New Approaches To Interfacing Liquid Chromatography And Mass Spectrometry

New Approaches To Interfacing Liquid Chromatography And Mass Spectrometry

217 NEW APPROACHES T O INTERFACING L I Q U I D CHROMATOGRAPHY AND MASS SPECTROMETRY S. Tsuge Department o f S y n t h e t i c C h e m i s t r y , F a...

817KB Sizes 0 Downloads 44 Views

217

NEW APPROACHES T O INTERFACING L I Q U I D CHROMATOGRAPHY AND MASS SPECTROMETRY S. Tsuge Department o f S y n t h e t i c C h e m i s t r y , F a c u l t y of E n g i n e e r i n g , Nagoya U n i v e r s i t y , Nagoya 464, J a p a n

INTRODUCTION There h a s been a n i n c r e a s i n g i n t e r e s t i n t h e d i r e c t c o u p l i n g of l i q u i d chromatography (LC) w i t h mass s p e c t r o m e t r y (MS), a f t e r t h e g r e a t s u c c e s s o f t h e d i r e c t c o u p l i n g o f g a s c h r o m a t o g r a p h y (CC) w i t h MS. The p o t e n t i a l a b i l i t y of LC/MS i s v e r y l a r g e b e c a u s e of t h e v e r s a t i l e s e p a r a t i o n c a p a b i l i t y o f r e c e n t h i g h - p e r f o r m a n c e LC (HPLC) even f o r v a r i o u s t h e r m a l l y l a b i l e , p o l a r o r g a n i c compounds. Among r e c e n t d e v e l o p m e n t s i n t h i s f i e l d a r e (1) t h e d i r e c t i n t r o d u c t i o n method [l-111 ( 2 ) t h e p r e l i m i n a r y e v a p o r a t i o n method [12211 and ( 3 ) t h e m e c h a n i c a l t r a n s f e r method [22-30J.

The f o r m e r two

methods a r e s i m i l a r t o e a c h o t h e r s i n c e t h e y b o t h u s e t h e s o l v e n t vapour as t h e r e a g e n t gas f o r chemical i o n i z a t i o n ( C I ) (Table 1). Although some of t h e s e a r e now c o m m e r c i a l l y a v a i l a b l e , t h e y a r e m o s t l y s t i l l u t i l i z e d by t h e d e v e l o p e r s of t h e s y s t e m .

T h u s , new

t e c h n i q u e s e n a b l i n g enough s t a b l e a p p l i c a t i o n s t o a v a r i e t y of n o n - v o l a t i l e p o l a r compounds have b e e n e x p e c t e d t o a p p e a r f r o m v a r i o u s f i e l d s where HPLC i s r e c o g n i z e d a s a n i n d i s p e n s a b l e a n a l y t i c a l t o o l . A vacuum n e b u l i z i n g i n t e r f a c e f o r micro-LC-MS

coupling has

been d e v e l o p e d by m o d i f y i n g a j e t s e p a r a t o r f o r GC-MS [12J. T h i s i n t e r f a c e was l a t e r improved by t h e u s e of a v e r y s h o r t c o u n t e r n o z z l e s o t h a t i t c o u l d be a p p l i e d t o v a r i o u s l e s s v o l a t i l e compounds s u c h as g l u t a m i c a c i d . s t e r o i d s , a r o m a t i c a m i n e s and c h l o -

218

TABLE 1 V a r i o u s i n t e r f a c i n g methods f o r LC/MS Interfacing method

Ionieation mode

Research group

~~

(1)Direct introduction

McLafferty

CI

method

(2)Preliminary evaporation method (3)Mechanical transfer

et al.

[ 7 1 81

Henion

et al.

[9-11]

Tsuge

thermo-spray

Vestal

CI, EI

McFadden

[12-191

et al. et al.

et al.

Games

et al.

Bennighoven

r20, 211

L22-251

126, 271

Scott et al. SIHS

[1-6]

Arpino

CI (EI)

method

et al.

128, 291 et al.

[30]

(4)Others (API, Membrane, Heated-wire, etc.)

rine-containing insecticides micro-LC-MS

[LA].

Furthermore, a d i r e c t l y coupled

s y s t e m was c o n s t r u c t e d by u s i n g b a s i c a l l y t h e same

t y p e o f vacuum n e b u l i z i n g i n t e r f a c e a n d a small d o u b l e - f o c u s i n g MS

[l5].

I n t h e s e r e f e r e n c e s , t h e p o t e n t i a l a b i l i t y o f t h e vacuum neb-

u l i z i n g i n t e r f a c e was d e m o n s t r a t e d e m p i r i c a l l y . However, s i n c e vacuum n e b u l i z a t i o n o f t h e L C - e f f l u e n t i s a h i g h l y h e a t - a b s o r b i n g phenomenon, h e a t e n e r g y h a s t o be s u p p l i e d , a t l e a s t t o t h e t o p of t h e n e b u l i z i n g n o z z l e . Depending on t h e nebul i z i n g c o n d i t i o n s s u c h as t h e n a t u r e a n d t h e amount o f n e b u l i z i n g g a s , t h e t e m p e r a t u r e of t h e n e b u l i z i n g t i p and e v a c u a t i o n speed f o r t h e n e b u l i z e r , e x c e s s h e a t energy s u p p l i e d around t h e t o p of t h e n e b u l i z e r c a n s o m e t i m e s c a u s e u n d e s i r a b l e t h e r m a l decomposit i o n o f t h e t h e r m a l l y u n s t a b l e components i n t h e e f f l u e n t b e f o r e

i t r e a c h e s t h e t o p of t h e n e b u l i z e r .

219

Considering the above-mentioned factors, a small water cooling jacket was first of all incorporated into the vacuum nebulizing interface to prevent the introduced LC-effluent from over-heating, causing either boiling up o r thermal decomposition of labile components in the effluent. Then, a bubble saturator was inserted in the line of the nebulizing gas supplier, which enabled the adjustment of the nature of the nebulizing gas saturating a desired solution [16].

