Available online at www.sciencedirect.com
Chaos, Solitons and Fractals 37 (2008) 1538–1547 www.elsevier.com/locate/chaos
Neural networks with discrete and distributed time-varying delays: A general stability analysis Qiankun Song a, Zidong Wang b
b,*
a Department of Mathematics, Chongqing Jiaotong University, Chongqing 400074, China Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
Accepted 23 October 2006
Communicated by Prof. M.S. El Naschie
Abstract In this paper, the global asymptotic and exponential stability are investigated for a class of neural networks with both the discrete and distributed time-varying delays. By using appropriate Lyapunov–Krasovskii functional and linear matrix inequality (LMI) technique, several delay-dependent sufficient conditions are obtained to guarantee the global asymptotic and exponential stability of the addressed neural networks. These conditions are expressed in terms of LMIs, and are dependent on both the discrete and distributed time delays. Therefore, the stability of the neural networks can be checked readily by resorting to the Matlab LMI toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the differentiability of the discrete and distributed time-varying delays, which means that our results generalize and further improve those in the earlier publications. A simulation example is given to show the effectiveness and less conservatism of the obtained conditions. 2006 Elsevier Ltd. All rights reserved.
1. Introduction Time delays inevitably exist in neural networks due to various reasons. For example, time delays can be caused by the finite switching speed of amplifier circuits in neural networks [1] or deliberately introduced to achieve tasks of dealing with motion-related problems such as moving image processing [2]. The existence of time delay may lead to some complex dynamic behaviors such as oscillation, divergence, chaos, instability or other poor performance of the neural networks [3]. Therefore, stability analysis for neural networks with delays has been an attractive subject of research in the past few years. Various sufficient conditions, either delay-dependent or delay-independent, have been proposed to guarantee the global asymptotic or exponential stability for neural networks with constant and time-varying delays, for example, see [2–16] and references therein. On the other hand, as pointed out in [17–20], neural networks usually have a spatial extent due to the presence of a multitude of parallel pathways with a variety of axon sizes and lengths, and hence there is a distribution of propagation *
Corresponding author. Tel./fax: +44 1895 251686. E-mail addresses:
[email protected] (Q. Song),
[email protected] (Z. Wang).
0960-0779/$ - see front matter 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2006.10.044
Q. Song, Z. Wang / Chaos, Solitons and Fractals 37 (2008) 1538–1547
1539
delays over a period of time. In [17], a neural circuit has been designed with distributed delays, which solves a general problem of recognized patterns in time-dependent signal. In [18–20], the global stability, periodic solutions and boundedness have been investigated for neural networks with distributed delays. It is noticed that, although the signal propagation is sometimes instantaneous and can be modelled with discrete delays, it may also be distributed during a certain time period so that the distributed delays should be incorporated in the model. In other words, it is often the case that the neural network model possesses both discrete and distributed delays [21]. In view of the importance of both discrete and distributed delays in modelling neural networks, the dynamics analysis problem for neural networks with discrete and distributed delays has received some initial research attention [21– 26], and most results have been concerned with constant time delays. In [21], a two-neuron network model with multiple discrete and distributed delays has been studied, and local stability of the steady-state solutions and the oscillation around the steady-state solutions have been investigated. However, the results in [21] cannot be directly applied for general neural networks. In [22,23], the authors have considered the neural networks with discrete and distributed constant delays, and obtained several sufficient conditions to ensure the existence and global asymptotic stability of equilibrium point for the neural networks. In [24], the global exponential stability problem has been investigated for the neural networks with discrete and distributed constant delays, and two sufficient conditions have been given. In [25], the robust stability has been discussed for neural networks with discrete and distributed constant delays, and several sufficient conditions have been derived to ensure the existence of equilibrium point and also guarantee the global robust stability for the neural networks. Very recently, in [26], the authors have considered cellular neural networks with discrete and distributed time-varying delays. Unfortunately, the main results obtained in [26] have been based on the following assumptions: (1) the timevarying delays are continuously differentiable, (2) the derivatives of time delays are bounded, and (3) the activation functions are bounded and monotonically nondecreasing. It should be pointed out that, time delays can occur in an irregular fashion, and sometimes the time-varying delays are not differentiable. In this case, the methods developed in [21–26] may be difficult to be applied, and it is therefore necessary to further investigate the stability problem of neural networks with discrete and distributed time-varying delays under milder assumptions. Motivated by the above discussions, the objective of this paper is to study the asymptotic and exponential stability of neural networks with discrete and distributed time-varying delays by employing a new Lyapunov–Krasovskii functional. The obtained sufficient conditions do not require the differentiability of time-varying delays and are expressed in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. A simulation example is given to show the effectiveness and less conservatism of the proposed criteria. 1.1. Notations The notations are quite standard. Throughout this paper, Rn and Rn·m denote, respectively, the n-dimensional Euclidean space and the set of all n · m real matrices. The superscript ‘‘T’’ denotes matrix transposition. The notation X P Y (respectively, X > Y) means that X and Y are symmetric matrices, and that X Y is positive semidefinite (respectively, positive definite). k Æ q k is the Euclidean norm in Rn. If A is a matrix, denote by kAk its operator norm, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi i.e., kAk ¼ supfkAxk : kxk ¼ 1g ¼ kmax ðAT AÞ, where kmax(A) (respectively, kmin(A)) means the largest (respectively, smallest) eigenvalue of A. Sometimes, the arguments of a function or a matrix will be omitted in the analysis when no confusion can arise.
