New explicit and exact solutions for a system of variant RLW equations

New explicit and exact solutions for a system of variant RLW equations

Available online at www.sciencedirect.com Applied Mathematics and Computation 198 (2008) 715–720 www.elsevier.com/locate/amc New explicit and exact ...

117KB Sizes 2 Downloads 30 Views

Available online at www.sciencedirect.com

Applied Mathematics and Computation 198 (2008) 715–720 www.elsevier.com/locate/amc

New explicit and exact solutions for a system of variant RLW equations Dahe Feng

a,*

, Jibin Li b, Junliang Lu¨ b, Tianlan He

b

a

b

School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, Guangxi 541004, PR China Department of Mathematics, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China

Abstract In this article, a system of regularized long wave equations are studied. With the aid of the mathematic software Maple and using the direct method, some new exact solutions: compactons, solitons, solitary patterns and periodic solutions are obtained. Ó 2007 Elsevier Inc. All rights reserved. Keywords: R(m, n) equations; Compacton; Soliton; Solitary pattern solution; Periodic solution

1. Introduction The investigation of the exact solutions of nonlinear partial differential equations (PDEs) play an important role in the study of nonlinear physical phenomena. For example, the wave phenomena observed in fluid dynamics, plasma and elastic media are often modelled by the bell-shaped sech functions and the kink-shaped tanh functions. The exact solution, if available, of those nonlinear PDEs facilitates the verification of numerical solvers and aids in the stability analysis of solutions. In the past several decades, various methods for obtaining exact solutions of nonlinear PDEs have been presented, such as inverse scattering method [1], Darboux transformation method [2,3], Hirota bilinear method [4], Lie group method [5,6], bifurcation method of dynamic systems [7], sine–cosine method [8–13], tanh function method [12–14], Fan-expansion method [15,16], homogenous balance method [17] and so on. Recently, Dye and Parker [18] studied the well-known nonlinear regularized long wave equation (RLW equation) ut þ aux  6uux þ buxxt ¼ 0

*

Corresponding author. E-mail addresses: [email protected] (D. Feng), [email protected] (J. Li), [email protected] (J. Lu¨).

0096-3003/$ - see front matter Ó 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2007.09.009

ð1Þ

716

D. Feng et al. / Applied Mathematics and Computation 198 (2008) 715–720

by using inverse scattering method. This RLW equation was introduced as an alternative model to the KdV equation to describe small amplitude long wave in shallow water. An increasing interest in studying the equation has been attached many mathematicians to investigate the problem to develop new solutions and to examine the physical behavior of the obtained solutions. More recently, Wazwaz [12] introduced a system of nonlinear variant RLW equations ut þ aux  kðun Þx þ bðun Þxxt ¼ 0

ð2Þ

and derived some compact and noncompact exact solutions by using the sine–cosine method and the tanh method. Motivated by the rich mathematical and physical properties of the RLW Eqs. (1) and (2), in this paper we study the following generalized variant RLW equations (R(m, n) equations in short): Rðm; nÞ : ut þ aux  kðum Þx þ bðun Þxxt ¼ 0:

ð3Þ

With the aid of Maple, we obtain some new exact solutions such as compactons, solitary pattern solutions, solitons and periodic solutions. 2. Explicit and exact solutions of R(m, n) equations Now we seek the travelling wave solutions of (3). Let uðx; tÞ ¼ uðnÞ;

n ¼ x  ct;

ð4Þ

where c is wave speed. Substituting (4) into (3) yields ða  cÞun  kðum Þn  bcðun Þnnn ¼ 0:

ð5Þ

Integrating (5) once, we obtain ða  cÞu  kum  bcðun Þnn  g ¼ 0; where g is an integral constant. Below we seek compacton solutions and solitary pattern solutions of (3) using the four ansatzs  A cosd ðBnÞ; jBnj 6 p2 ; Ansatz 1: uðx; tÞ ¼ 0; otherwise: ( A sind ðBnÞ; jBnj 6 p; Ansatz 2: uðx; tÞ ¼ 0; otherwise: Ansatz 3: Ansatz 4:

uðx; tÞ ¼ A coshd ðBnÞ: d

uðx; tÞ ¼ A sinh ðBnÞ;

