INT. C0~4. ~ A T ~ S S TRANSFER 0735-1933/83/010077-06503.00/0 Vol. i0, pp. 77-82, 1983 @Pergamon Press Ltd. Printed in the United States
TO DETERMINE CHARACTERISTIC TIME OF V I S C O E L A S T I C F L U I D S
NEW
METHOD
E.Y. K w a c k and J.P. H a r t n e t t Energy Resources Center U n i v e r s i t y of I l l i n o i s at C h i c a g o Box 4348, Chicago, I l l i n o i s 60680
(Cc~municated by J.P. Hartnett and W.J. Minko~ycz)
ABSTRACT An e x t r a d i m e n s i o n l e s s p a r a m e t e r i n v o l v i n g the r a t i o of the e l a s t i c and v i s c o u s forces, the W e i s s e n b e r g number, is n e c e s s a r y to c o r r e l a t e the f r i c t i o n and h e a t t r a n s f e r b e h a v i o r of v i s c o e l a s t i c fluids. The e v a l u a t i o n of the W e i s s e n b e r g n u m b e r r e q u i r e s a m e a s u r e m e n t of the first n o r m a l force d i f f e r e n c e or, a l t e r n a t i v e l y , the d e t e r m i n a tion of the c h a r a c t e r i s t i c time of the fluid. We s u g g e s t that the c h a r a c t e r i s t i c time of v i s c o e l a s t i c fluids can be d e t e r m i n e d by a simple p r e s s u r e d r o p m e a s u r e m e n t . The basis for the p r o p o s e d m e t h o d is p r e s e n t e d . More detailed m e a s u r m e n t s are r e q u i r e d to v a l i d a t e the p r o c e d u r e .
Introduction It is w e l l k n o w n tain h i g h m o l e c u l a r viscoelastic
fluid.
such v i s c o e l a s t i c flow are r e d u c e d solvent.
that
weight The
The t u r b u l e n t
of v i s c o e l a s t i c [1-2],
the
of the
solvent
ty of these
polymers
friction
fluids below
the a d d i t i o n
amounts
of cer-
to a s o l v e n t
results
in a
factor
and h e a t t r a n s f e r
in fully e s t a b l i s h e d
the v a l u e s
associated
heat transfer
fluids is a f f e c t e d
level of m e c h a n i c a l and solute
fluids.
of small
with
by the p o l y m e r
[5-7], w h i c h the
77
[3-4]
behavior
concentration and the c h e m i s t r y
are r e l a t e d
friction
channel
the pure
and h y d r o d y n a m i c
degradation
In general,
turbulent
of
to the e l a s t i c i
factor
and the h e a t
78
E.Y. Kwack and J.P. Hartnett
transfer
decrease
tration,
while
they
To a n a l y z e elastic
(up to a point) increase with
the f r i c t i o n
fluids,
at least
as the first n o r m a l
force d i f f e r e n c e trations with
gests
one a d d i t i o n a l
fluids.
the c h a r a c t e r i s t i c
time,
that one n e w d i m e n s i o n l e s s
is n e e d e d
to c o r r e l a t e
viscoelastic
fluids.
the
dimensional
in a d d i t i o n
parameter
approach
is to deal measure
transfer
number,
Ws,
of
analysis
the W e i s s e n b e r g
and heat
The W e i s s e n b e r g
high c o n c e n -
Dimensional
parameter,
time of
the first n o r m a l
and a c c e s s i b l e
fluid.
such
to those n o r m a l l y
for r e l a t i v e l y
the usual
friction
of v i s c o -
or the c h a r a c t e r i s t i c
a useful
of a v i s c o e l a s t i c
concen-
of shear.
behavior
Unfortunately,
Accordingly,
polymer
hours
transfer
can o n l y be m e a s u r e d
of polymer.
the e l a s t i c i t y
and heat
into a c c o u n t
in N e w t o n i a n
increasing
increasing
force d i f f e r e n c e
the fluid m u s t be taken encountered
with
Vol. 10, No. 1
sug-
number,
behavior
is d e f i n e d
of
as:
Ws = ~V/d
where
(1)
~ is a c h a r a c t e r i s t i c
tic shear rate, Recently, Weissenberg and h e a t
time of the
V is the m e a n experimental
number
transfer
fluid v e l o c i t y
studies
[8-10]
is a key p a r a m e t e r behavior
fluid,
V/d
is a c h a r a c t e r i s
and d is the d i a m e t e r .
have
confirmed
in c o r r e l a t i n g
of v i s c o e l a t i c
fluids
the
that
the
friction
in t u r b u l e n t
pipe
flow. Previous
Methods
Since material
to D e t e r m i n e
the c h a r a c t e r i s t i c
property
constitutive
equation.
through molecular constitutive
of the
time,
solution,
l, of a p o l y m e r
it s h o u l d be o b t a i n a b l e
Constitutive
theories
solution
or t h r o u g h
equations
from a
are a v a i l a b l e
phenomenological
is a
either
nonlinear
equations.