2. Model description and preliminaries In this paper, we consider the following model dxðtÞ ¼ DxðtÞ þ Af ðxðtÞÞ þ Bf ðxðt sðtÞÞÞ þ C dt
Z
t
f ðxðsÞÞ ds þ J
ð1Þ
trðtÞ
for t P 0, where x(t) = (x1(t), x2(t), . . . , xn(t))T 2 Rn is the state vector of the network at time t, n corresponds to the number of neurons, D = diag(d1, d2, . . . ,dn) > 0 is a positive diagonal matrix, A = (aij)n·n, B = (bij)n·n and C = (cij)n·n represent the connection weight matrix, the discretely delayed connection weight matrix and the distributively delayed connection weight matrix, respectively. f(x(t)) = (f1(x1(t)), f2(x2(t)), . . . ,fn(xn(t)))T denotes the neuron activation at time t. J = (J1, J2, . . . ,Jn)T 2 Rn is a constant external input vector. s(t) > 0 and r(t) > 0 denote the discrete time-varying delay and the distributed time-varying delay, respectively, and are assumed to satisfy 0 6 s(t) 6 s, 0 6 r(t) 6 r, where s and r are constants.
1540
Q. Song, Z. Wang / Chaos, Solitons and Fractals 37 (2008) 1538–1547
The initial condition associated with model (1) is xi ðsÞ ¼ ui ðsÞ;
i ¼ 1; 2; . . . n;
ð2Þ
where ui(s) is bounded and continuously differential on [q, 0], q = max{s, r}. Throughout this paper, we make the following assumptions: (H1) The activation functions are bounded. (H2) There exists a positive diagonal matrix F = diag(F1, F2, . . . , Fn) such that jfj ðv1 Þ fj ðv2 Þj 6 F j jv1 v2 j for all v1, v2 2 R, j = 1, 2, . . . , n. Since activation functions are bounded, by employing the well-known Brouwer’s fixed point theorem, one can easily prove that there exists an equilibrium point for model (1). In the sequel we shall analyze the global asymptotic and exponential stability of the equilibrium point, which in turn implies the uniqueness of the equilibrium point. To simplify the stability analysis of model (1), we let x* be the equilibrium point of model (1), and shift the intended equilibrium point x* to the origin by letting y = x x*, and then model (1) can be transformed into: Z t dyðtÞ ¼ DyðtÞ þ AgðyðtÞÞ þ Bgðyðt sðtÞÞÞ þ C gðyðsÞÞ ds ð3Þ dt trðtÞ for t P 0, where gj ðy j ðtÞÞ ¼ fj ðy j ðtÞ þ xj Þ fj ðxj Þ. It follows from assumption (H2) that jgj ðy j ðtÞÞj 6 F j jy j ðtÞj;
j ¼ 1; 2; . . . ; n:
Thus, for any positive diagonal matrix K, we can have gT ðyðtÞÞKgðyðtÞÞ 6 y T ðtÞF KFyðtÞ:
ð4Þ
Definition 1. [22,23] The equilibrium point 0 of model (3) is said to be globally asymptotically stable if it is locally stable in the sense of Lyapunov and globally attractive, where global attractivity means that every trajectory tends to the equilibrium point as t ! 1. Definition 2. The equilibrium point 0 of model (3) is said to be globally exponentially stable, if there exist two positive constants e > 0 and M > 0 such that every solution y(t) of model (3) satisfies _ kyðtÞk 6 Meet sup kyðsÞk þ sup kyðsÞk q6s60
