No spiral vortex along c-axis in anisotropic superconductors

No spiral vortex along c-axis in anisotropic superconductors

~ ) 00351~92~.00+.00 Per~mon Pm~ L~ Solid S~PrniM ~t Grmt C°mmBritain. u ~ f ° n s ' Vol. ~ , No. 7, pp. 53%54~ 1992. NO SPIRAL V O R T E X ALONG a...

210KB Sizes 2 Downloads 44 Views

~ )

00351~92~.00+.00 Per~mon Pm~ L~

Solid S~PrniM ~t Grmt C°mmBritain. u ~ f ° n s ' Vol. ~ , No. 7, pp. 53%54~ 1992.

NO SPIRAL V O R T E X ALONG a A X I S IN A N I S O T R O P I C SUPERCONDUCTORS "M.L~uli~ ~ d A.Krgmer Fachbereich Phyfik, ~ d e U ~ r ~ Be~n A r ~ m ~ 14, D-1000 Berfin 33, W-Germany. (Recei~d 2 ~ u ~ y

1992 by E. M~n~i)

The pmMem of the existence of ~iral ~ s ~ati~ Mo~ t ~ ~ i s h an ~ m ~ c superconductor is reconfidered ufing the L~don ~ o a c h ~r the i~6on b~ween vortex elements. We show th~ them h ~ spirM instabifty ~r a ~n~e vo~ex ~ co~rad~t~n to m~nt m s ~ d Koyama ~ d T a c ~ . We ~ s briefly th~ a ~ h t e vo~ex lattice h Mso sta~e against s m ~ a m p l i ~ hading ~ a spirM confl~ration ufing nonbcM el~6c ~ r ~ H o w e ~ a spir£ ~gabifi~ is p ~ d ~ e ~ the p r ~ c e ~ a ~ t ~ g the v ~ t ~ fine.

The ~coordinate ~ chosen to be ~ong the ~axis, then

Re~ntl~ K~ama ~ d Tachi~ [1] ~op~ed the exhtence of s~rM vor~ces ofien~d ~ong the ~ m m ~ ~ h ~ uniaxiM sup~conductors. T~s w~ motivated by ~ e ~ s ~ t th~ the ~Wener~ ~ g r ~ g ~ v ~ c e s lying ~ the ag~ane ~ low~ than the energy d tho~ p~alld to the ~axh. In ord~ to r~xamine this pmMem we ~ t with the ~ p r ~ o n br ~ e h ~ r ~ o n betw~n vort~ elements ~ anisotm~c s u p ~ n d u ~ o ~ . In the London fimit the fr~ ~ergy ~ an ensembh ~ ~ d flux f n ~ h~ t ~ form ~

F=~. ff v~(~-G)dl,.dl~,

~= (~,-k.,O).

To account ~r spiral ~ o r f i o n the vortex ~ne ~ ~ wfi~en ~ function of a p~ameter a: .~

(3)

ARer some straightforward c ~ c ~ n the s d f energy of the s~ral vortex (1) ~ reduced to the form

F... = h(.,~)+.'~[~,(~,~)- 6(-,~,~1, (1)

(4)

where I~, I~, and I~ read

*~

h(.,~)=/ ~ / f ~ g5~'t~.~*(&~, h(.,~)=/ ~ f / ~ ~(cos~-.)) ×

: ~ : :~r oVp~~(~me : ~ t ifo~o~::~ ~:~'~et ~ e : : ~ : r ~ : : ~ : merits, ~ d a, ~ ~ {x, y, z}. In the c~e of u~axiM s~ p~conductors this p ~ e ~ i ~ is ~ven by ~ ~ a ( ~ = 1 + 1A ~ { ~ " ~ - 1 + A~A'+ A ~ } "

= ~co~ ~a~n~a)

~+~,

(~

Her< ~ = g × ~ A, = ~h, A~ = ~ - ~h, X~ is the in-#ane magnetic p e n ~ r ~ n depth, ~ d A~h the peru ~ration de~h ~r currents flowing p~pendicul~ ~ the a~#an¢ In (1) the ~mmation runs over the vortices wh~e fine demen~ d~ ~ r ~ t with e~h other by the p~e~iM ~ a ( ~ - ~ ) . S~ce we ~e h ~ r ~ d ~ the vortex sdf-en~gy we ~op the summ~bn over i,j, retM~ng oMy the douMe i~egrM ~ ~e fine donents of a ~n#e vortex. To ~mpli~ its evMuat~n and in or~r to ~ m p ~ e our resu~s with those ~ [1] we introduce ~men~omess umts g ~ ~ L dY ~ d O ~ , ~ ~ ~ / ~ , w ~ h the se~energy is #yen in u~ts of ~ / ~ A ~ .