Mizushina
et al.
[2] u s e d the R o u s e m o d e l
[ii]
based
on the
Vol. i0, No. 1
molecular
CHARACTERISTIC TIME OF VISCOEIASTIC FLUIDS
theory
polyethylene molecular
oxide
et al.
concentrations of c o m p l e x
using
data
such as the
measured
The above these
stress
over
generalized
the c h a r a c t e r i s t i c pointed models
New M e t h o d
used
lated
coefficient
i0 of Ref.
steady
time
a set
experi-
the dynamic
and
viscosi-
storage frequencies.
the a p p l i c a b i l i t y simple m o d e l s used
[15]
from
Such
considerable
tested
steady
is c l e a r l y
of the
data,
these
as
simple
shear v i s c o s i t y
superior
to have
of
in d e t e r m i n i n g
shear v i s c o s i t y
and Shaw
seemed
[9]).
[17] w h i c h
a very
the
friction
of aqueous
solutions factor
to the
slight
edge.
1 shows
to E y r i n g
model
time of the dilute
[8-10].
Based
on these
and the d i m e n s i o n l e s s
polyacrylamide
of the W e i s s e n b e r g Figure
is similar
the c h a r a c t e r i s t i c
polyacrylamide
times
as functions
model
to c a l c u l a t e
degraded
characteristic transfer
[16]
involves
of
to D e t e r m i n e
recently
and h i g h l y
Elbirli
model
The P o w e l l - E y r i n g was
only
time of
equations.
rates
limit
unknown.
a range
and the dynamic
several
that no one model
but the Eyring
require
can be e f f e c t i v e l y
the c h a r a c t e r i s t i c
data and c o n c l u d e d other,
[14].
constitutive
seriously
time using
out by Bird to o b t a i n
model
over
[13] w h i c h
of shear
Alternatively,
Newtonian
B
shear viscosity,
range
considerations
two approaches.
model
difference
a wide
are p o l y d i s -
are u s u a l l y
solutions
equations
steady
polymer
the c h a r a c t e r i s t i c
AP-273)
nonlinear
constitutive
in p r a c t i c e
distributions
the C a r r e a u
the first normal
modulus
(Separan
Unfortunately,
for m o n o d i s p e r s e
used
determined
phenomenological
phenomenological mental
[12]
polyacrylamide
developed
weight
time of dilute
solutions.
solutions
and their m o l e c u l a r
aqueous
ty,
were m a i n l y
but all p o l y m e r
Argumendo
the c h a r a c t e r i s t i c
(Polyox WSR-301)
theories
solutions, perse
to d e t e r m i n e
79
solutions
and R e y n o l d s
a representative
were
numbers
heat corre-
(see Fig.
f-Ws curve
for a
E.Y. Kwack and J.P. Hartnett
80
Vol. i0, No. 1
\ rneasured
Ws FIG. 1 F a n n i n g f r i c t i o n factor as a f u n c t i o n of W e i s s e n b e r g n u m b e r for a fixed R e y n o l d s number.
fixed R e y n o l d s istic
number.
If these
time can be d e t e r m i n e d
in a pipe or c a p i l l a r y erably
longer
assumed
number
value,
100 to e n s u r e
is k n o w n
then
value
greater
with
friction to t h a t
number
it is n e c e s s a r y
factor shown
of the
than the c r i t i c a l
a slightly
larger above
in Fig.
the W e i s s e n b e r g
the
friction
friction
it is i m p o s s i b l e
of the W e i s s e n b e r g
since
It is
factor
and the
number
of the e x p e r i -
factor
is e q u a l
number
the test
which will yield value.
The c h a r a c t e r i s t i c
to the
uniquely
the
to any
for friction.
in a n o t h e r a value
tube
of the
A figure comparable
1 can then be u s e d to d e t e r m i n e
number.
consid-
flow.
to d e t e r m i n e
Weissenberg
the a s y m p t o t i c
ratio
it m a y c o r r e s p o n d
to r e p e a t
diameter
drop measurement
fully e s t a b l i s h e d
between
the c h a r a c t e r -
to d i a m e t e r
for the R e y n o l d s
value
value
In this case,
pressure
tube w i t h a l e n g t h
If the m e a s u r e d
asymptotic
are valid,
by a simple
that the r e l a t i o n s h i p
Weissenberg ment.
than
results
the v a l u e
time m a y n o w be
of
Vol. I0, No. 1
determined
CHARACTERISTIC TIME OF VISCOELASTIC FLUIDS
81
from
I = Ws d/V
Since
(2)
I is a fluid p r o p e r t y ,
the v a l u e m e a s u r e d
capillary
tube can be used
for the
under
flow c o n d i t o n s .
