Physica B 443 (2014) 114–119
Contents lists available at ScienceDirect
Physica B journal homepage: www.elsevier.com/locate/physb
New Physics of Metamaterials Zhong-Yue Wang Engineering Department, SBSC, No. 580 Songhuang Road, Shanghai 201703, China
art ic l e i nf o
a b s t r a c t
Available online 12 March 2014
Einstein utilized Lorentz invariance from Maxwell's equations to modify mechanical laws and establish the special theory of relativity. Similarly, we may have a different theory if there exists another covariance of Maxwell's equations. In this paper, we find such a new transformation where Maxwell's equations are still unchanged. Consequently, Veselago's metamaterial and other systems have negative phase velocities without double negative permittivity and permeability can be described by a unified theory. People are interested in the application of metamaterials and negative phase velocities but do not appreciate the magnitude and significance to the spacetime conception of modern physics and philosophy. & 2014 Elsevier B.V. All rights reserved.
Keywords: Metamaterial Maxwell's equations Negative momentum Advanced potential Faster than light
E2 ¼ p2 C 2 þ m20 C 4
1. Introduction Consider an inertial reference frame K 0 moves at a constant velocity V with respect to another inertial system K as shown in Fig. 1. For convenience, the three sets of axes are parallel and their relative motion is along the common x–x0 axis. The form of Maxwell's equations in K 0 and K does not change under the following Lorentz transformation: x Vt x0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
ð1Þ
y0 ¼ y
ð2Þ
z0 ¼ z
ð3Þ
C2 ¼
1
ð4Þ
ð5Þ
εμ
Einstein assumed mechanical laws to satisfy this transformation and get 0 1 p ¼ mV
V ⪡C
-
m0 B C m0 V@m ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiA 1 ðV 2 =C 2 Þ
E ¼ mC 2
E-mail address:
[email protected] http://dx.doi.org/10.1016/j.physb.2014.03.002 0921-4526/& 2014 Elsevier B.V. All rights reserved.
Although the Lorentz transformation is seemingly strange and complex, it can reduce to the Galilean transformation at low speeds (V⪡C) x0 ¼ x V t
ð9Þ
y0 ¼ y
ð10Þ
z0 ¼ z
ð11Þ
t0 ¼ t
ð12Þ
which agrees with our classical intuition. Addition of velocities is
2
t ðV=C Þx t 0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
ð8Þ
ð6Þ
ð7Þ
dx0 dx ¼ V dt 0 dt
ð13Þ
However, nobody had ever thought of the following space-time transformation to Fig. 1 x þ Vt x0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
ð14Þ
y0 ¼ y
ð15Þ
0
z ¼z
ð16Þ
t þ ðV=C 2 Þx t 0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
ð17Þ
because the consequence is inconsistent with common senses even in the classical limit. For example, x þ Vt x0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
V ⪡C
-
x þ Vt
ð18Þ
Z.-Y. Wang / Physica B 443 (2014) 114–119
115
ρ þ ðV =C 2 Þjx ρ0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; 2
2
1 ðV =C Þ
jx þ ρV j0x ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ; 1 ðV 2 =C 2 Þ
j0y ¼ jy ;
j0z ¼ jz
ð30Þ
In K,
Fig. 1. Two inertial frames with a common axis.
dx0 ðdx=dtÞ þ V ¼ dt 0 1 þ ðV =C 2 Þðdx=dtÞ
dx þV dt
V⪡C
-
ð19Þ
Hereinafter, we show that Maxwell's equations are invariant under the incredible transformation (14)–(17) and develop a tentative mechanical theory to compare with experiments.