ð6Þ

ð7Þ ð8Þ ð9Þ ð10Þ

where A; B; d are parameters to be determined later. 2.1. Compact and noncompact solutions of ansatz 1 Substituting (7) into (3) gives Aða  cÞ cosd ðBnÞ  Am k cosmd ðBnÞ þ bcn2 d2 An B2 cosnd ðBnÞ  bcndAn B2 ðnd  1Þ cosnd2 ðBnÞ  g ¼ 0: ð11Þ Thus we can obtain the three possible cases to be discussed: Case 1. When nd  2 ¼ 0; d ¼ md ¼ nd, we have ( Aða  cÞ  Am k þ bcn2 d2 An B2 ¼ 0; bcndAn B2 ðnd  1Þ þ g ¼ 0

ð12Þ

D. Feng et al. / Applied Mathematics and Computation 198 (2008) 715–720

717

from which we get m ¼ n ¼ 1;

d ¼ 2;

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi kþca B¼ ; 4bc

A¼

2g : kþca

ð13Þ

Therefore we derive the compacton solution of R(1, 1) equation qffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffi  ( 2g kþca bc p; n ; jnj 6 cos2  kþca 4bc kþca u1 ðx; tÞ ¼ 0; otherwise:

ð14Þ

Case 2. When nd  2 ¼ d; md ¼ nd; g ¼ 0, we have ( Aða  cÞ  bcndAn B2 ðnd  1Þ ¼ 0;

ð15Þ

Am k þ bcn2 d2 An B2 ¼ 0 which lead to m ¼ n;

2 ; d¼ n1

n1 B¼ 2n

rffiffiffiffiffi k ; bc

 1 2nða  cÞ n1 ; A¼ kðn þ 1Þ

g ¼ 0:

ð16Þ

Therefore we get the compacton solution of R(n, n) equations ðn > 1Þ 8h 1 qffiffiffi  qffiffiffi in1 < 2nðacÞ 2 n1 k np bc n ; cos ; jnj 6 2n bc n1 k kðnþ1Þ u2 ðx; tÞ ¼ : 0; otherwise:

ð17Þ

Case 3. When d ¼ nd; md ¼ nd  2; g ¼ 0, we have (

Aða  cÞ þ bcn2 d2 An B2 ¼ 0;

ð18Þ

Am k þ bcndAn B2 ðnd  1Þ ¼ 0 from which we get n ¼ 1;

2 ; d¼ m1

m1 B¼ 2

rffiffiffiffiffiffiffiffiffiffiffi ac ; bc

 1 ða  cÞðm þ 1Þ m1 ; A¼ 2k

g ¼ 0:

Thus we obtain the compacton solutions of Rðm; 1Þ equations ðm > 1Þ 8h qffiffiffiffiffiffi 1  pffiffiffiffiffiffi imþ1 < 2k 2 mþ1 ca p bc ; cos ; jnj 6 n ðcaÞðm1Þ 2 bc mþ1 ca u3 ðx; tÞ ¼ : 0; otherwise:

ð19Þ

ð20Þ

Remark (1) We can obtain the periodic solution of Rðn; nÞ equations ðn > 1Þ from Case 2 1 " rffiffiffiffiffi !#nþ1 kðn  1Þ nþ1 k 2 u4 ðx; tÞ ¼ sec ; n 2nða  cÞ 2n bc (2) We also can get the periodic solution of Rðm; 1Þ equations ðm > 1Þ from Case 3 1 rffiffiffiffiffiffiffiffiffiffiffi  m1   ða  cÞðm þ 1Þ ca 2 m1 u5 ðx; tÞ ¼ sec : n 2k 2 bc

