 12 kj ðtÞxÞ; wj ¼ rj ðtÞ expð12 kj ðtÞxÞ; kj;t ðtÞ ¼ k2j ; ð1 6 j 6 N þ M þ 2Þ, uj and wj satisfy the conditions uj;x ¼ 12kj uj ;

wj;x ¼ 12kj wj ;

uj;t ¼ 2xuj;xx þ 2Nuj;x ;

ð20Þ

wj;t ¼ 2xwj;xx  2Mwj;x ;

ð21Þ

respectively. Proof. In the following, we use the abbreviated notation of Freeman and Nimmo for the Wronskian and its derivatives [6,7], then Eq. (19) becomes g ¼ 2j Nd þ 1; Md  1j;

b; M b j; f ¼ jN

h ¼ 2j Nd  1; Md þ 1j:

ð22Þ

Note that the lth-order derivatives of uj,t and wj,t with respect to x are ðlÞ

ðlþ2Þ

uj;t ¼ 2xuj ðlÞ

ðlþ2Þ

wj;t ¼ 2xwj

ðlþ1Þ

þ ð2N  2lÞuj

ðlþ1Þ

 ð2M  2lÞwj

ð23Þ

;

ð24Þ

:

We have b j þ jN b ; Md  1; N þ 1; M  1; M þ 1j; fx ¼ j Nd b j þ j Nd b j þ 2j Nd  2; N ; N þ 1; M  1; N þ 2; M  1; N þ 1; Md  1; M þ 1j fxx ¼ j Nd b ; Md b ; Md þ jN  2; M; M þ 1j þ j N  1; M þ 2j; b ; N þ 2; Md gx ¼ 2j N  1j þ 2j Nd þ 1; Md  2; Mj; b ; N þ 3; Md b ; N þ 2; Md  1; N þ 1; N þ 2; Md  1j þ 2j N  1j þ 4j N  2; Mj gxx ¼ 2j Nd þ 2j Nd þ 1; Md  3; M  1; Mj þ 2j Nd þ 1; Md  2; M þ 1j; b j þ j Nd b jÞ þ 2xðj N b ; Md b ; Md ft ¼ 2xðj Nd  2; N þ 1; N ; M  1; N þ 2; M  2; M þ 1; Mj þ j N  1; M þ 2jÞ; b ; N þ 3; Md b ; N þ 2; Md  1; N þ 2; N þ 1; Md  1j þ j N  1jÞ  4j N  1j gt ¼ 4xðj Nd þ 4xðj Nd þ 1; Md  3; M; M  1j þ j Nd þ 1; Md  2; M þ 1jÞ  4j Nd þ 1; Md  2; Mj: A direct calculation gives b; M b jj Nd  1; N þ 1; N þ 2; Md  1j gt f  ft g þ xðgxx f  2gx fx þ gf xx Þ þ 2gx f ¼ 6xj N b; M b jðj N b ; N þ 3; Md b ; N þ 2; Md  2xj N  1j  2j N  2; Mj þ j Nd þ 1; b; M b jj Nd Md  3; M  1; MjÞ þ 6xj N þ 1; Md  2; M þ 1j  2xj Nd  2; N ; b jj Nd N þ 1; M þ 1; Md  1j þ 2xj Nd þ 1; Md  1jð3j Nd  1; N þ 2; b j þ 2j Nd b; M  1; N þ 1; Md  1; M þ 1jÞ þ 2xj Nd þ 1; Md  1jð3j N b ; Md b ; N þ 2; Md  2; M; M þ 1j  j N  1; M þ 2jÞ  4xj N b j þ jN b ; Md Md  1jðj Nd  1; N þ 1; M  1; M þ 1jÞ  4xj Nd þ 1; b j þ jN b ; Md Md  2; Mjðj Nd  1; N þ 1; M  1; M þ 1jÞ:

ð25Þ

From (18) and (20), we get X  1 b ; N þ 2; Md b ; N þ 3; Md b ; N þ 2; Md  1j ¼ j Nd  1; N þ 1; N þ 2; Md  1j  j N  1j þ j N  2; Mj; kj j N 2 ð26aÞ

910

Y.-p. Sun et al. / Chaos, Solitons and Fractals 26 (2005) 905–912

X

 1 b ; N þ 2; Md þ 1; Md  2; Mj ¼ j N  2; Mj þ j Nd þ 1; Md  3; M  1; Mj þ j Nd þ 1; Md  2; M þ 1j; kj j Nd 2

X

 1 b j ¼ j Nd b j  j Nd b j þ j Nd kj j Nd  1; N þ 1; M  2; N ; N þ 1; M  1; N þ 2; M  1; N þ 1; Md  1; M þ 1j; 2

ð26bÞ

ð26cÞ X

 1 b ; Md b ; Md b ; Md kj j N  1; M þ 1j ¼ j Nd  1; N þ 1; Md  1; M þ 1j þ j N  2; M; M þ 1j þ j N  1; M þ 2j: 2 ð26dÞ