2. Anomalous invariance and Maxwell's equations Maxwell's equations in K are ∂Ex ∂Ey ∂Ez ρ þ þ ¼ ε ∂x ∂y ∂z
ð20Þ
∂Ez ∂Ey ∂Bx ¼ ∂y ∂z ∂t
ð21 xÞ
∂Ex ∂Ez ∂By ¼ ∂z ∂x ∂t
ð21 yÞ
∂Ey ∂Ex ∂Bz ¼ ∂x ∂y ∂t
ð21 zÞ
∂Bx ∂By ∂Bz þ þ ¼0 ∂x ∂y ∂z
ð22Þ
∂Bz ∂By 1 ∂Ex ¼ μjx þ 2 ∂y ∂z C ∂t
ð23 xÞ
∂Bx ∂Bz 1 ∂Ey ¼ μjy þ 2 ∂z ∂x C ∂t
ð23 yÞ
∂By ∂Bx 1 ∂Ez ¼ μjz þ 2 ∂x ∂y C ∂t
ð23 zÞ
ð24Þ
∂ ∂ ¼ ∂y ∂y0
ð25Þ
∂ ∂ ¼ ∂z ∂z0
ð26Þ
∂ 1 ∂ ∂ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þV 0 ∂t ∂t 0 ∂x 2 2 1 ðV =C Þ
ð31Þ
E0y VB0z Ey ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
ð32Þ
E0z þ VB0y Ez ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
ð33Þ
Bx ¼ B0x
ð34Þ
B0y þ ðV=C 2 ÞE0z By ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
ð35Þ
B0z ðV=C 2 ÞE0y Bz ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
ð36Þ
ρ0 ðV=C 2 Þj0x ρ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð37Þ
j0x ρ0 V jx ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
ð38Þ
jy ¼ j0y
ð39Þ
jz ¼ j0z
ð40Þ
1 ðV 2 =C 2 Þ
Substituting Eqs. (24)–(26),(31)–(33),(37) and (5) into (20), E0y VB0z E0z þV B0y 1 ∂ V ∂ ∂ ∂ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ 2 0 E0x þ 0 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ 0 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 ∂x C ∂t ∂y ∂z 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ
ρ0 ðV=C 2 Þj0x ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ε 1 ðV 2 =C 2 Þ
ð41Þ
0 0 ∂E0x ∂Ey ∂E0z ∂B0z ∂By 1 ∂E0x þ 0 þ 0 V 0 2 0 0 0 ∂x ∂y ∂z ∂y ∂z C ∂t
According to (14)–(17), ∂ 1 ∂ V ∂ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ 2 ∂x ∂x' C ∂t' 1 ðV 2 =C 2 Þ
Ex ¼ E0x
ð27Þ
! ¼
ρ0 V μj0x ε
ð42Þ
i.e. 0 ∂E0x ∂Ey ∂E0z ρ0 þ 0þ 0 ¼ 0 ∂x ∂y ∂z ε
ð200 Þ
0 ∂B0z ∂By 1 ∂E0 0 ¼ μjx ' þ 2 0x 0 ∂y ∂z C ∂t
ð23 x0 Þ
Likewise, (21-x) is now E0z þ VB0y E0y VB0z ∂ ∂ 1 ∂ ∂ q q q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B0 ¼ þ V ∂y0 ∂z0 ∂t 0 ∂x' x 2 2 2 2 2 2 1 ðV =C Þ 1 ðV =C Þ 1 ðV =C Þ ð43Þ
Physical quantities in K 0 , E0x ¼ Ex ;
Ey þV Bz E0y ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi; 1 ðV 2 =C 2 Þ
Ez VBy E0z ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
ð28Þ
B0x ¼ Bx ;
By ðV=C 2 ÞEz B0y ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi; 1 ðV 2 =C 2 Þ
Bz þ ðV=C 2 ÞEy B0z ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 ðV 2 =C 2 Þ
ð29Þ
0 0 ∂E0z ∂Ey ∂B0x ∂B0x ∂By ∂B0z þ þ V þ þ 0 ∂y0 ∂z0 ∂t ∂x0 ∂y0 ∂z0
! ¼0
ð44Þ
i.e. 0 ∂E0z ∂Ey ∂B0 ¼ 0x ∂y0 ∂z0 ∂t
ð21 x0 Þ
116
Z.-Y. Wang / Physica B 443 (2014) 114–119
0 ∂B0x ∂By ∂B0z þ 0 þ 0 ¼0 0 ∂x ∂y ∂z
ð220 Þ
Eq. (21-y): E0z þ VB0y ∂E0x 1 ∂ V ∂ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ 2 0 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 0 ∂x C ∂t ∂z 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ 0 2 0 1 ∂ ∂ By þ ðV=C ÞEz qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þV ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 ∂t ∂x' 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ
ð45Þ
∂E0 ∂B ∂E0x 1 1 y z ¼ 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ 2 2 ∂z0 1 ðV 2 =C 2 Þ ∂x0 ∂t 0 1 ðV =C Þ ð46Þ
Eq. (23-y): 0 2 0 ∂B0x 1 ∂ V ∂ Bz ðV=C ÞEy qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ 2 0 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 0 ∂x C ∂t ∂z 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ E0y VB0z 1 ∂ ∂ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ V ¼ μj0y þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 0 ∂t ∂x 1 ðV 2 =C 2 Þ C 2 1 ðV 2 =C 2 Þ