q6s60
for all t P 0. To obtain our main results, the following lemmas are necessary. Lemma 1. [25] Let a,b 2 Rn, P be a positive definite matrix, then 2aT b 6 aT P 1a + bT Pb. Lemma 2. [22] For any constant matrix W 2 Rm·m, WT = W > 0, scalar h > 0, vector function x:[0,h] ! Rm such that the integrations concerned are well defined, then Z h T Z h Z h xðsÞ ds W xðsÞ ds 6 h xT ðsÞW xðsÞ ds: 0
0
0
Lemma 3. [22] Given constant matrices P, Q and R, where PT = P, QT = Q, then the linear matrix inequality (LMI)
P RT
R Q
<0
is equivalent to the following conditions Q > 0;
P þ RQ1 RT < 0:
Q. Song, Z. Wang / Chaos, Solitons and Fractals 37 (2008) 1538–1547
1541
3. Main results Let us first establish the delay-dependent criterion for the asymptotic stability of neural networks with discrete and distributed time-varying delays by using an LMI approach. Theorem 1. Under assumptions (H1) and (H2), the equilibrium point 0 of model (3) is globally asymptotically stable if there exist a symmetric positive definite matrix P, six positive diagonal matrices Yi > 0 (i = 1, 2, 3, 4, 5, 6), and matrices Q1, Q2, Xij (i, j = 1, 2, 3) such that the following two LMIs hold: 0 1 X 11 X 12 X 13 B T C X ¼ @ X 12 X 22 X 23 A > 0; ð5Þ 0
X T13
X T23
X1
B T B X2 B B XT B 3 B T B A Q1 B B X ¼ B BT Q1 B B CTQ B 1 B B 0 B B @ 0
X 33 X2
X3
QT1 A
X4
0
0
0
0
X5
0
0
0
0
Y 1
0
0
0
0
0
0
0
Y 2
0
0
0
0
0
0
QT2 A
QT2 B
0
0
0
0
0
0
0
Y 3
0
0
AT Q2
0
0
0
0
Y 4
0
B Q2
0
0
0
0
0
Y 5
C T Q2
0
0
0
0
0
0
T
0
QT1 B QT1 C
0
1
C QT2 C C C 0 C C C 0 C C C 0 C < 0; C 0 C C C 0 C C C 0 A
ð6Þ
Y 6
QT1 D
DQ1 þ F ðY 1 þ r2 Y 3 þ Y 4 þ r2 Y 6 ÞF þ sX 11 þ X 13 þ X T13 , X2 ¼ P QT1 DQ2 , X3 ¼ sX 12 X 13 þ where X1 ¼ T T X 23 , X4 ¼ Q2 Q2 þ sX 33 , and X5 ¼ F ðY 2 þ Y 5 ÞF þ sX 22 X 23 X T23 . Proof. Consider the following Lyapunov–Krasovskii functional candidate for model (3) as V ðtÞ ¼ V 1 ðtÞ þ V 2 ðtÞ þ V 3 ðtÞ þ V 4 ðtÞ; where V 1 ðtÞ ¼ y T ðtÞPyðtÞ; Z t Z t V 2 ðtÞ ¼ y_ T ðsÞX 33 y_ ðsÞ ds dn; V 3 ðtÞ ¼ r V 4 ðtÞ ¼
Z
t
t 0
Z
t
gT ðyðsÞÞðY 3 þ Y 6 ÞgðyðsÞÞ ds dn;
ð9Þ
n
tr
Z
ð8Þ
n
ts
Z
ð7Þ
n
uT Xu ds dn;
ð10Þ
nsðnÞ
where u ¼ ðy T ðnÞ y T ðn sðnÞÞ y_ T ðsÞÞT . Evaluating the time derivative of V1(t) along the trajectories of model (3), we obtain dV 1 ðtÞ _ ¼ 2y T ðtÞP yðtÞ dt
¼ 2y T ðtÞP yðtÞ _ þ 2ðy T ðtÞQT1 þ y_ T ðtÞQT2 Þ _y ðtÞ DyðtÞ þ AgðyðtÞÞ: Z t þBgðyðt sðtÞÞÞ þ C gðyðsÞÞ ds trðtÞ