In addition, further modification of the nebulizer

was made by changing the nebulizing nozzle from a coaxial capillar y to a fused silica capillary with about 12 B m i.d. which enabled

self-spouting o f the LC-effluent at the top of the nebulizing nozzle 1171. These improvements extend the applicability of the microLC-MS system to fairly non-volatile polar organic compounds.

PRINCIPLE OF NEBULIZING INTERFACE FOR LC/MS Figure 1 shows a general flow diagram of directly coupled chromatograph (CC o r LC)/MS. Conventional GC o r LC is operated with Carrier (Gas o r L i q . I

Sample Inlet

LC

or Gc

Separation column

of excess carrier

Fig. 1. General flow diagram of directly coupled chromatograph (GC or LC)/MS.

220

t h e column e x i t a t one a t m o s p h e r e (760 t o r r ) , w h i l e a MS must m a i n t a i n t h e a n a l y z e r vacuum a t l e a s t as low a s 10-4-10-5 t o r r

[31].

T h e r e f o r e , t h e i n t e r f a c e s h o u l d f u n c t i o n as a remover of ex-

c e s s c a r r i e r o r a s a n e n r i c h e r o f t h e s o l u t e component. I n a GC/MS, both t h e s o l u t e (sample) and t h e s o l v e n t ( c a r r i e r ) a r e t r e a t e d i n t h e g a s e o u s p h a s e , w h i l e i n a LC/MS t h e column e f f l u e n t i s a k i n d of s o l u t i o n i n which a t h e r m a l l y l a b i l e s o l u t e ( s a m p l e ) i s u s u a l l y dissolved i n t h e c a r r i e r solvent. Therefore, i n t h e l a t t e r c a s e t h e L C - e f f l u e n t h a s t o be v a p o r i z e d i n t h e i n t e r f a c e p r i o r t o t h e removal o f e x c e s s c a r r i e r ( e n r i c h m e n t ) . F i g u r e 2 i l l u s t r a t e s t h e e f f e c t i v e n e s s of a vacuum n e b u l i z a t i o n f o r LC/MS i n t e r f a c i n g . I n o r d e r t o e v a p o r a t e a s o l u t e i n s o l u t i o n , (11Whm the bulk solusion i a b a s d under atmepheric prearurr:

F i g . 2. P r i n c i p l e o f vacuum n e b u l i z a t i o n .

221

we u s u a l l y a p p l y h e a t e n e r g y t o t h e s o l u t i o n . When t h e s o l u t e i s v o l a t i l e enough a t a t m o s p h e r i c p r e s s u r e , s i m p l e h e a t i n g i s s a t i s f a c t o r y t o v a p o r i z e t h e s o l u t e as w e l l as t h e s o l v e n t . However, i n t h e c a s e of a n o n - v o l a t i l e s o l u t e , f o r example, s u c r o s e i n w a t e r , when t h e b u l k s o l u t i o n i s h e a t e d u n d e r a t m o s p h e r i c p r e s s u r e ( A ) , t h e s e l e c t i v e e v a p o r a t i o n of t h e s o l v e n t (water) p r o c e e d s u n t i l t h e f i n a l c o n d e n s a t i o n i s f o l l o w e d by t h e t h e r m a l d e c o m p o s i t i o n o f t h e s o l u t e . On the other hand, when t h e s o l u t i o n i s n e b u l i z e d by a p p l y i n g h e a t i n v a c u o ( B ) , t h e r e s u l t i n g a e r o s o l m o s t l y c o n s i s t s of t h e s o l v e n t v a p o u r , small p a r t i c l e s o f t h e s o l v e n t and small p a r t i c l e s of t h e s o l u t i o n . Of c o u r s e , t h e d i s t r i b u t i o n o f t h e p a r t i c u l a t e s d e p e n d s on t h e n e b u l i z a t i o n c o n d i t i o n s , s u c h as t h e f l o w r a t e s of t h e s o l v e n t and t h e n e b u l i z i n g g a s , t e m p e r a t u r e , t h e d e g r e e of vacuum, e t c . However, i f a s t e a d y s t a t e i s a t t a i n e d f o r t h e n e b u l i z a t i o n , a c e r t a i n p o r t i o n of t h e s o l v e n t i s always d i v i d e d i n t o d r o p l e t s which c o n t a i n a few s u c r o s e m o l e c u l e s . When t h e s e small d r o p l e t s a r e e x p o s e d t o h i g h t e m p e r a t u r e s i n v a c u o , t h e s e l e c t i v e evaporation of t h e s o l v e n t (water) f i n a l l y causes t h e f o r m a t i o n of t h e s o l u t e m o l e c u l e ( s o l u t e v a p o u r ) . H e r e , o u r

LC/MS c o u p l i n g s y s t e m was d e s i g n e d by r e p l a c i n g t h e d i l u t e s o l u t i o n c o n t a i n e r mentioned i n F i g . 2 w i t h a micro-LC.

INSTRUMENTAL AND EXPERIMENTAL Flow diagram o f LC/MS s y s t e m F i g u r e 3 shows a s c h e m a t i c f l o w d i a g r a m of t h e micro-LC-MS

sys-

tem u t i l i z e d i n t h i s work. The whole s y s t e m c o n s i s t s o f t h r e e main components s u c h as a micro-LC,

a n e b u l i z i n g i n t e r f a c e and a quadru-

p o l e mass s p e c t r o m e t e r , and two a u x i l i a r y s u b - s y s t e m s f o r n e b u l i z i n g g a s and c o o l i n g water, r e s p e c t i v e l y . E i t h e r a micro-LC, F a m i l i c - 1 0 0 o r F a m i l i c - 3 0 0 (JASCO) w a s used m o s t l y a t a f l o w r a t e a b o u t

222

I

Y

.

F i g . 3 . S c h e m a t i c f l o w d i a g r a m o f micro-LC/MS vacuum n e b u l i z i n g i n t e r f a c e [16] 20 p l / m i n .

system u s i n g a

A PTFE m i c r o packed column ( 0 . 5 m m i . d . x 1 4 . 5 cm l o n g )

c o n t a i n i n g SS-10-ODs-B (JASCO) was u s e d when s e p a r a t i o n -

needed.