! ! 0 ∂B0x 1 V 2 ∂B0z 1 V 2 ∂Ey 0 1 ¼ μ j þ 1 y 0 ∂z0 1 ðV 2 =C 2 Þ C 2 ∂x0 C 2 ∂t C 2 1 ðV 2 =C 2 Þ ð54Þ
0
∂B0y ∂E0x ∂E0z 0¼ 0 0 ∂z ∂x ∂t
ð21 y0 Þ
Eq. (21-z): E0y VB0z 1 ∂ V ∂ ∂ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 E0x þ 0 2 ∂t 0 ∂x ∂y 2 2 2 2 C 1 ðV =C Þ 1 ðV =C Þ 0 2 0 1 ∂ ∂ Bz ðV=C ÞEy qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 þV 0 ∂t ∂x 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ ! 0 ! V 2 ∂Ey ∂E0x 1 V 2 ∂B0z ¼ 1 2 1 2 ∂x0 ∂y0 ∂t 0 C C 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ 1
∂E0y ∂E0x ∂x0 ∂y0
¼
ð47Þ
ð48Þ
0
∂B0x ∂B0z 1 ∂Ey ¼ μj0y þ 2 0 ∂z0 ∂x0 C ∂t
ð21 z0 Þ
ð23 y0 Þ
Eq. (23-z): 0 2 0 1 ∂ V ∂ By þ ðV=C ÞEz ∂B0x qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 þ 0 2 ∂t 0 ∂x ∂y C 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ E0z þ VB0y 1 ∂ ∂ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q ¼ μj0z þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 þV ∂t ∂x0 C 2 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ
ð55Þ
! 0 ! V 2 ∂By ∂B0x 1 V 2 ∂E0z 0 1 2 ¼ μjz þ 1 2 ∂x0 ∂y0 ∂t 0 C C 1 ðV 2 =C 2 Þ C 2 1 ðV 2 =C 2 Þ 1
ð56Þ ∂B0y ∂x0
∂B0 0z
ð53Þ
∂B0x 1 ∂E0 ¼ μj0z þ 2 0z ∂y0 C ∂t
ð23 z0 Þ
Eq. (22):
Maxwell's equations remain in the same form under two transformations (1)–(4) and (14)–(17). It is a pity that the latter had never been studied.
2 0 2 0 0 0 1 ∂ V ∂ ∂ By þ ðV=C ÞEz ∂ Bz ðV=C ÞEy 0 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi B þ þ þ ¼0 x 0 ∂x0 C 2 ∂t ∂y0 ∂z0 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ
3. New mechanics and measurable effects
∂t
ð49Þ 0 ∂B0x ∂By ∂B0z þ 0þ 0þ 0 ∂x ∂y ∂z
V C2
0 ∂E0z ∂Ey ∂B0x 0þ 0 0 ∂y ∂z ∂t
! ¼0
ð50Þ
i.e. 0 ∂B0x ∂By ∂B0z þ þ ¼0 ∂x0 ∂y0 ∂z0 0 ∂E0z ∂Ey ∂B0 ¼ 0x ∂y0 ∂z0 ∂t
0
ð22 Þ
ð21 x0 Þ
Under this new transformation, the product of a physical quantity times the velocity V is reversed, e.g. j ¼ ρV;
Vector potential A ¼
ϕ C2
V
ð57Þ
Introduce a mechanical theory which is consistent with (14)–(17), as Einstein had done to special relativity and the Lorentz transformation (1)–(4). Hence, the momentum and total energy should be 0 1 p ¼ mV
V ⪡C
-
m0 B C m0 V@m ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiA 2 2 1 ðV =C Þ
ð58Þ
Eq. (23-x): 2 0 2 0 0 0 ∂ Bz ðV=C ÞEy ∂ By þðV=C ÞEz qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 0 ∂y ∂z' 1 ðV 2 =C 2 Þ 1 ðV 2 =C 2 Þ
ρV 1 ∂ ∂ ¼ μqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi E0x 0 þV 0 ∂t ∂x 1 ðV 2 =C 2 Þ C 2 1 ðV 2 =C 2 Þ j0x
0
ð51Þ
! 0 0 ∂B0z ∂By 1 ∂E0x V ∂E0x ∂Ey ∂E0z 0 0 ¼ μjx μρ V þ 2 0 þ 2 þ þ ð52Þ ∂y0 ∂z0 C ∂t C ∂x0 ∂y0 ∂z0 Owing to ð1=C 2 Þ ¼ εμ (5) and ∂E0x =∂x0 þ ∂E0y =∂y0 þ ∂E0z =∂z0 ¼ ρ0 =ε (200 ), Eq. (52) is 0 ∂B0z ∂By 1 ∂E0 ¼ μj0x þ 2 0x ∂y0 ∂z0 C ∂t
ð23 x0 Þ
E ¼ mC 2
ð7Þ
E2 ¼ p2 C 2 þ m20 C 4
ð8Þ
It is surprising that the momentum p is in a direction opposite to the velocity V. That is to say, this new theory is symmetric to relativistic mechanics and Newtonian. In view of de Broglie's relation p ¼ ℏk, the wave vector k of a photon should be antiparallel to the arrival of the mass m ¼ ðℏω=C 2 Þ and energy ℏω (mass–energy equivalence). As electromagnetic waves consist of a 2 stream of photons, the phase velocity ðω=k Þk [1] is also negative. We can obtain Snell's law of refraction from conservation of the momentum component parallel to the interface for a single photon [2] (Fig. 2). ℏk1 sin γ 1 ¼ ℏk2 sin γ 2
ð59Þ
Z.-Y. Wang / Physica B 443 (2014) 114–119
117
Fig. 6. Reversed Cherenkov radiation.