_ 2y T ðtÞQT1 DyðtÞ þ 2y T ðtÞQT1 AgðyðtÞÞ _ 2y T ðtÞQT1 yðtÞ ¼ 2y T ðtÞP yðtÞ Z t gðyðsÞÞ ds þ 2y T ðtÞQT1 Bgðyðt sðtÞÞÞ þ 2y T ðtÞQT1 C trðtÞ
þ 2y_ ðtÞQT2 AgðyðtÞÞ Z t þ 2y_ T ðtÞQT2 Bgðyðt sðtÞÞÞ þ 2y_ T ðtÞQT2 C gðyðsÞÞ ds
2y_
T
_ ðtÞQT2 yðtÞ
2y_
T
ðtÞQT2 DyðtÞ
T
trðtÞ
1542
Q. Song, Z. Wang / Chaos, Solitons and Fractals 37 (2008) 1538–1547 T _ 2y T ðtÞQT1 DyðtÞ þ y T ðtÞQT1 AY 1 6 2y T ðtÞðP QT1 DQ2 ÞyðtÞ 1 A Q1 yðtÞ T þ gT ðyðtÞÞY 1 gðyðtÞÞ þ y T ðtÞQT1 BY 1 2 B Q1 yðtÞ T þ gT ðyðt sðtÞÞÞY 2 gðyðt sðtÞÞÞ þ y T ðtÞQT1 CY 1 3 C Q1 yðtÞ ! ! T Z t Z t T _ þ y_ T ðtÞQT2 AY 1 þ gðyðsÞÞ ds Y 3 gðyðsÞÞ ds 2y_ T ðtÞQT2 yðtÞ 4 A Q2 y_ ðtÞ trðtÞ
trðtÞ
T T þ gT ðyðtÞÞY 4 gðyðtÞÞ þ y_ T ðtÞQT2 BY 1 5 B Q2 y_ ðtÞ þ g ðyðt sðtÞÞÞY 5 gðyðt sðtÞÞÞ !T ! Z t Z t T _ þ y_ T ðtÞQT2 CY 1 yðtÞ þ C Q gðyðsÞÞ ds Y gðyðsÞÞ ds 6 2 6 trðtÞ
6y
trðtÞ
T T 1 T ðtÞð2QT1 D þ QT1 AY 1 1 A Q1 þ FY 1 F þ Q1 BY 2 B Q1 T T T QT1 CY 1 y ðtÞ 3 C Q1 þ FY 4 F ÞyðtÞ þ y ðtÞð2P 2Q1 2DQ2 Þ_ T T 1 T T T T 1 T _ y_ ðtÞð2Q2 þ Q2 AY 4 A Q2 þ Q2 BY 5 B Q2 þ QT2 CY 1 6 C Q2 ÞyðtÞ Z t gT ðyðsÞÞðY 3 þ Y 6 ÞgðyðsÞÞ ds: y T ðt sðtÞÞðFY 2 F þ FY 5 F Þyðt sðtÞÞ þ r trðtÞ
T
þ þ þ
In deriving the above inequalities, we have made use of Lemma 1, inequality (4) and Lemma 2. Calculating the time derivatives of V2(t), we get Z t dV 2 ðtÞ _ ds: ¼ sy_ T ðtÞX 33 y_ ðtÞ y_ T ðsÞX 33 yðsÞ dt ts Similarly, computing the time derivatives of V3(t) and V4(t), we have Z t Z t dV 3 ðtÞ ¼r gT ðyðtÞÞðY 3 þ Y 6 ÞgðyðtÞÞ dn r gT ðyðsÞÞðY 3 þ Y 6 ÞgðyðsÞÞ ds dt tr tr Z t 6 r2 y T ðtÞF ðY 3 þ Y 6 ÞFyðtÞ r gT ðyðsÞÞðY 3 þ Y 6 ÞgðyðsÞÞ ds: dV 4 ðtÞ ¼ dt
Z
ð11Þ
ð12Þ
ð13Þ
trðtÞ t
ðy T ðtÞ y T ðt sðtÞÞ tsðtÞ
¼ sðtÞ
yðtÞ yðt sðtÞÞ
T
y_ T ðsÞÞX ðy T ðtÞ
X 11 X T12
X 12 X 22
2y T ðt sðtÞÞX 23 yðt sðtÞÞ þ
Z
y T ðt sðtÞÞ
yðtÞ yðt sðtÞÞ
y_ T ðsÞÞT ds
þ 2y T ðtÞX 13 yðtÞ
t
y_ T ðsÞX 33 y_ ðsÞ ds
tsðtÞ
6 y T ðtÞðsX 11 þ 2X 13 ÞyðtÞ þ 2y T ðtÞðsX 12 X 13 þ X T23 Þyðt sðtÞÞ Z t þ y T ðt sðtÞÞðsX 22 2X 23 Þyðt sðtÞÞ þ y_ T ðsÞX 33 y_ ðsÞ ds:
ð14Þ
ts
It follows from inequalities (11)–(14) that dV ðtÞ T T 1 T 6 y T ðtÞð2QT1 D þ QT1 AY 1 1 A Q1 þ FY 1 F þ Q1 BY 2 B Q1 dt T 2 þ QT1 CY 1 3 C Q1 þ FY 4 F þ r F ðY 3 þ Y 6 ÞF þ sX 11 þ 2X 13 ÞyðtÞ _ þ 2y T ðtÞ P QT1 DQ2 yðtÞ T T T 1 T 1 T y_ T ðtÞ 2QT2 þ QT2 AY 1 A Q 2 þ Q2 BY 5 B Q2 þ Q2 CY 6 C Q2 þ sX 33 y_ ðtÞ 4 þ 2y T ðtÞðsX 12 X 13 þ X T23 Þyðt sðtÞÞ þ y T ðt sðtÞÞðFY 2 F þ FY 5 F þ sX 22 2X 23 Þyðt sðtÞÞ ¼ ðy T ðtÞ y_ T ðtÞ y T ðt sðtÞÞÞX ðy T ðtÞ y_ T ðtÞ y T ðt sðtÞÞÞT ; where
0
X1 B X ¼ @ P Q1 QT2 D sX T12 X T13 þ X 23
P QT1 DQ2 X2
sX 12 X 13 þ X T23 0
0
F ðY 2 þ Y 5 ÞF þ sX 22 X 23 X T23