The whole e f f l u e n t from t h e d e t e c t o r was i n t r o d u c e d i n t o t h e vacuum n e b u l i z i n g i n t e r f a c e e i t h e r t h r o u g h a c o a x i a l s t a i n l e s s - s t e e l capi l l a r y tube (0.d.

0.31 m m , i . d .

0.13 mm w i t h c o r e - w i r e 0 . 1 1 mm d i a -

m e t e r ) o r a f u s e d s i l i c a c a p i l l a r y w i t h c a . 1 2 pm i . d .

A quadrupole

mass s p e c t r o m e t e r , JMS-Q1OA (JEOL) was u s e d i n a c h e m i c a l i o n i z a t i o n

( C I ) mode t o t a k e t h e mass f r a g m e n t o g r a m s a n d / o r t h e mass s p e c t r a of t h e n e b u l i z e d s a m p l e components where t h e s o l v e n t v a p o u r s were u t i l i z e d a s t h e r e a g e n t g a s e s f o r C I . C o o l i n g w a t e r was s u p p l i e d t o t h e n e b u l i z e r by t h e c o o l i n g w a t e r s y s t e m a t a c o n s t a n t r a t e o f up t o 5 ml/min

( m o s t l y , 3 ml/min was u s e d ) . The n e b u l i z i n g g a s s y s t e m

was s o m o d i f i e d t h a t a b u b b l e s a t u r a t o r was i n s e r t e d , t o c h a n g e t h e n a t u r e of t h e g a s by u s i n g v a r i o u s s o l u t i o n s ( m o s t l y , a b o u t 1 0 0 min o f h e l i u m (NTP) was u s e d as t h e main n e b u l i z i n g g a s ) .

nil/

223

Nebulizing i n t e r f a c e A s c h e m a t i c d i a g r a m of t h e n e b u l i z i n g i n t e r f a c e i s shown i n F i g .

4 , t o g e t h e r w i t h t h e m a g n i f i e d p o r t i o n of t h e n e b u l i z i n g t i p . The h o u s i n g c a s e of t h e c o o l i n g w a t e r j a c k e t was made of a low h e a t c o n d u c t i v i t y g l a s s c e r a m i c ( M a c o r ) . I n a d d i t i o n , t o minimize t h e h e a t p e n e t r a t i o n , a 0 . 5 mm t h i c k h e a t - r e s i s t a n t p o l y m e r ( p o l y m i d e ) f i l m was i n s e r t e d between t h e h o u s i n g c a s e and t h e w a t e r j a c k e t . On t h e o t h e r h a n d , a 2 m m t h i c k p i e c e o f c o p p e r d i s k was a t t a c h e d t o t h e top of t h e nebulizing nozzle t o c o l l e c t t h e h e a t energy necessary f o r t h e n e b u l i z a t i o n of t h e LC-effluent.

Thus, t h e LC-

e f f l u e n t c o n d u c t e d a t t h e t o p o f t h e n e b u l i z e r was f i n e l y n e b u l i z e d by a j e t s t r e a m of n e b u l i z i n g g a s w h i c h was s u p p l i e d t h r o u g h t h e

0.63 mm. i . d .

g a p between a s t a i n l e s s - s t e e l s h e a t h ( 0 . d .

1 0 mm l o n g ) and t h e n e b u l i z i n g t u b e from t h e micro-LC.

0.33 m m ,

The d e t a i l -

ed s t r u c t u r e s o f t h e c o a x i a l ( T y p e - I ) and t h e f u s e d s i l i c a c a p i l -

'"D i s k \

Rotary PumD

Cooling Water Jacket

Mac0 r I

4

L

L

I

0

2cm

F i g . 4 . S c h e m a t i c d i a g r a m of vacuum n e b u l i z i n g i n t e r f a c e f o r LC/ MS [16].

224

l a r y (Type 11) n o z z l e a r e i l l u s t r a t e d i n F i g . 5. The Type-I1 i s a m o d i f i c a t i o n of Type-I by s e t t i n g a f u s e d s i l i c a c a p i l l a r y w i t h c a . 1 2 pm i . d .

t o enable t h e s e l f - s p o u t i n g of t h e LC-effluent a t t h e

t o p of t h e n o z z l e . TYPE-I( COlJXlOl

/

Stalnless-steel Cap1I larv

\\

Core-W1 re

-

0

0.5

F i g . 5. D e t a i l e d s c h e m a t i c d i a g r a m s o f t h e n e b u l i z i n g t i p s [17].

Temperature d i s t r i b u t i o n s a r o u n d t h e n e b u l i z e r

tie

F i g u r e 6 shows t h e t e m p e r a t u r e d i s t r i b u t i o n s a r o u n d t h e n e b u l i z i n g t i p which were e s t i m a t e d s e m i - e m p i r i c a l l y .

Here, a s o l u t i o n

c o n t a i n i n g a small amount of s a c c h a r i d e was c o n s i d e r e d a s a t y p i c a l example a t 2OoC (room and c o o l i n g water t e m p e r a t u r e ) . When t h e e f f l u e n t i s n e b u l i z e d u n d e r c o n d i t i o n s o f h e a t e r - o f f and c o o l i n g water-off,

t h e t e m p e r a t u r e i n t h e i m m e d i a t e v i c i n i t y o f t h e nebu-

l i z i n g t i p r e a c h e s w e l l below z e r o b e c a u s e o f t h e l a r g e amount of l a t e n t e n e r g y a b s o r b e d by t h e r a p i d a d i a b a t i c e x p a n s i o n o f t h e e f f l u e n t (curve A ) .

I f p u r e water i s n e b u l i z e d u n d e r t h e same c o n d i -

t i o n s , we c a n even see e i t h e r snow or t h i n t h r e a d s o f i c e . I n t h i s c a s e , any s p e c i f i c i o n s o f t h e s o l u t e a r e n o t o b s e r v e d a t a l l . Howe v e r , i f t h e n e b u l i z i n g h e a t e r i s t u r n e d on t o r a i s e t h e t e m p e r a -

226

[SOTHEWS

.