ð21Þ

ð22Þ

718

D. Feng et al. / Applied Mathematics and Computation 198 (2008) 715–720

2.2. Compact and noncompact solutions of ansatz 2 Substituting (8) into (3), we get the same three possible cases as the Section 2.1. Hence we obtain the following compact and noncompact solutions of R(m, n) equations: (1) Compacton solutions of R(1, 1) equation qffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffi  ( 2g kþca 4bc p; n ; jnj 6 sin2  kþca 4bc kþca u6 ðx; tÞ ¼ 0; otherwise: (2) Compacton solutions of Rðn; nÞ equations ðn > 1Þ 8h 1 qffiffiffi  qffiffiffi in1 < 2nðacÞ 2 n1 k 2np bc n ; sin ; jnj 6 2n bc n1 k kðnþ1Þ u7 ðx; tÞ ¼ : 0; otherwise: (3) Compacton solutions of Rðm; 1Þ equations ðm > 1Þ 8h qffiffiffiffiffiffi 1  ffi imþ1 < 2 mþ1 pffiffiffiffiffi 2k ca 2p bc n ; sin ; jnj 6 ðcaÞðm1Þ 2 bc mþ1 ca u8 ðx; tÞ ¼ : 0; otherwise: (4) Periodic solutions of Rðn; nÞ equations ðn > 1Þ 1 " rffiffiffiffiffi !#nþ1 kðn  1Þ k 2 nþ1 csc : n u9 ðx; tÞ ¼ 2nða  cÞ 2n bc (5) Periodic solutions of Rðm; 1Þ equations ðm > 1Þ 1 rffiffiffiffiffiffiffiffiffiffiffi  m1   ða  cÞðm þ 1Þ 2 m  1 c  a u10 ðx; tÞ ¼ csc : n 2k 2 bc

ð23Þ

ð24Þ

ð25Þ

ð26Þ

ð27Þ

2.3. Solitary pattern and soliton solutions of ansatz 3 Substituting (9) into (3), we have Aða  cÞcoshd ðBnÞ  Am kcoshmd ðBnÞ  bcn2 d2 An B2 coshnd ðBnÞ þ bcndAn B2 ðnd  1Þcoshnd2 ðBnÞ  g ¼ 0 ð28Þ from which we can get the solitary pattern and soliton solutions of Rðm; nÞ equations by using the similar method as the Section 2.1 to determine the parameters A; B; d. (1) Solitary pattern solutions of Rð1; 1Þ equation rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ! 2g ack 2 u11 ðx; tÞ ¼ cosh n : ack 4bc (2) Solitary pattern solutions of Rðn; nÞ equations ðn > 1Þ 1 " rffiffiffiffiffiffiffi !#n1 2nða  cÞ k 2 n1 u12 ðx; tÞ ¼ cosh : n kðn þ 1Þ 2n bc (3) Solitary pattern solutions of Rðm; 1Þ equations ðm > 1Þ 1 rffiffiffiffiffiffiffiffiffiffiffi  mþ1   2k ac 2 mþ1 cosh u13 ðx; tÞ ¼ : n ðc  aÞðm  1Þ 2 bc

ð29Þ

ð30Þ

ð31Þ

D. Feng et al. / Applied Mathematics and Computation 198 (2008) 715–720

(4) Soliton solutions of Rðn; nÞ equations ðn > 1Þ 1 " rffiffiffiffiffiffiffi !#nþ1 kðn  1Þ k 2 nþ1 : sech n u14 ðx; tÞ ¼ 2nða  cÞ 2n bc (5) Soliton solutions of Rðm; 1Þ equations ðm > 1Þ 1 rffiffiffiffiffiffiffiffiffiffiffi  m1   ða  cÞðm þ 1Þ ac 2 m1 sech u15 ðx; tÞ ¼ : n 2k 2 bc