1 C A;
Q. Song, Z. Wang / Chaos, Solitons and Fractals 37 (2008) 1538–1547
1543
with T T T 1 T 1 T X1 ¼ QT1 D DQ1 þ QT1 AY 1 1 A Q1 þ FY 1 F þ Q1 BY 2 B Q1 þ Q1 CY 3 C Q1
þ FY 4 F þ r2 F ðY 3 þ Y 6 ÞF þ sX 11 þ X 13 þ X T13 ; T T T 1 T 1 T X2 ¼ Q2 QT2 þ QT2 AY 1 4 A Q2 þ Q2 BY 5 B Q2 þ Q2 CY 6 C Q2 þ sX 33 :
It is easy to verify the equivalence of X < 0 and X* < 0 by using Lemma 3. Thus, from condition (6), we get dV ðtÞ <0 dt for all y(t) 5 0, which implies that the origin of model (3) is globally asymptotically stable. The proof is then completed. h Next, we are now in a position to discuss the exponential stability of model (3) as follows. Theorem 2. Under the conditions of Theorem 1, model (3) is globally exponentially stable and the exponential convergence rate index e can be estimated from the inequality ð15Þ
P < 0; where
0
P QT1 ðD eIÞQ2 P1 B P ¼ @ P Q1 QT2 ðD eIÞ P2 sX T12 X T13 þ X 23 0
1 sX 12 X 13 þ X T23 C 0 A; T 2se e F ðY 2 þ Y 5 ÞF þ sX 22 X 23 X 23
with T T T 1 T 1 T P1 ¼ ðD eIÞQ1 QT1 ðD eIÞ þ QT1 AY 1 1 A Q1 þ FY 1 F þ Q1 BY 2 B Q1 þ Q1 CY 3 C Q1
þ FY 4 F þ r2 e2re F ðY 3 þ Y 6 ÞF þ sX 11 þ X 13 þ X T13 ; T T T 1 T 1 T P2 ¼ Q2 QT2 þ QT2 AY 1 4 A Q2 þ Q2 BY 5 B Q2 þ Q2 CY 6 C Q2 þ sX 33 :
Proof. From X < 0, we have X* < 0. Thus, we can choose a sufficiently small constant e > 0 such that P < 0. Letting z(t) = eety(t), then model (3) can be transformed into the following model: Z t dzðtÞ ¼ ðD eIÞzðtÞ þ eet Agðeet yðtÞÞ þ eet BgðeeðtsðtÞÞ zðt sðtÞÞÞ þ eet C gðees zðsÞÞ ds dt trðtÞ
ð16Þ
for t P 0. Consider the following Lyapunov–Krasovskii functional candidate for model (16) as V ðtÞ ¼ V 1 ðtÞ þ V 2 ðtÞ þ V 3 ðtÞ þ V 4 ðtÞ; where V 1 ðtÞ ¼ zT ðtÞPzðtÞ; Z t Z t z_ T ðsÞX 33 z_ ðsÞ ds dn; V 2 ðtÞ ¼ n
ts
V 3 ðtÞ ¼ re2re V 4 ðtÞ ¼
Z
t 0
Z
Z
t
tr n
Z
ð17Þ ð18Þ
t
zT ðsÞF ðY 3 þ Y 6 ÞFzðsÞ ds dn;
ð19Þ
n
uT Xu ds dn;
ð20Þ
nsðnÞ
with u ¼ ðzT ðnÞ zT ðn sðnÞÞ z_ T ðsÞÞT . Along the trajectories of model (16), we can obtain the time derivative of V1(t) as follows: dV 1 ðtÞ ¼ 2zT ðtÞP z_ ðtÞ dt ¼ 2zT ðtÞP z_ ðtÞ þ 2ðzT ðtÞQT1 þ z_ T ðtÞQT2 Þ z_ ðtÞ ðD eIÞzðtÞ þ eet Agðeet zðtÞÞ Z t gðees zðsÞÞ ds þ eet BgðeeðtsðtÞÞ zðt sðtÞÞÞ þ eet C trðtÞ
1544
Q. Song, Z. Wang / Chaos, Solitons and Fractals 37 (2008) 1538–1547
¼ 2zT ðtÞP z_ ðtÞ 2zT ðtÞQT1 z_ ðtÞ 2zT ðtÞQT1 ðD eIÞzðtÞ þ 2eet zT ðtÞQT1 Agðeet zðtÞÞ Z t þ 2eet zT ðtÞQT1 Bgðeet zðt sðtÞÞÞ þ 2eet zT ðtÞQT1 C gðees zðsÞÞ ds trðtÞ
eIÞzðtÞ þ 2e z_ ðtÞQT2 Agðeet zðtÞÞ Z t þ 2eet z_ T ðtÞQT2 BgðeeðtsðtÞÞ zðt sðtÞÞÞ þ 2eet z_ T ðtÞQT2 C gðees zðsÞÞ ds
2_z
T
ðtÞQT2 z_ ðtÞ
2_z
T
ðtÞQT2 ðD
et T