~-~+'~ { ~ cos ~a cos ~¢+ ~ ~n ~ ~n ~¢ + ~ ~n ~(~ + ,)}. (5) Here, R(~)

~

+~~

, s(5 =~ +

,~ ~ ,~ = ~,~

~(gll, a, ~) = a[k,(cos ~ a - cos ~ ) + k~(sin~a - fin ~¢~ and ~1 = (k=, k~, 0). In the fu~her ev~uation of the integr~s in (5) cyfndfic~ coordinates k= = kll cos(O+ ~ ) , k~ = ~1fin(0 + ~ ) have b~en used. By inserting (5) into (4), and after integrations over ~ + ¢, k,, and 6 one gets the sd~energy per unR hngth

*On have of absence from Ins~tute of Physics Bdgrade Univerfit~ Bdgrade, Yugo~avig 537

538

e-AXIS

IN ANISOTROPIC

? - u = h ( a , a ) + ~-~--~[]~(a, ~, ~ = ~) + ~ ( ~ , ~ , ~)

-hC~,fl,+ = t) +,hC~,~,+)], C6) where

hCa, Z)

5(~,fl,,)

=

j~o~ ~ ~o ~ ~ e

x

-~

V~. 82, No. 7

S ~ E ~ O ~ ~

neglection of the second term in E~(]6) of [1] which clearly vanishes in first order of aft, but should contribute in higher orders. A comp~te calculation of this term leads to a result whid~ is equivalent to our exprcm sion (6). Before presenting the results of the numefcM calculation of the self-energy (6) we first derive an approximate expres~on for F,,tl. For suffidently small fl and ~11 >> 1 the arguments of the Bessd functions may be approximated by a~t or a ~ t v ~ , resulting finally in ~ V/I + ¢a~fl ~ log ~,.

~!

=

This is ~ctually the curve length of the spiral scaled by v~ in x- and y-direction. From this, and from the numer~al computations of (6) presented in Fig.1 for vafio,s values of a, ~, ~, it follows that there is no instabifity due to spiral exaltation of the straight vortex, because

/o++/:+:?-,

1,(a,Z, ~) =

+ In order to avoid the ~ng~ar b ~ a d o u r of and ~ the Cuboff ~ll is introduced in the ~ e g r ~

~, I~, over

~. We would ~ to p~nt out that our expr~s~n ~ r t~ ~ner~ ~ ! ~ t ~ s~ral vortex ( ~ ~ not the ' same as ~ven ~ K ~ a m a ~ d T ~ h i ~ [1] ~ t~ir ex~es~on (19}). T~s ~ s c r e p ~ procee~ from the

(a)50-~+

(8)

~

(9)

k.u~A4 t k.,~.~,).

The result of (9) is also confirmed by using the nonlocM ~asticity theory for small displacement ~ In that case the ~ast~ energy of the spiral vortex propagating along

the ~axB

reads

,% = -~-{+..(k, =o, fl)++,.,Ck, =o,~)},

(to)

~) 5.0

=5,0

=10.0

4.0

6=1.0

4.0

3.0 ~

3.0

~C 2.0

2.0

1.0

1.0 ~

~=0.4 0.0

"

0.0

"

'

I

0.5

r

i

~

I

1.0

'

r

I

I

1.5

I

I

0.0

I

2.0

I

0.0

[

'

I

~

0.5

Fig.1. fl dependence of the self-energy of the spiral vortex for several values of the amplitude a, and anisotropy parameter e. The Ginsburg-Landau-parameter ~, is chosen to be 20.

r

=

r

0.01 r

+.0

+

~

'

I

~.5

+

~ ~

2.0

V~, 82, No. 7

c-A~S ~ A ~ S O T R O P I C

5.0

where '

1 2 3 4

4.0

d

539

SUP~CONDU~ORS ¢=1.0 ~=0.5 ~=0. I ~=0.01

(~+~,(~+~#V,,(~+~-GoG#V,,(O)}.(11) 5.0

Here, ~ are redprocal lattice vectors which are small in the case of small magnetic induction, i.e. A~ I ~ I'~ 1. This megn.s that the summation over.~ can be replaced by an integration over ~ ~ading to the following expres~on for the das~c energy :

2.0

1.0' f=0.5

f~ = ~-~~kdk { (l + k~)(12++k~k~+ B~)

0.0

(1 + ~ + ~)(~-(1 ~)~+e~ + ~) } ,

where

~

= F,//(~),

and

B = ( ~ ,

a ~

;

;

I

I

I

0.5

(12)

a~.~.