Fig. 2. Snell's law.
Fig. 7. Doppler effect (the receiver is moving away from the source).
Fig. 8. Doppler effect (one approaches the other).
Fig. 3. Negative refraction.
Fig. 9. Inverse Doppler effect (they move away from each other).
Fig. 4. Momentum conservation.
Fig. 10. Inverse Doppler effect (one is moving towards the other).
ω kV ω0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi o ω ðFig: 10Þ 1 ðV 2 =C 2 Þ
ð63Þ
Fig. 5. Cherenkov radiation.
4. Application: Veselago's materials and others If the momentum of a photon is opposite to the arrival of energy (red arrow), the light ray should be refracted on the same side of the incident beam otherwise the horizontal momentum of the photon is non-conservational (Fig. 3). Moreover, the Cherenkov effect can be deduced from the photon theory [3,4] and energy–momentum conservation (Fig. 4). For normal photons see Fig. 5. As to photons have a negative momentum see Fig. 6. Regular Doppler effect derived by Lorentz transformation:
ω kV ω0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi o ω ðFig: 7Þ
ð60Þ
ω þ kV ω0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 ω ðFig: 8Þ
ð61Þ
1 ðV 2 =C 2 Þ
1 ðV 2 =C 2 Þ
5. Physical meaning of advanced potentials
Inverse Doppler effect:
ω þ kV ω0 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 ω ðFig: 9Þ 1 ðV 2 =C 2 Þ
A method to realize (58) is to generate an even number of imaginary momenta so the final effective momentum is a negative quantity. For instance, single negative materials with εef f o 0 or μef f o 0 cause an imaginary wave vector(momentum) respectively and the combination results in a negative wave vector(momentum). This is just the mechanism of Veselago's material [5] to have negative refraction [6], reversed Cherenkov effect [7] and inverse Doppler effect [8]. But εef f o 0 and μef f o 0 are not necessary conditions. Actually, negative phase velocities sporadically appeared in other studies [9–12]. A practical structure is the slow wave device in vacuum electronics where the phase constant β and phase velocity ω=β can be negative [13]. They have nothing to do with Veselago's proposal εef f o 0 and μef f o 0.
ð62Þ
pffiffiffiffiffiffi Potentials with the time dependence t ðr=ð1= εμÞÞ and pffiffiffiffiffiffi t þ ðr=ð1= εμÞÞ are called retarded potentials and advanced potentials. At present, advanced potentials are deemed to violate the
118
Z.-Y. Wang / Physica B 443 (2014) 114–119
Fig. 11. Energy(mass) transfer.
principle of causality and are discarded although they are entirely pffiffiffiffiffiffi consistent with Maxwell's equations [14]. In fact, t þ ðr=ð1= εμÞÞ pffiffiffiffiffiffi can be rewritten as t ðr= ð1= εμÞÞ which implies that the phase pffiffiffiffiffiffi velocity is V p ¼ ð1= εμÞ o 0. “Advanced potentials” as potentials of negative phase velocities are not in conflict with causality.
The dispersion relation !
εef f ¼ ε0 1
ω2p ω2 ω20
μef f ¼ μ0 1
F ω2 ω2 ω2m
6. Energy transport and Poynting vector The energy ℏω and mass m ¼ ℏω=C 2 propagates from the source to the receiver, while the momentum p ¼ mV is negative in this new theory (Fig. 11). The momentum density of an EM field g ¼ Np ¼ NmV ¼ Nℏk
ðN is the number density of photonsÞ ð64Þ
is in the direction of k. In addition, 2
ðw ¼ Nℏω 4 0 is the density of energyÞ
ð65Þ
Therefore, the energy flux density defined as S ¼ wV
ð66Þ
like (57) and (58) is equal to gC 2 ¼ NℏkC 2 p k
2
ð67Þ
The Poynting vector S should be in the same direction of momentum density g and wave vector k (Fig. 11).