trðtÞ T 6 2zT ðtÞðP QT1 ðD eIÞQ2 Þ_zðtÞ 2zT ðtÞQT1 ðD eIÞzðtÞ þ zT ðtÞQT1 AY 1 1 A Q1 zðtÞ T þ e2et gT ðeet zðtÞÞY 1 gðeet zðtÞÞ þ zT ðtÞQT1 BY 1 2 B Q1 zðtÞ T þ e2et gT ðeeðtsðtÞÞ zðt sðtÞÞÞY 2 gðeeðtsðtÞÞ zðt sðtÞÞÞ þ zT ðtÞQT1 CY 1 3 C Q1 zðtÞ ! ! T Z t Z t þ e2et gðees zðsÞÞ ds Y 3 gðees zðsÞÞ ds 2_zT ðtÞQT2 z_ ðtÞ trðtÞ
þ
trðtÞ
T z_ ðtÞQT2 AY 1 _ ðtÞ 4 A Q2 z 2et T eðtsðtÞÞ T
et
T þ e g ðe zðtÞÞY 4 gðeet zðtÞÞ þ z_ T ðtÞQT2 BY 1 _ ðtÞ 5 B Q2 z 2et T
zðt sðtÞÞÞY 5 gðeeðtsðtÞÞ zðt sðtÞÞÞ !T Z t Z T 1 T T 2et es þ z_ ðtÞQ2 CY 6 C Q2 z_ ðtÞ þ e gðe zðsÞÞ ds Y 6
þ e g ðe
trðtÞ
!
t es
gðe
zðsÞÞ ds
trðtÞ
T T 1 T 6 zT ðtÞð2QT1 ðD eIÞ þ QT1 AY 1 1 A Q1 þ FY 1 F þ Q1 BY 2 B Q1 T T T þ QT1 CY 1 zðtÞ 3 C Q1 þ FY 4 F ÞzðtÞ þ z ðtÞð2P 2Q1 2ðD eIÞQ2 Þ_ T T T 1 T 1 T þ z_ T ðtÞð2QT2 þ QT2 AY 1 zðtÞ 4 A Q2 þ Q2 BY 5 B Q2 þ Q2 CY 6 C Q2 Þ_ Z t þ zT ðt sðtÞÞe2es F ðY 2 þ Y 5 ÞFzðt sðtÞÞ þ re2re zT ðsÞðY 3 þ Y 6 ÞzðsÞ ds:
ð21Þ
trðtÞ
In deriving the above inequalities, we have made use of Lemma 1, inequality (4) and Lemma 2. Calculating the time derivatives of V2(t), V3(t) and V4(t), respectively, we have Z t dV 2 ðtÞ T ¼ s_z ðtÞX 33 z_ ðtÞ z_ T ðsÞX 33 z_ ðsÞ ds: dt ts Z t Z t dV 3 ðtÞ ¼ re2re zT ðtÞF ðY 3 þ Y 6 ÞFzðtÞ dn zT ðsÞF ðY 3 þ Y 6 ÞFzðsÞ ds dt tr tr Z t zT ðsÞF ðY 3 þ Y 6 ÞFzðsÞ ds: 6 r2 e2re zT ðtÞF ðY 3 þ Y 6 ÞFzðtÞ re2re
ð22Þ
ð23Þ
trðtÞ
dV 4 ðtÞ 6 zT ðtÞðsX 11 þ 2X 13 ÞzðtÞ þ 2zT ðtÞðsX 12 X 13 þ X 23 Þzðt sðtÞÞ dt Z t þ zT ðt sðtÞÞðsX 22 2X 23 Þzðt sðtÞÞ þ z_ T ðsÞX 33 z_ ðsÞ ds: ts
It follows from inequalities (21)–(24) that dV ðtÞ T T 1 T 6 zT ðtÞð2QT1 ðD eIÞ þ QT1 AY 1 1 A Q1 þ FY 1 F þ Q1 BY 2 B Q1 dt T 2 2re þ QT1 CY 1 F ðY 3 þ Y 6 ÞF þ sX 11 þ 2X 13 ÞzðtÞ 3 C Q1 þ FY 4 F þ r e T T þ 2z ðtÞ P Q1 ðD eIÞQ2 z_ ðtÞ T T T 1 T 1 T _ ðtÞ þ z_ T ðtÞ 2QT2 þ QT2 AY 1 4 A Q2 þ Q2 BY 5 B Q2 þ Q2 CY 6 C Q2 þ sX 33 z þ 2zT ðtÞðsX 12 X 13 þ X 23 Þzðt sðtÞÞ þ zT ðt sðtÞÞ e2se F ðY 2 þ Y 5 ÞF þ sX 22 2X 23 zðt sðtÞÞ ¼ ðzT ðtÞ
z_ T ðtÞ
zT ðt sðtÞÞÞPðzT ðtÞ z_ T ðtÞ zT ðt sðtÞÞÞT ;
which indicates from P < 0 that dV ðtÞ 60 dt
ð24Þ
Q. Song, Z. Wang / Chaos, Solitons and Fractals 37 (2008) 1538–1547
1545
for all t P 0. Hence, V ðtÞ 6 V ð0Þ for all t P 0. From the definitions of Vi(t) (i = 1, 2, 3, 4), it is not difficult to obtain the following inequalities: V ðtÞ P kmin ðP ÞkzðtÞk2 for all t P 0, and V 1 ð0Þ 6 kmax ðP Þkzð0Þk2 6 kmax ðP Þ sup kzðsÞk2 ; q6s60 2
V 2 ð0Þ 6 s kmax ðX 33 Þ sup k_zðsÞk 6 s2 kmax ðX 33 Þ sup k_zðsÞk2 ; 2
s6s60
q6s60
V 3 ð0Þ 6 r3 e2re kmax ðFY 3 F þ FY 6 F Þ sup kzðsÞk2 6 r3 e2re kmax ðFY 3 F þ FY 6 F Þ sup kzðsÞk2 ; r6s60
q6s60