Here, the p~ameter c char~t~ses the ~pe ~ the vortex l~fice. W h e n we d ~ ~th a ~ute vortex ~stem the ~wer ~ u n d ~ y ~ ~ e i~egral ~ (12) ~ zero ~cause ~ . ~ o m (12) it h ~ v ~ u s th~ ~ ( a , ~ E 0 ~r e~h value ~ ~, t ~ c o ~ r ~ ou~ prev~us ~ e m e ~ on t ~ ~sence ~ ~ e ~ inst~H~ ~ ~ e vortex~ e ~ along the ~ . Up to now we con~dered only the magnetic part of vortex self-energy. The reason for this is that in the case of large G~nsbur~Landau-parameter ~II the core contribution to the sd~energy may be .ne~ected (see for exasnple [4]).The energy of the vortex core is pr~ portional to the curve ~ngth of the sp~al, where the z- and ~-direct~ns are scaled due to the anisoWopy of the superconductor. T~s ~ads to a term w~ch has the same form as (8)~ and therefore does not qualitatively change our result. Finally, we discuss b~efly t~e p o s ~ l i t y of the s~ral vortex in~abi~ty in the presence of external forces. This idea was first daborated by Clem [3] for isoWopic superconductors, where it has been shown that a helical (spiral) in.ability occurs in the presence of a ~n~tudihal current flowing along the vortex axis. The Gibbs ~ee energy in the presence of a current f(~) at the pl~ce of the vo~ex is ~ven in reduced units by

G= ~,o~,~-

I

0.0

~ / d ~ (Y × ~ ) . ~(~). (13)

~ =0.5 ;

I

~

I

;

1.0

I

;

~

I

1.5

#

2.0

Fig.2. ~ dependence of the Gibbs freeenergy of the spiral vortex (15) with amplitude a = 0.5 ~nd longitudinal current [ -- 0.5 for several values of e. The GinsburgLandau-p~aameter sllis chosen to be 20.

Choosing f(a) = J(a)~= and I = ~fdaJ(a)/ f da log ~[I the Gibbs ~ee energy per unit ~ngth reads (in reduced units)

~,O

= ~/(~&O-~M~.

(i~

Some numerical results~r fixed a, and I as ~nc~on of e, and ~ ~ e shown in ~ . W e find a ~ m u m ~ ~ w~ch ~ s~Red to larg~ valu~ of ~ if the anisotro~ parameter e ~ ~wered. T~s ~ o~y an i~Rrat~n how the instabiH~ depends on the ~isoWo~. A study of the real ~ u ~ o n has to take into account the ~ i a l ~ b ~ n ~ ~ e cu~ent and ~ e i~eract~n wRh other vortices as w ~ discussed by Brandt ~. Our ~ m p ~ calcu~ion is wrong ~r lar~ am~Rudes a, which c~n be shown ff (13) ~ w~tten ~ the ~ p r o x ~ o n ~):

~(~ ~, d = ~I + ~

- ~,~

°-~

-~.

~g~ T~re~re we g~ no fi&te ~ s ~ e I > 0 in the a ~ a n ~

~&mum

of ~ ~r

Acknowledgements - W e thank K.D. Schotte for usefull discussions. One of us (M.L.K) ~ thankful to the Bundesmi~erium f~r Fomchung und Technologie (BMFT) for the finandal suppo~.

~0

~ A ~ S ~ ANISOTROPIC SUPERCONDUCTORS

V~. ~ , No. 7

References [1] T.Koyama and M.Tachiki, SoLSt.Comm. 79, 1¢49 (1991) [2] E.H.Brandt, Physica B165-16~ 1129 (1990); A.Sudbo and E.H.Brandt, Phys.Re~ B43, 10482 (1991)

[3] J.R.Clem, Phys.Re~Lett. 24, 1425 (1977) [4] D.Saint-Jame~ G.Sarm~ EJ.Thomas TypeII superconducti~ty (Pergamon Pre~, 1969) [5] E.H.Brandt, £ Low Temp. Phys. 44, 33 (1981)