This
any
valuable
for d i l u t e
the a l t e r n a t i v e
aqueous
procedures
same a q u e o u s
technique
polymer
in the pipe or polymer
solution
should be p a r t i c u l a r l y
solutions
in w h i c h
fail to y i e l d v a l u e s
case all of
of the c h a r a c t e r i s -
tic time. Nomenclature d
tube d i a m e t e r
f
Fanning
Re a
Reynolds
V
average
Ws
Weissenberg
Greek
Symbols apparent
p T
density w
wall
friction number
factor,
f = Tw/(pV2/2)
b a s e d on the v i s c o s i t y
velocity
at wall,
pVd/~
of fluid
number,
viscosity
lV/d
evaluated
at w a l l
of fluid
shear
stress
characteristic
time of fluid References
I.
G. M a r r u c c i and G. A s t a r i t a , T u r b u l e n t h e a t t r a n s f e r in v i s c o e l a s t i c liquids, Ind. Eng. Chem. Fundam. 6, 70 (1967).
2.
T. M i z u s h i n a and H. Usui, R e d u c t i o n of e d d y d i f f u s i o n for mom e n t u m and h e a t in v i s c o e l a s t i c fluid flow in a c i r c u l a r tube, P h y s i c s Fluids, 20, i00 (1977).
3.
D.H. F i s h e r and F. R o d r i q u e z , D e g r a d a t i o n of d r a g - r e d u c i n g p o l y m e r s , J. Appl. P o l y m e r Sci., 15, 2975 (1971).
4.
K.S. N g and J.P. H a r t n e t t , E f f e c t on m e c h a n i c a l d e g r a d a t i o n on p r e s s u r e d r o p and h e a t t r a n s f e r p e r f o r m a n c e of p o l y a c r y l a m i d e s o l u t i o n s in t u r b u l e n t pipe flow, in S t u d i e s in H e a t T r a n s f e r (edited by T.F. Irvine, Jr. et al.) p. 297, M c G r a w - H i l l , N e w Y o r k (1979).
82
E.Y. Kwack and J.P. Hartnett
Vol. 10, No. 1
5.
R. Monti, Heat t r a n s f e r in d r a g - r e d u c i n g solutions in Progress in Heat T r a n s f e r (edited by W.R. S c h o w a t e r et al.), Vol. 5, p. 239, P e r g a m o n Press, New York (1972).
6.
E.Y. Kwack, Y.I. Cho and J.P. Hartnett, Solvent effects on drag r e d u c t i o n of Polyox solutions in square and c a p i l l a r y tube flows, J. N o n - N e w t o n i a n F l u i d Mech., 9, 79 (1981).
7.
Y.I. Cho and J.P. Hartnett, N o n - N e w t o n i a n fluids in c i r c u l a r pipe flow, in A d v a n c e s in H e a t Transfer, Vol. 15, p. 59, Academic Press, N e w York (1982).
8.
E.Y. Kwack, Y.I. Cho and J.P. Hartnett, E f f e c t of W e i s s e n b e r g n u m b e r on t u r b u l e n t heat t r a n s f e r of aqueous p o l y a c r y l a m i d e solutions, 7th Int. Heat T r a n s f e r Conf., Munich, W e s t G e r m a n y (1982).
9.
E.Y. Kwack and J.P. Hartnett, E f f e c t of d i a m e t e r on critical W e i s s e n b e r g numbers for p o l y a c r y l a m i d e solutions in t u r b u l e n t pipe flow, Int. J. Heat Mass Transfer, 25, 797 (1982).
i0.
E.Y. Kwack and J.P. Hartnett, critical W e i s s e n b e r g numbers, 1445 (1982).
E f f e c t of solvent Int. J. Heat Mass
111.
P.E. Rouse, Jr., A theory of the linear v i s c o e l a s t i c p r o p e r t i e s of dilute solutions of coiling polymers, J. Chem. Phys., 21, 1272 (1953).
12.
A. Argumendo, T.T° Tung and K.I. Chang, R h e o l o g i c a l p r o p e r t y m e a s u r e m e n t s of d r a g - r e d u c i n g p o l y a c r y l a m i d e solutions, Trans. Soc. Reol., 22, 449 (1978).
13.
P.J. Carreau, R h e o l o g i c a l e q u a t i o n s from m o l e c u l a r theories, Trans. Soc. Rheol., 16, 99 (1972).
14.
R.B. Bird, E x p e r i m e n t a l tests of g e n e r a l i z e d N e w t o n i a n c o n t a i n i n g a z e r o - s h e a r v i s c o s i t y and a c h a r a c t e r i s t i c Can. J. Chem. Eng., 43, 161 (1965).
15.
B. E l b i r l i and M.T. Shaw, Time c o n s t a n t data, J. Rheol., 22, 561 (1978).
16.
F.H. Ree, T. Ree and H. Eyring, R e l a x a t i o n theory of t r a n s p o r t p r o b l e m s in c o n d e n s e d systems, Ind. Eng. Chem., 50, 1036 (1958)
17.
R.E. Powell and H. Eyring, M e c h a n i s m viscosity, Nature, 154, 427 (1944).
from
chemistry Transfer,
on 25,
network
models time,
shear v i s c o s i t y
for r e l a x a t i o n
theory
of