Fi 6. T e m p e r a t u r e d i s t r i b u t i o n a r o u n d n e b u l i z i n g n o z z l e [16]. ( A T heater-off, without cooling water; (B) heater-on. with cooling w a t e r ; ( C ) h e a t e r - o n , w i t h o u t c o o l i n g w a t e r ; T: t e m p e r a t u r e (T1 < T2 < T3 < Tq.. .)

.

t u r e a t t h e t o p of t h e n o z z l e w i t h o u t a n y c o o l i n g water f l o w i n g , t h e t e m p e r a t u r e p r o f i l e around t h e t i p might resemble curve C . I n t h i s c a s e , even i f t h e t e m p e r a t u r e a t t h e t i p is a d j u s t e d t o j u s t below t h e b o i l i n g t e m p e r a t u r e o f w a t e r (lOO°C) by a dynamic comp r o m i s e o f t h e s u p p l i e d h e a t e n e r g y from t h e h e a t e r a n d t h e h e a t absorption through t h e nebulization, t h e temperatures a t t h e inner p a r t s o f t h e c o n d u c t i o n c a p i l l a r y t u b e would e x c e e d 100°C, c a u s i n g u n d e s i r a b l e b o i l i n g up o r t h e thermal decomposition of t h e t h e r mally u n s t a b l e s o l u t e i n t h e c a p i l l a r y tube. Consequently, a fav o u r a b l e t e m p e r a t u r e p r o f i l e ( c u r v e B) f o r l e s s v o l a t i l e compon e n t s t o be s t a b l y n e b u l i z e d t o y i e l d t h e m o l e c u l a r - r e l a t e d i o n s c o u l d be o b t a i n e d when a s u i t a b l e amount o f c o o l i n g w a t e r i s s u p -

226

p l i e d t o t h e w a t e r j a c k e t w h i l e h e a t e n e r g y i s c o n t i n u o u s l y supp l i e d t o t h e n e b u l i z i n g t i p . I n t h i s c a s e , t o o much w a t e r s u p p l y sometimes hampers t h e s t a b l e n e b u l i z a t i o n , w h i l e t o o l i t t l e w a t e r causes undesirable b o i l i n g o r t h e thermal decamposition of t h e component i n t h e c o n d u c t i n g c a p i l l a r y t u b e . I n t h e f o l l o w i n g , s i n c e t h e t o l e r a n c e r a n g e f o r t h e s e c o n d i t i o n s c h a n g e s d e p e n d i n g on t h e t h e r m a l s t a b i l i t y a n d / o r t h e v o l a t i l i t y of t h e sample m o l e c u l e , t h e optimum h e a t i n g t e m p e r a t u r e and t h e f l o w r a t e of c o o l i n g w a t e r were e m p i r i c a l l y d e t e r m i n e d . A h y p o t h e t i c a l i s o t h e r m a r o u n d t h e n e b u l i z i n g t i p f o r t h e c a s e of c u r v e B i s shown a t t h e b o t t o m of F i g . 6 where t h e t e m p e r a t u r e o r d e r i s T 1 < T 2 < T3

The e f f e c t of s e l f - s p o u t i n g and t h e n e b u l i z i n g gas I n o r d e r t o a v o i d t h e c l o g g i n g of t h e n e b u l i z i n g t i p e i t h e r w i t h t h e r e s i d u e of n o n - v o l a t i l e s o l u t e s o r w i t h t h e r m a l l y decomposed p r o d u c t s of t h e s o l u t e , s e l f - s p o u t i n g o f t h e L C - e f f l u e n t a t t h e t i p was i n c o r p o r a t e d i n t o t h e s y s t e m . F i g u r e 7 shows t h e r e l a t i o n s h i p between t h e s e l f - s p o u t i n g h e i g h t o f t h e L C - e f f l u e n t

(methanol)

and t h e f l o w r a t e ( o r l i n e a r v e l o c i t y ) of t h e e f f l u e n t f o r t h e fused s i l i c a c a p i l l a r y t i p with 1 2 pm i . d .

(Type I1 i n F i g . 5 ) un-

d e r a t m o s p h e r i c p r e s s u r e . The e x t r a p o l a t e d c u r v e t e l l s u s t h a t when t h e l i n e a r v e l o c i t y e x c e e d s a b o u t 3 m/sec ( 2 0 pl/mi.n),

self-

s p o u t i n g can b e o b s e r v e d f o r m e t h a n o l . With w a t e r , t h e t h r e s h o l d v e l o c i t y s h i f t s t o t h e higher value because of i t s h i g h e r viscosity

.

F i g u r e 8 i l l u s t r a t e s t h e e f f e c t of t h e n e b u l i z i n g g a s on t h e s t a b l e sample i n t r o d u c t i o n . Here, 1 p 1 of a m e t h a n o l sample solut i o n c o n t a i n i n g 1 pg of a m i n o p y r i n w a s i n j e c t e d u s i n g m e t h a n o l as t h e c a r r i e r s o l v e n t a t 30 p l / m i n . H e r e , t h e t e m p e r a t u r e o f t h e 0

n e b u l i z e r was m a i n t a i n e d a t 200 C and t h e (M t H ) '

of aminopyrin

227

F i g . 7. R e l a t i o n s h i p between s e l f - s p o u t i n g h e i g h t of t h e e f f l u e n t a t t h e n o z z l e w i t h 1 2 pm i . d . a n d i t s f l o w r a t e ( l i n e a r v e l o c i t y )

~ 7 1 .

,'.:,.:.:I-. .

.