The form of Eq. (7) is still tenable in a theory of superluminal bodies [15] and the criterion for a particle or wave to exceed c ¼ 299; 752; 498 m=s should be V 2 4 c2
ð68Þ
p2 4 c2 m2
ð69Þ
ω2p ¼ constant ω20
ð76Þ
ℏ2 β
2
ðℏω=C 2 Þ2
4 c2
c2 C4
ð77Þ
ð78Þ
β2 4
ω2 c2
ω2 2 oc β2
ð79Þ
ð80Þ
describes slow phase velocity waves [13].
2
ðℏω=C 2 Þ2 k 4 ω2 2
2
ð75Þ
In vacuum,
7. Faster than light
k 4
c2
! ω2p F ω2 1 2 1 ω2 ω2m ω ω20
ð74Þ
This behaves as if a dielectric medium where c is replaced by C [17,18] and Eq. (71) should be applied. It makes against our aim to break the light barrier. Sometimes the momentum of a photon is p ¼ ℏβ [4] and the criterion should now be
β 2 4 ω2
ℏ2 k
ω2
pffiffiffiffiffiffiffiffiffiffiffi can meet Eq. (72) in the range ω o ωm =ð 1 F Þ,ω0 o ω⪡ωp (double negative) or ω o ωm , ω o ω0 (double positive). We plan to design suitable materials to observe [16] The angular frequency ω in a double positive material cannot be much less than ω0 otherwise !
εef f ε0 1 þ
gC ¼ NmC V ¼ NℏωV ¼ wV 2
k ¼ ω εef f μef f ¼ 2
ð73Þ
ω2 c2
4 c2
c2 C4 ðC ¼ cÞ
ð70Þ
ð71Þ
ð72Þ
8. Conclusion We construct a new system from first principles to replace Veselago’s phenomenological theory. It can interpret all kinds of negative phase velocities which essentially represent a momentum antiparallel to the velocity. Retarded potentials and advanced potentials correspond to Lorentz invariance and the anomalous space-time transformation respectively. Faster than light energy is possible to
Z.-Y. Wang / Physica B 443 (2014) 114–119
119
exist in a metamaterial.
References [1] E.H. Wichmann, Quantum Physics, Berkeley Physics Coursevol. 4, McGrawHill, New York, 1971, p. 182. [2] E. Hecht, Optics, 4th editionAddison-Wesley, New York, 2002, p. 141. [3] Z.Y.Wang, Graphene, neutrino mass and oscillation, 〈arXiv:0909.1856v2〉. [4] Z.Y. Wang, Extension to de Broglie formula and momentum operator of Quantum Mechanics (2014) under consideration. [5] V.G Veselago, Sov. Phys. Usp. 10 (4) (1968) 509. [6] R.A. Shelby, D.R. Smith, S. Schultz, Science 292 (5514) (2001) 77. [7] S. Xi, H.S. Chen, T. Jiang, et al., Phys. Rev. Lett. 103 (19) (2009) 194801. [8] N. Seddon, T. Bearpark, Science 302 (5650) (2003) 1537. [9] Z.X. Huang, Introduction to the Theory of Cut-off Waveguides, Metrology Publishing, Beijing (1991) 145 (in Chinese).
[10] [11] [12] [13] [14] [15] [16] [17] [18]
K. Wynne, J. Carey, J. Zawadzka, et al., Opt. Commun. 176 (4–6) (2000) 429. C. Luo, M. Ibanescu, S.G. Johnson, et al., Science 299 (5605) (2003) 368. Y. Zhang, B. Fluegel, A. Mascarenhas, Phys. Rev. Lett. 91 (15) (2003) 157404. K. Zhang, D. Li, Electromagnetic Theory for Microwaves and Optoelectronics, 2nd edition, Springer, New York, 2008, pp. 401–472. D.J. Griffiths, Introduction to Electrodynamics, 3rd edition, Prentice-Hall, New Jersey, 1999, p. 425. G. Feinberg, Phys. Rev. 159 (1967) 1089. J. Fan, Z.Y. Wang, New method to measure energy velocity and experimental test in dielectric media, (2014) under consideration. Z.Y. Wang, P.Y. Wang, Y.R. Xu, Optik 122 (22) (2011) 1994. Z.Y. Wang, Relativistic Electrodynamics in media and generalized Lorentz transformation, under consideration.