Noting X

 X  1 1 b ; N þ 2; Md b; M b j ¼ jN b ; N þ 2; Md b; M b j; kj j N kj j N  1jj N  1j 2 2

ð27aÞ

X

 X  1 1 b; M b j ¼ j Nd b; M b j; kj j Nd kj j N þ 1; Md  2; Mjj N þ 1; Md  2; Mj 2 2

ð27bÞ

X

 X  1 1 d d d d b b kj j N  1; N þ 1; M jj N þ 1; M  1j ¼ j N  1; N þ 1; M j kj j Nd þ 1; Md  1j; 2 2

ð27cÞ

X

 X  1 1 b ; Md b ; Md  1; M þ 1jj Nd þ 1; Md  1j ¼ j N  1; M þ 1j þ 1; Md  1j: kj j N kj j Nd 2 2

ð27dÞ

Using (26) and (27), Eq. (25) becomes b;M bj gt f  ft g þ xðgxx f  2gx fx þ gf xx Þ þ 2gx f ¼ 8xj Nd  1; N þ 1; N þ 2; Md  1jj N b ; Md þ 8xj N  2; M; M þ 1jj Nd þ 1; Md  1j b ; N þ 2; Md b j þ 8xj Nd b;M bj  8xj N  1jj Nd  1; N þ 1; M þ 1; Md  2; M þ 1jj N b jj Nd þ 8xj Nd  1; N þ 2; M þ 1; Md  1j b ; Md  8xj Nd þ 1; Md  2; Mjj N  1; M þ 1j:

ð28Þ

It is readily checked that Eq. (28) is equal to zero. So, the proof of Eq. (4a) is completed. Eq. (4b) can be proved similarly. Making use of (17) gives b; M b jj Nd b j þ jN b; M b jðj Nd b j  2j Nd  2; N; N þ 1; M  1; N þ 2; M  1; N þ 1; Md  1; M þ 1jÞ fxx f  fx2 þ gh ¼ j N b; M b jðj N b ; Md b ; Md bj þ jN  2; M; M þ 1j þ j N  1; M þ 2jÞ  ðj Nd  1; N þ 1; M b ; Md  jN  1; M þ 1jÞ2 :

ð29Þ

From (18), we obtain X  1 b; M b j ¼ jN b ; Md b j;  1; M þ 1j  j Nd  1; N þ 1; M kj j N 2 X

1 kj 2

2

b; M b j ¼ j Nd b j þ j Nd b j  2j Nd jN  2; N ; N þ 1; M  1; N þ 2; M  1; N þ 1; Md  1; M þ 1j b ; Md b ; Md þ jN  2; M; M þ 1j þ j N  1; M þ 2j:

Thus, we have b j þ j Nd b j  2j Nd b ; Md ðj Nd  2; N ; N þ 1; M  1; N þ 2; M  1; N þ 1; Md  1; M þ 1j þ j N  2; M; M þ 1j b ; Md b; M b j ¼ ðj N b ; Md b jÞ2 : þ jN  1; M þ 2jÞj N  1; M þ 1j  j Nd  1; N þ 1; M Then, Eq. (4c) is obtained from Eqs. (29) and (30).

h

ð30Þ

Y.-p. Sun et al. / Chaos, Solitons and Fractals 26 (2005) 905–912

911

4. Reduction Setting r = q* and replacing t by it in Eq. (1), where * denotes the complex conjugate, i ¼ following non-isospectral Schro¨dinger equation:

pffiffiffiffiffiffiffi 1, we obtain the

iqt þ xðqxx þ 2qjqj2 Þ þ 2qx þ 2qo1 jqj2 ¼ 0:

ð31Þ

Through the dependent variable transformation g q¼ : f Eq. (31) is rewritten as ðiDt þ xD2x Þg  f ¼ 2gx f ;

ð32Þ

ð33aÞ

D2x f  f ¼ 2gg :

ð33bÞ

Thus, we obtain " # 2n 2n X X X fn ¼ A1 ðlÞ exp lj ðnj þ ln xj ðtÞÞ þ lj ls hjs ; l¼0;1

X

gn ¼

A2 ðlÞ exp

" 2n X

l¼0;1

ð34aÞ

16j
j¼1

lj ðnj þ ln xj ðtÞÞ þ

2n X

# ð34bÞ

lj ls hjs ;

16j
j¼1

where nnþj ¼ nj ; xnþj ðtÞ ¼ xj ðtÞ; xj;t ðtÞ ¼ 2ixj ðtÞk j ðtÞ; ehj;nþs ¼

1 ðk j ðtÞ þ k s ðtÞÞ2

ehjs ¼ ðk j ðtÞ  k s ðtÞÞ2 ;

ðj ¼ 1; 2; . . . ; nÞ;

k j;t ðtÞ ¼ ik 2j ðtÞ;

ð35aÞ

ðj ¼ 1; . . . ; nÞ;

ð35bÞ

ðj; s ¼ 1; 2; . . . ; nÞ;

;