. . .. . . .... . . , ,.>. .. .... .. ... .. ..:- u-... ;. .,, , . ..-.. , . . '

-

i

2mln 0

Without Nebulizing Gas (He)

Z

O

With Nebulizing Gas (He)

Aminooyrln (MeOH Soln.) SIN F i g . 8. E f f e c t of n e b u l i z i n g g a s on sample i n t r o d u c t i o n [17].

a t m/z = 232 was m o n i t o r e d by means o f s e l e c t e d i o n m o n i t o r i n g (SIM). A s shown i n t h i s f i g u r e , when t h e n e b u l i z i n g g a s is used,

t h e L C - e f f l u e n t i s more f i n e l y n e b u l i z e d a n d t h e r e s u l t i n g mass fragmentogram becomes v e r y s t a b l e , w h e r e a s when t h e g a s flow is

228

stopped, t h e n e b u l i z a t i o n has wider d i s t r i b u t i o n s both i n t h e part i c l e s i z e a n d t h e w i d t h , a n d t h e r e s u l t i n g mass f r a g m e n t o g r a m r e f l e c t s t h e d i s t u r b e d s a m p l e i n t r o d u c t i o n . T h i s t e n d e n c y be c om e s more s e r i o u s f o r l e s s v o l a t i l e co mp o u nds.

APPLICATIONS AND DISCUSSION R e p e a t a b i l i t y o f t h e met h o d The r e p r o d u c i b i l i t y o f t h e met h o d i s shown i n F i g . 9 u s i n g a m i n o p y r i n a s a s a m p l e . The m e t h a n o l s o l u t i o n (1 ~ 1 c)o n t a i n i n g 1 p g o f t h e s o l u t e was i n t r o d u c e d r e p e t i t i v e l y s i x times i n t o t h e n e b u l i z e r by a c o n s t a n t f l o w o f m e t h a n o l ( 3 0 u l / m i n ) a t t h e n e b u l i z i n g t e m p e r a t u r e o f 20OoC. The mass f r a g m e n t o g r a m s w e r e t a k e n by SIM a t m/z = 23 2 . I n t h i s c a s e , t h e r e p r o d u c i b i l i t y of t h e o b s e r v e d d a t a was a b o u t 3% i n C V . A n o t h e r e x a m p l e i s i l l u s t r a t e d i n F i g . 10, w h e r e 1 p 1 o f m e t h a n o l s o l u t i o n c o n t a i n i n g 1 ug of d i p h e n y l a m i n e , n a p h t h y l a m i n e a n d n i c o t i n a m i n e w e r e s i m u l t a n e o u s l y m e a s u r e d by

SIM a t t h e ( M t H )

t

p e a k o f t h e co mp one nts, r e s p e c t i v e l y , f o u r t i m e s .

These d a t a s u g g e s t t h a t i f

L

m o n i t o r i n g peak i s n o t i n t e r f e r e d w i t h

L

Fig. 9. R e p r o d u c i b i l i t y of t h e i n t r o d u c t i o n sample: 1 ug of SIM a t m/z=232 1171. a m i n o p y r i n (MW=231), d e t e c t i o n :

229 C A: Dlmenvlaalne

8: N O d l t h V l d N

c:

nlCOtlPollllde

Tlrn +

b

f

i

a

l

n

Fig. 10. Repetitive measurements of mass fragmentograms [17]

t h e o t h e r fragment. peaks.

.

t h e a s s o c i a t e d component can be d e t e r m i n -

ed w i t h o u t any chromatographic s e p a r a t i o n from t h e m a t r i x .

Mass spectra of the developing solvents Methanol, water and their mixtures were mostly used as the developing solvents for LC. The nebulizing gas (He) was usually saturated with the same solvents by using the bubble saturator to stabilize the nebulization of the LC-effluent and to prevent the deposition of the sample solute at the heated tip of the nebulizing nozzle. Figure 11 shows the spectra of the solvents, water, methanol, and methanol by use of ammonia-enriched nebulizing gas. In the last case, a small amount of 15N aqueous ammonia was added to the solvent in the bubble saturator. In these mass spectra, the base peaks are commonly (2M t H) t , and additionally ( M t H)' H)

t

and (3M t

peaks are also observed. In spectrum (c), two peaks at m/z = 18 t and m/z = 50 (CH30H t

of (NH4)

NH ) t can be seen in addition to

4

those observed for (b). In the following study, these reagent ions formed from the solvent vapours were used for CI of the sample components in the LC-effluent.

230

11. Mass spectra of the developin solvents in CI-mode [16]. (aT'Water; (b) methanol; (c) methanol fin the presence of N H 3 ) .

Fi

Various applications to less volatile compounds Figure 12 shows a mass spectrum of cholesterol and its mass fragmentograms, using methanol as the solvent. The temperatures of the nebulizing heater and the ion source were both 25OoC. In the mass spectrum (a), (M quasi-molecular ion (M

-

OH)'

-

H)'

at m/z

=

369 is the base peak and the

at m/z = 385 is observed to be about 10%

in the relative intensity. Two successive mass fragmentograms were measured by SIM using 1 p 1 of the methanol solution containing 1 p g of cholesterol at a fixed mass of m/z = 369. The symmetrical and sharp figures of the mass fragmentograms indicate that very stable sample introduction is attained. Figure 13 gives adenosine as an example, using water as the s o l -

231

100

IM-HI'

(a1

Ij

0I7 1 01 m2i n

lbl

I

Fi 1 2 . C I mass s p e c t r u m and mass f r a g m e n t o g r a m s f o r c h o l e s t e r o l [ l b j . ( a ) Mass s p e c t r u m ; ( b ) r e p e a t e d mass fragmentograms a t m/z=369.

0- I1 c

TS

min

Fi 13. CI mass s p e c t r u m and mass f r a g m e n t o g r a m s f o r a d e n o s i n e [ l b j . ( a ) Mass s p e c t r u m ; ( b ) r e p e a t e d mass f r a g m e n t o g r a m s a t m/z=136. v e n t . The n e b u l i z i n g h e a t e r and t h e i o n s o u r c e were m a i n t a i n e d a t

2OO0C and 19OoC, r e s p e c t i v e l y . I n t h i s c a s e , t h e b a s e p e a k a t m/z = 1 3 6 was ( a d e n i n e

+ H)'.