719

ð32Þ

ð33Þ

2.4. Solitary pattern and soliton solutions of ansatz 4 Substituting (10) into (3), similar to the Section 2.3, we obtain the following results: (1) Solitary pattern solutions of Rð1; 1Þ equation rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ! 2g ack 2 sinh u16 ðx; tÞ ¼ n : ack 4bc (2) Solitary pattern solutions of Rðn; nÞ equations ðn > 1Þ 1 " rffiffiffiffiffiffiffi !#n1 2nða  cÞ k 2 n1 sinh : u17 ðx; tÞ ¼  n kðn þ 1Þ 2n bc (3) Solitary pattern solutions of Rðm; 1Þ equations ðm > 1Þ 1 rffiffiffiffiffiffiffiffiffiffiffi  mþ1   2k ac 2 mþ1 sinh u18 ðx; tÞ ¼ : n ða  cÞðm  1Þ 2 bc (4) Soliton solutions of Rðn; nÞ equations ðn > 1Þ 1 " rffiffiffiffiffiffiffi !#nþ1 kðn  1Þ k 2 nþ1 csch u19 ðx; tÞ ¼ : n 2nðc  aÞ 2n bc (5) Soliton solutions of Rðm; 1Þ equations ðm > 1Þ 1 rffiffiffiffiffiffiffiffiffiffiffi  m1   ðc  aÞðm þ 1Þ ac 2 m1 csch u20 ðx; tÞ ¼ : n 2k 2 bc

ð34Þ

ð35Þ

ð36Þ

ð37Þ

ð38Þ

3. Conclusion With the aid of the mathematical software Maple, we obtain 20 families of solutions of Rðm; nÞ equations which contain compactons (solutions with the absence of infinite wings), solitary pattern solutions having infinite slopes or cusps, solitons and singular periodic wave solutions. Thus the direct method is not only efficient, but also has the merit of being widely applicable. References [1] M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, London, 1991. [2] V.B. Matveev, M.A. Salle, Darboux Transformation and Solitons, Springer-Verlag, Berlin, 1991. [3] C.H. Gu, H.S. Hu, Z.X. Zhou, Darboux Transformations in Soliton Theory and its Geometric Applications, Shanghai Sci. Tech. Publ., Shanghai, 1999.

720 [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]

D. Feng et al. / Applied Mathematics and Computation 198 (2008) 715–720 R. Hirota, J. Satsuma, Soliton solutions of a coupled KdV equation, Phys. Lett. A 85 (1981) 407–408. P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1993. G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Springer-Verlag, Berlin, 1989. J.B. Li, M. Li, Bounded travelling wave solutions for the (n + 1)-dimensional sine- and sinh-Gordon equations, Chaos Soliton. Fract. 25 (2005) 1037–1047. L. Tian, J. Yin, New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa–Holm equations, Chaos Soliton. Fract. 20 (2004) 289–299. A.M. Wazwaz, Solutions of compact and noncompact structures for nonlinear Klein–Gordon-type equation, Appl. Math. Comput. 134 (2003) 487–500. A.M. Wazwaz, A sine–cosine method for handling nonlinear wave equations, Math. Comput. Model. 40 (2004) 499–508. A.M. Wazwaz, Solitons and periodic solutions for the fifth-order KdV equation, Appl. Math. Lett. 19 (2006) 1162–1167. A.M. Wazwaz, Analytic study on nonlinear variant of the RLW and the PHI-four equations, Commun. Nonlinear Sci. Numer. Simul. 12 (2007) 314–327. Z.Y. Yan, H.Q. Zhang, New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics, Phys. Lett. A 252 (1999) 291–296. Z.Y. Yan, New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations, Phys. Lett. A 292 (2001) 100–106. E.G. Fan, Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos Soliton. Fract. 16 (2003) 819–839. S. Zhang, New exact solutions of the KdV–Burgers–Kuramoto equation, Phys. Lett. A 358 (2006) 414–420. M.L. Wang, Exact solutions for a compound KdV–Burgers equation, Phys. Lett. A 213 (1996) 279–287. J.M. Dye, A. Parker, An inverse scattering scheme for the regularized long-wave equation, J. Math. Phys. 41 (2000) 2889–2904.