V 4 ð0Þ ¼ 0: Thus, V ð0Þ 6 ðkmax ðP Þ þ r3 e2re kmax ðFY 3 F þ FY 6 F ÞÞ sup kzðsÞk2 þ s2 kmax ðX 33 Þ sup k_zðsÞk2 q6s60
q6s60
6 að sup kzðsÞk þ sup k_zðsÞkÞ2 ; q6s60
ð25Þ
q6s60
where a = max{kmax(P) + r3e2rekmax(FY3F + FY6F), s2kmax(X33)}. Take M ¼ ! kzðtÞk 6 M
1=2
a kmin ðP Þ
, then
sup kzðsÞk þ sup k_zðsÞk q6s60
q6s60
for all t P 0. It follows from z(t) = eety(t) that et
kyðtÞk 6 Me
!
sup kyðsÞk þ sup k_y ðsÞk q6s60
q6s60
for all t P 0. Therefore, model (3) is globally exponentially stable and the exponential convergence rate index e can be estimated from (15). The proof is completed. h Remark 1. In [26], the sufficient conditions on the global asymptotic stability of model (1) have been obtained under the condition that s_ ðtÞ 6 h where h is constant. However, the presented results in this paper do not need the conditions that the time-varying delay is differentiable and the derivative is bounded. 4. An Example Consider a two-neuron neural network (3), where 0:9 0 1 1:7 1 0:6 ; B¼ ; D¼ ; A¼ 0:5 0:8 0 0:8 1:6 1 f1 ðxÞ ¼ f2 ðxÞ ¼ 0:1ðjx þ 1j jx 1jÞ;
sðtÞ ¼ 0:15j sin tj;
C¼
0:4 0:1
0:3 ; 0:2
rðtÞ ¼ 0:1j cos tj:
Obviously, Assumptions (H1) and (H2) are satisfied with F = diag{0.2,0.2}, s = 0.15 and r = 0.1. By the Matlab LMI Control Toolbox, we find a solution to the LMIs in (5) and (6) as follows: 0 1 22:6263 0:4507 20:7321 1:2420 5:9191 0:1442 B 0:4507 22:8777 1:2422 19:8874 0:1024 5:7533 C B C B C B 20:7321 1:2422 25:4289 0:2049 10:2679 0:6423 C C; X ¼B B 1:2420 19:8874 0:2049 25:7924 0:5971 10:6097 C B C B C @ 5:9191 0:1024 10:2679 0:5971 18:7004 5:1656 A 0:1442
5:7533
0:6423
10:6097
5:1656
20:9842
1546
Q. Song, Z. Wang / Chaos, Solitons and Fractals 37 (2008) 1538–1547 1.5 y1 y2
1
y
0.5 0 0.5 1 1.5
0
5
10
15
20
25
30
t Fig. 1. State responses of y1(t) and y2(t).
P¼
17:0549
2:6290
;
11:9708
1:0211
;
5:6441
1:8247
Q1 ¼ Q2 ¼ : 2:6290 20:2105 0:9970 14:9894 1:9911 6:5294 108:3976 0 70:9928 0 39:9180 0 ; Y2 ¼ ; Y3 ¼ ; Y1 ¼ 0 114:3013 0 70:8069 0 40:0133 29:1322 0 22:4117 0 41:1904 0 ; Y5 ¼ ; Y6 ¼ : Y4 ¼ 0 34:2721 0 24:5697 0 41:0158 Therefore, by Theorems 1 and 2, we know that model (3) is globally asymptotically and exponentially stable. Moreover, from (15), we can also get that the exponential convergence index e = 0.0937. Fig. 1 shows a numerical simulation of the network with an initial state (/1(s), /2(s))T = (sin(6s), cos(6s))T, s 2 [0.15,0]. The simulation results verifies the convergence of the network state. It should be pointed out that the condition in [26] cannot be applied to this example since it requires the differentiability of the time-varying delays.