The q u a s i - m o l e c u l a r p e a k o f (M

+ H)'

at

m/z = 268 was v e r y s e n s i t i v e t o t h e t e m p e r a t u r e s o f t h e n e b u l i z e r a n d t h e i o n s o u r c e , a n d d i s a p p e a r e d a t e l e v a t e d t e m p e r a t u r e s . The mass fragmentograms r e p e a t e d l y measured by SIM a t m/z 136 a l s o s u g g e s t f a i r l y s t a b l e n e b u l i z a t i o n . T a b l e 2 summarizes t h e C I mass s p e c t r a of v a r i o u s n u c l e o s i d e s t a k e n by t h i s method.

232

TABLE 2

CI mass s p e c t r a of n u c l e o s i d e s [18] nucleoside

adenosine

molecular weight

nebulizing gas

267

relative intensity [HtH] [BasetH]

He

100

50

100

86

100

10

100

83(69).96(72) ,100(40)

31

100

132(16)

4

100

130(14).132(13),125(11)

38

100

9 9 ( 1 9 ) ,113(11), 1 1 6 ( 2 8 ) .135(14)

33

100

98(70) ,109(24),ll6(79)

180-C 4 H 10

60

100

96(12).98(66) ,116(70)

He

18

100

132(21)

CH4

36

100

132(24)

49

100

CH4 243

He CH4 IEO-C~H~~

thymidine

242

He

CH4 244

uridine

Iao-C H

4 10 ~~~~

Sample

1 ug/ul

Chamber Temperature

o t h e r main peaks m/z ( R . I . I )

94

Ieo-C4Hl0 cytieine

(Z) +

Solvent 200°C

H20

112(30) 112(15)

~

Carrier Flow Rate

1 6 ul/min

N e b u l i s i n g Temperature 200°C

Cooling Water

3 ml/min

F u r t h e r examples a r e shown i n F i g s . 14 and 1 5 f o r t r y p t o p h a n and glycyl-glycyl-glycine,

r e s p e c t i v e l y . The e x p e r i m e n t a l c o n d i -

t i o n s were b a s i c a l l y t h e same as t h o s e f o r a d e n o s i n e e x c e p t t h a t t h e t e m p e r a t u r e s of t h e n e b u l i z i n g h e a t e r and t h e i o n s o u r c e were b o t h 24OoC. The mass f r a g m e n t o g r a m s were o b t a i n e d by SIM a t t h e

14. C I mass s p e c t r u m and mass f r a g m e n t o g r a m s f o r t r y p t o p h a n [l%j. ( a ) Mass s p e c t r u m ; ( b ) r e p e a t e d mass f r a g m e n t o g r a m s a t

Fi

m/z=205.

233

NH21CH CONH12CH2COOH 15

IHIHI'

- i --r-

I-

la1

'

min

(bl

F i g . 1 5 . C I mass s p e c t r u m and mass f r a g m e n t o g r a m s f o r g l y c y l - g l y c y l - g l y c i n e [16]. ( a ) Mass s p e c t r u m ; ( b ) r e p e a t e d mass f r a g m e n t o grams a t m/z=115. a s s o c i a t e d b a s e p e a k s . T a b l e 3 summarizes t h e C I mass s p e c t r a o f

22 k i n d s of amino a c i d s u s i n g w a t e r ( 1 6 p l / m i n ) a s t h e s o l v e n t . H e r e , t h e starred peak f o r g l u t a m i c a c i d was o b s e r v e d u s i n g NH

3 en-

r i c h e d nebulizing gas. F i g u r e 1 6 shows t h e r e s u l t s f o r d - g l u c o s e ( m o n o s a c c h a r i d e ) u s i n g methanol a s t h e s o l v e n t . Both t e m p e r a t u r e s o f t h e n e b u l i z i n g h e a t e r and t h e i o n s o u r c e were 180°C. B e f o r e a d d i n g ammonia t o t h e s o l v e n t i n t h e b u b b l e s a t u r a t o r , t h e main p e a k s were (MH a t m/z = 163, (MH

-

2H20)t a t m/z = 145, and (MH

-

3H20)'

-

H201t a t m/z =

1 2 7 and t h e q u a s i - m o l e c u l a r p e a k was n o t o b s e r v e d a t a l l . On t h e o t h e r hand, when t h e ammonia-enriched n e b u l i z i n g g a s was u s e d , a d d i t i o n a l q u a s i - m o l e c u l a r p e a k s s u c h as (M (M

-

+

NH ) + a t m/z = 198 a n d

4

H20 t NH ) a t m/z = 180 were a l s o o b s e r v e d . Thus, t h e o b s e r v -

4

e d mass fragmentograms by SIM a t m/z = 198 a l s o s u g g e s t f a i r l y s t a b l e n e b u l i z a t i o n . H e r e , t h e a d d i t i o n of ammonia t o t h e n e b u l i z i n g g a s p r o v e d t o be a v e r y e f f e c t i v e improvement t o t h e s o f t n e s s of C I , b e c a u s e o f t h e s t r o n g p r o t o n a f f i n i t y of ammonia. F i n a l l y ,

F i g . 1 7 shows t h e s p e c t r a f o r m a l t o s e ( d i s a c c h a r i d e ) . The e x p e r i -

234

TABLE 3

C I mass s p e c t r a of amino a c i d s [16] amino acid

relative intensity ( 5 )

molecular weight

[Mtd'

glycine

75

100

alanine

89

100

valine

117

100

29

norvaline

117

83

100

leucine

131

58

100

norleucine

131

63

100

isoleucine

131

100

67

phenylalanine

16 5

16

'78

t.yrosi ne

181

100

39

threonine

119

100

27

42

serine

105

100

50

69

proline

[M-OH']'

[M-COOK]'

115

21

hydroxyproline

131

100

8

50

tryptophan

204

100

9

9

methionine

149

100

14

38

cystine

240

asparagic acid

133

glutsmic aicd

147

glutamine

146

lysine

146

arginine

174

histidine

155

100

12

100

100

4

11

29

19

34

100

10

6

3

15

100

14

44

other main peaks

m/z(R.I.)

236

IC)

(b)

Fig. 16. CI mass spectra and mass fragment0 rams for d-glucose [16]. (a) Mass spectrum before adding NH ; Tb) mass spectrum after adding NH (c) repeated mass fragientograms at m/z=198 on mass spectrui' (b)

-

2

.