ð35cÞ

ehðnþjÞðnþsÞ ¼ ðk j ðtÞ  k s ðtÞÞ2 ;

ðj < s ¼ 2; 3; . . . ; nÞ;

ð35dÞ

A1(l) and A2(l) take over all possible combinations of lj = 0,1 (j = 1, 2, . . ., 2n) and satisfy the condition n n n n X X X X lj ¼ lnþj ; lj ¼ 1 þ lnþj ; j¼1

j¼1

j¼1

j¼1

respectively. In the following, we deduce the double Wronskian solution of Eq. (33). Let AN·M and BN·M be two N · M matrices, 0

...

uN

ou2 ... ouN

... ... ...

oM1 u2 C C C; ... A oM 1 uN

w1 Bw B ¼B 2 @... wN

ow1 ow2 ... owN

... ... ... ...

1 oM1 w1 oM1 w2 C C C; ... A oM 1 wN

0

where

1

ou1

Bu B AN M ¼ B 2 @...

BN M

oM1 u1

u1

  1 uj ¼ xj ðtÞ exp  kj ðtÞx ; 2

 wj ¼ rj ðtÞ exp

 1 kj ðtÞx ; 2

kj;t ðtÞ ¼ k2j ;

ð36Þ

uj and wj satisfy the following conditions: uj;x ¼ 12kj uj ;

wj;x ¼ 12kj wj ;

ð37Þ

912

Y.-p. Sun et al. / Chaos, Solitons and Fractals 26 (2005) 905–912

uj;t ¼ 2ixuj;xx  2iN uj;x ; respectively. We define   AðN þ1ÞðN þ1Þ  e f ¼   AðN þ1ÞðN þ1Þ

wj;t ¼ 2ixwj;xx þ 2iNwj;x ;

 BðN þ1ÞðN þ1Þ  b; N b j;   jN BðN þ1ÞðN þ1Þ 

  AðN þ2ÞðN þ2Þ  e g ¼ 2  BN ðN þ2Þ

 BðN þ2ÞN  þ 1; Nd  1j:   2j Nd AN N 

In terms of the determinantal properties, we have       B  AðN þ2ÞðN þ2Þ BðN þ2ÞN  AN N   ¼ 2ð1Þ3N   N ðN þ2Þ e g  ¼ 2   AðN þ2ÞðN þ2Þ BðN þ2ÞN  BN ðN þ2Þ AN N       AN N  AN N BN ðN þ2Þ  BN ðN þ2Þ   6N   1; Nd þ 1j: ¼ 2ð1Þ    ¼ 2   2j Nd  BðN þ2ÞN AðN þ2ÞðN þ2Þ   BðN þ2ÞN AðN þ2ÞðN þ2Þ 

ð38Þ

ð39Þ

ð40Þ

ð41Þ

Letting M = N in Eq. (22) yields g ¼ 2j Nd þ 1; Nd  1j;

b; N b j; f ¼ jN

h ¼ 2j Nd  1; Nd þ 1j:

So, we have the following result. Theorem 2. The non-isospectral Schro¨dinger equation (33) has the double Wronskian solution e g ¼ 2j Nd þ 1; Nd  1j;

b; N b j; fe ¼ j N

e  1; Nd þ 1j; g  ¼ 2j Nd

ð42Þ

where uj and wj satisfy the conditions (36)–(38).

5. Conclusions In this paper, we presented the N-soliton solutions and the double Wronskian solution of the non-isospectral AKNS equation (1) through the Hirota method and the Wronskian technique, respectively. Further, the non-isospectral Schro¨dinger equation (31) and its multi-soliton solutions are obtained by reducing.

Acknowledgments The authors are very grateful to Professor M. Wadati for his ardent guidance and help. The authors express their sincere thanks to Dr. Zhang DJ, Zhang Y and Ning TK as well. This project is supported by the National Science Foundation of China (10371070) and the Special Funds for Major Specialities of Shanghai Education Committee.

References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

Garder CS, Green JM, Kruskal MD, Miura RM. Phys Rev Lett 1967;19:1095. Wadati M, Konno K, Ichikawa YH. J Phys Soc Jpn 1979;46:1965. Wadati M, Sanuki H, Konno K. Prog Theor Phys 1975;53:419. Matveev VB, Salle MA. Darboux Transformation and Soliton. Berlin: Springer; 1991. Hirota R. Phys Rev Lett 1971;27:1192. Freeman NC, Nimmo JJC. Phys Lett A 1983;95:1. Nimmo JJC, Freeman NC. Phys Lett A 1983;95:4. Nimmo JJC. Phys Lett A 1983;99:279. Ablowitz MJ, Kaup DJ, Newell AC, Segur H. Stud Appl Math 1974;53:249. Chen DY, Zhang DJ, Deng SF. J Phys Soc Jpn 2002;71:658. Zhang DJ. J Phys Soc Jpn 2002;71:2649. Deng SF, Chen DY. J Phys Soc Jpn 2001;70:3174. Chen DY, Zhang DJ. J Math Phys 1996;37:5524.