5. Conclusions In this paper, the global asymptotic and exponential stability have been investigated for a class of neural networks with both discrete and distributed time-varying delays. Two delay-dependent sufficient conditions in LMIs form have been obtained for global asymptotic and exponential stability of such systems by using appropriate Lyapunov–Krasovskii functional and linear matrix inequality (LMI) technique. The proposed results generalize and improve the earlier publications, and does not require the monotonicity of the activation functions and the differentiability of the discrete and distributed time-varying delays. An example with simulation has been provided to demonstrate the effectiveness and less conservatism of the obtained results.
Acknowledgement This work was supported by the National Natural Science Foundation of China under Grant 50608072.
References [1] Marcus CM, Westervelt RM. Stability of analog neural networks with delay. Phys Rev A 1989;39(1):347–59. [2] Roska T, Wu CW, Balsi M, Chua LO. Stability and dynamics of delay-type general cellular neural networks. IEEE Trans Circuits Syst I 1992;39:487–90. [3] Cao J, Wang J. Global asymptotic stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans Circuits Syst I 2003;50(1):34–44.
Q. Song, Z. Wang / Chaos, Solitons and Fractals 37 (2008) 1538–1547
1547
[4] Cao J, Li XL. Stability in delayed Cohen-Grossberg neural networks: LMI optimization approach. Physica D 2005;212(1–2):54–65. [5] Cao J, Wang J. Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE Trans Circuits Syst I 2005;52(2):417–26. [6] Liao X, Li C. An LMI approach to asymptotical stability of multi-delayed neural networks. Physica D 2005;200(1–2):139–55. [7] Cao J, Ho DWC. A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach. Chaos, Solitons & Fractals 2005;24(5):1317–29. [8] Ozcan N, Arik S. Global robust stability analysis of neural networks with multiple time delays. IEEE Trans Circuits Syst I 2006;53(1):166–76. [9] Park JH. A novel criterion for global asymptotic stability of BAM neural networks with time delays. Chaos, Solitons & Fractals 2006;29(2):446–53. [10] Xu S, Lam J, Ho DWC. A new LMI condition for delay-dependent asymptotic stability of delayed Hopfield neural networks. IEEE Trans Circuits Syst II 2006;53(3):230–4. [11] Arik S. An analysis of exponential stability of delayed neural networks with time varying delays. Neural Networks 2004;17(7):1027–31. [12] Cao J, Wang J. Global exponential stability and periodicity of recurrent neural networks with time delays. IEEE Trans Circuits Syst I 2005;52(5):920–31. [13] Li C, Liao X. New algebraic conditions for global exponential stability of delayed recurrent neural networks. Neurocomputing 2005;64:319–33. [14] Yang H, Chu T, Zhang C. Exponential stability of neural networks with variable delays via LMI approach. Chaos, Solitons & Fractals 2006;30:133–9. [15] Singh V. Simplified LMI condition for global asymptotic stability of delayed neural networks. Chaos, Solitons & Fractals 2006;29(2):470–3. [16] Liang J, Cao J. A based-on LMI stability criterion for delayed recurrent neural networks. Chaos, Solitons & Fractals 2006;28(1):154–60. [17] De Vries B, Principe JC. The gamma model – a new neural model for temporal processing. Neural Networks 1992;5(4):565–76. [18] Zhao H. Global asymptotic stability of Hopfield neural network involving distributed delays. Neural Networks 2004;17(1):47–53. [19] Li Y. Existence and stability of periodic solution for BAM neural networks with distributed delays. Appl Math Comput 2004;159(3):847–62. [20] Jiang H, Teng Z. Boundedness and global stability for nonautonomous recurrent neural networks with distributed delays. Chaos, Solitons & Fractals 2006;30(1):83–93. [21] Ruan S, Filfil R. Dynamics of a two-neuron system with discrete and distributed delays. Physica D 2004;191(3–4):323–42. [22] Wang Z, Liu Y, Liu X. On global asymptotic stability of neural networks with discrete and distributed delays. Phys Lett A 2005;345(4–6):299–308. [23] Park J. On global stability criterion for neural networks with discrete and distributed delays. Chaos, Solitons & Fractals 2006;30(4):897–902. [24] Liu Y, Wang Z, Liu X. Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Networks 2006;19(5):667–75. [25] Wang Z, Shu H, Liu Y, Ho DWC, Liu X. Robust stability analysis of generalized neural networks with discrete and distributed time delays. Chaos, Solitons & Fractals 2006;30(4):886–96. [26] Lien C, Chung L. Global asymptotic stability for cellular neural networks with discrete and distributed time-varying delays. Chaos, Solitons & Fractals 2007;34(4):1213–9.