100

127

145

I

la1

lb)

Fi 17. CI mass spectrum and mass fragmentograms for maltose [l:]. (a) Mass spectrum in the presence of NH3; (b) repeated mass fragmentograms at m/z=180. mental conditions were the same as those for d-glucose except for the solvent (methanol/water

=

3/1). In this case, even by the use

of the ammonia-enriched nebulizing gas, any quasi-molecular peaks were not observed. However, the shapes of the mass fragmentograms taken by SIM at the base peak of m/z introduction is still fairly stable.

=

180 suggest that the sample

236

Applications t o f r e e f a t t y a c i d s F i g u r e 18 shows methanol-CI mass s p e c t r a o f e n a n t h i c a c i d ( C 7 ) , m y r i s t i c a c i d (Cl,+) and b e h e n i c a c i d (C22). F a i r l y s t r o n g common q u a s i - m o l e c u l a r p e a k s s u c h as ( M t H t CH30H

-

t

H20)

-

H20)

t

,

(M t H)'

and (M t H

a r e o b s e r v e d . I n t h e s p e c t r u m of e n a n t h i c a c i d ,

some a d d u c t p e a k s s u c h as ( M t H . t CH30H)t a n d ( M t H t 2CH30H)'

4 summarizes t h e methanol-CI mass s p e c t r a

a r e a l s o observed. Table

of v a r i o u s f r e e f a t t y a c i d s . ( C 7 1 M W 00

MYRISTIC

ACID

m/z

0EHENlC ACID (C 22) M W 340

350

300

400

mli

F i g . 18. Methanol C I mass s p e c t r a of e n a n t h i c a c i d , m y r i s t i c a c i d and b e h e n i c a c i d [19].

TABLE 4 Methanol-CI mass s p e c t r a of f r e e f a t t y a c i d s . [19]

e n a n t h i o .=id (07)

130

9

100

19

95

c s p r y l i c w i d ICE)

144

7

100

24

97

19111)

pelmrnonio .old

158

9

92

30

100

20512)

c a p r i c acid (C10)

172

6

100

33

86

undsoanoio a d d I C l l )

186

4

100

37

83

lmuric maid (C12)

200

3

85

37

100

m y r i a t i a m i d (Cl4)

228

100

62

96

p a l m i t i o w i d (Cl6)

256

58

21

100

(C9)

0.2

margarlo acid lC17)

270

61

100

59

mtemria a c i d (Cl8)

284

87

47

100

312

100

41

99

340

100

55

91

mraohidio .old

11720)

k h - n i o s o i d (022) 8mple. I.bulisinn

1 vrlul

1.mp.rmtur..

Oolrmnt. 185OO

CHjOH

0arri.r

? l o r Rat.,

Chambar I e m p r a t u r o .

16 l l m i n

185%

cool in^

177(1)

Nobuliainn ,as. Yahr.

3 mllmin

H.

I70 nl/min)

237 On t h e o t h e r h a n d , s i n c e some f r e e f a t t y a c i d s h a v e b e t t e r s o l u b i l i t y i n benzene t h a n i n m e t h a n o l , benzene-CI mass s p e c t r a were a l s o examined. F i g u r e 1 9 shows t h e r e s u l t i n g benzene-CI mass s p e c t r a o f some f a t t y a c i d s . T a b l e 5 summarizes t h e benzene-CI mass s p e c t r a o f v a r i o u s f r e e f a t t y a c i d s . I n most cases, f a i r l y s t r o n g q u a s i - m o l e c u l a r p e a k s s u c h a s (M t H) t and ( M

+ H

-

H20) t a r e ob-

served. N a t u r a l f a t s mainly e x i s t as t r i g l y c e r i d e s of v a r i o u s f a t t y acids. Therefore, i n order t o determine t h e f a t t y a c i d content i n f a t s , t h e s a p o n i f i c a t i o n of f a t s h a s t o be c a r r i e d o u t . I n t h e

100 [M+IIl+

80 [M+H-H20]+

-60

I

.

a 40 20

I

86

/I

1 1

Stearlc Acld (C18) [M+H1+ (m.w, 284) Solvent C ~ H ~

,

d,

~

,

.,

.

,

,[M;H-y:+,

I

2 220

.

100

80

240

260

Arachldlc Acld, ( C 2 0 ) (m,w. 312) Solvent C6H6

280

,

~

. ,

320

300

[M+HI

.

+

F i g . 1 9 . Benzene CI mass s p e c t r a of p a l m i t i c a c i d , s t e a r i c a c i d and a r a c h i d i c a c i d 1191.

238

TABLE 5 Benzene-CI mass spectra of free fatty acids fatty acid

molecular

relative intensity 1 othsr main peaks

weight

[M+H]',

palmitic acid (C16)

256

100

margario acid (C17)

270

100

stsaric aoid (C18)

284

100

olsio aoid (ClSil)

282

23

linolsia acid (Cl8:Zj

280

100

linolsnic acid (C18i3)

278

100

arachidlc acid (C20)

312

100

behsnic acid (C22)

340

100

Sampls

1 ug/pl

Nsbuliring gas

Solvsnt

06H6

He (70 ml/min)

Chamber Tsnpsrature

17OoC

1191

[M+H-H20]*

m/z ( R . I .

X)

12

Carrier Flow Rate

16 ul/min

Nebuli6ing Temperature Cooling watsr

19OoC

3 nl/min

following applications,bean oil and palm oil were used as fat samples. About 1 . 5 g of a fat sample was saponified in 1 5 m l of 1N NaOH in methanol for 1 hr at 6OoC. After the evaporation of methanol, 30 m l of 1N HC1 was added. The C % C l 3 extract of the reactants was used as the specimen for LC/MS. The micro HPLC separation was carried out by a microcolumn (0.5 mm i.d.xl4.5

cm long) packed

with SS-10-ODs-B (JASCO) using a developing solvent (methanol/water = 911) at a flow rate of 16 ul/min. The UV-detection was made at 210 nm and the mass fragmentographic de-ction

was carried out

by a multi-ion detection.system (MID) at the (M t H t CH30H

-

H20)

t

239

of the corresponding fatty acids. Figures 20 and 21 are t h e resulting chromatograms of bean o i l , and palm oil, respectively. I n the

w

10

0

mi".

F i g . 20. Chromatograms of bean oil by UV-detection and MID.

I 0

MID

10

20.

.In.

F i g . 21. Chromatograms of palm oil by U V and MID.

240

f o r m e r case, t h e components which a p p e a r a t a b o u t 1 5 min, a p p e a r

a s one peak by U V - d e t e c t i o n . However, d e t e c t i o n by M I D t e l l s U S t h a t t h e r e a r e - t w o o v e r l a p p i n g p e a k s s u c h as o l e i c a c i d (C18

with

one d o u b l e bond) a n d p a l m i t i c a c i d (C16 s a t u r a t e d ) . F u r t h e r m o r e , s i n c e palm o i l c o n t a i n s m o s t l y s a t u r a t e d f a t t y a c i d s , t h e UV-det e c t i o n g i v e s a v e r y p o o r chromatogram, w h i l e M I D g i v e s q u i t e c h a r a c t e r i s t i c peaks of t h e s a t u r a t e d f a t t y a c i d s .

REFERENCES

1

M.A.

Baldwin and F.W.

2

P.J.

A r p i n o , B.G.

3

P. A r p i n o , B.G. Dawkins and F.W. M c L a f f e r t y , Biomed. Mass Spectrom., 1 (1974) 80-82. F.W. M c L a f f e r t y , R . K n u t t i , R . V e n k a t a r a g h a v a n , P . J . A r p i n o and B.G. Dawkins, Anal. Chem., 47 (1975) 1503-1505. F.W. M c L a f f e r t y and B.G. Dawkins, Biochem. SOC. T r a n s . , 3 ( 1 9 7 5 )

4 5

6 7

a 9

10

1111-1112.

1 2 ~ ~ 7 574-5a8. 4 )

M c L a f f e r t y , Org. Mass SpeCtrom.,

Dawkins and F.W.

7 (1973)

M c L a f f e r t y , Chromatogr. SOC.,

856-858.

B.G. Dawkins, P.J. Arpino and F.W. M c L a f f e r t y , Biomed. Mass Spectrom., 5 ( 1 9 7 8 ) 1-6. J . M . S c h m i t t e r , P . J . Arpino and G . Guiochon, J . Chromatogr. 167

(1978) 149-158.

P.
115-121.

11 J . D . Henion and T . Wachs, Anal. Chem., 53 (1981) 1963-1965. 1 2 S. Tsuge, Y . H i r a t a and T . T a k e u c h i , Anal. Chem., 5 1 (1979)

166-169. 17 Y . H i r a t a , T . T a k e u c h i , S. Tsuge and Y . Y o s h i d a , Org. Mass S p e c t r o n . , 1 4 (19751) 126-128. 1 4 Y. Yoshida, n . Yoshida, S . Tsuge, T. T a k e u c h i a n d K . M o c h i z u k i , High Res. Chromatogr. Chromatogr. Commun., 3 (1980) 16-20. 1 5 S. Tsuge, Y . Y o s h i d a , T . T a k e u c h i , K . Mochizuki, N . Kokubun and K . H i b i , Chem. Biomed. E n v i r o n . I n s t r . , 10 (1980) 405-418. 1 6 H . Y o s h i d a , K . Matsumoto, K. I t o h , S. T s u g e , Y . Hirata. K. Mochizuki, N. Kokubun and Y. Y o s h i d a , F r e s e n i u s Z . A n a l . Chem., 711 (1382) 674-680. 1 7 S . Tsuge, K . Matsumoto, K . O h t a , K. Yasuda and H . C . L i u , t o be

21

published. K . Matsumoto, H. Y o s h i d a , K . I t o h and S . Tsuge, t o be p u b l i s h e d . K . Matsumoto, H . Y o s h i d a , K . Ohta and S. Tsuge. t o be p u b l i s h e d . C . R . R l a k l e y , J .J. Carmody a n d M .L. V e s t a l , J . Am. Chem. SOC., 102 (1980) 5931-5933. C.R. B l a k l e y , J . J . Carmody and M.L. V e s t a l , Anal. Chem., 52

22

W.H.

18

19 20

(1980) 1636-1641.

McFadden, H.L.

(1976) 389-396.

S c h w a r t z and S. E v a n s , J . Chromatogr..

122

241

23 24 25 26 27 28

29 30 31

W . A . D a r k , W.H. McFadden a n d D.C. B r a d f o r d , J . C h r o m a t o g r . S c i . , 1 5 ( 1 9 7 7 ) 454-460. W.H. McFadden. D.C. B r a d f o l d . D.E. Games a n d J . L . Gower, A m . Lab., 9 ( 1 9 7 7 ) 5 5 - 6 4 . W . A . Dark a n d W.H. McFadden, J . C h r o m a t o g r . S c i . , 1 6 ( 1 9 7 8 ) 289-293. R.P.W. S c o t t , C . G . S c o t t , M. Muroe a n d J . Hess J r . , J . Chrom a to99 ( 1 9 7 4 ) 3 9 5 - 4 0 5 gr., R.P.W. S c o t t , Nat. Bur. S t a n d . ( U . S . ) , S p e c . P u b l . , 519 ( 1 9 7 9 ) 637-645. D.E. Games, J . L . Gower, M.G. Lee, I.A.S. L e w i s , M.E. Pugh a n d M . R o s s i t e r , P r o c . Anal. Div. Chem. S c i . , 1 5 ( 1 9 7 8 ) 101-105. D.E. Games, Chem. P h y s . L i p i d s , 2 1 ( 1 9 7 8 ) 389-402. A . B e n n i n g h o v e n , A . E i c k e , M. J u n a c k , W . S i c h t e r m a n n , J . K r i z e k , H . P e t e r s , Org. Mass S p e c t r o m . , 9 ( 1 9 8 0 ) 459-462. W.H. McFadden, J . C h r o m a t o g r . S c i . . 1 7 ( 1 9 7 9 ) 2 - 1 7 .