Non-differentiable symmetric duality for multiobjective programming with cone constraints

Non-differentiable symmetric duality for multiobjective programming with cone constraints

Available online at www.sciencedirect.com European Journal of Operational Research 188 (2008) 652–661 www.elsevier.com/locate/ejor Continuous Optimi...

184KB Sizes 0 Downloads 84 Views

Available online at www.sciencedirect.com

European Journal of Operational Research 188 (2008) 652–661 www.elsevier.com/locate/ejor

Continuous Optimization

Non-differentiable symmetric duality for multiobjective programming with cone constraints Moon Hee Kim a, Do Sang Kim

q

b,*

a

b

Department of Multimedia Engineering, Tongmyong University, Pusan 608-711, Republic of Korea Department of Applied Mathematics, Pukyong National University, Pusan 608-737, Republic of Korea Received 16 February 2006; accepted 7 May 2007 Available online 13 May 2007

Abstract Two pairs of non-differentiable multiobjective symmetric dual problems with cone constraints over arbitrary cones, which are Wolfe type and Mond–Weir type, are considered. On the basis of weak efficiency with respect to a convex cone, we obtain symmetric duality results for the two pairs of problems under cone-invexity and cone-pseudoinvexity assumptions on the involved functions. Our results extend the results in Khurana [S. Khurana, Symmetric duality in multiobjective programming involving generalized cone-invex functions, European Journal of Operational Research 165 (2005) 592–597] to the non-differentiable multiobjective symmetric dual problem. Ó 2007 Elsevier B.V. All rights reserved. Keywords: Non-differentiable programming; Duality theorems; Cone constraints; Weakly efficient solutions

1. Introduction and preliminaries A nonlinear programming problem and its dual are said to be symmetric if the dual of the dual is the original problem. Symmetric duality in nonlinear programming in which the dual of the dual is the primal was first introduced by Dorn [2]. Danzig et al. [3] formulated a pair of symmetric dual nonlinear programs and established duality results for convex and concave functions with non-negative orthant as the cone. The same result was generalized by Bazaraa and Goode [1] to arbitrary cones. Mond and Weir [7] presented two pair of symmetric dual multiobjective programming problems for efficient solutions and obtained symmetric duality results concerning pseudoconvex and pseudoconcave functions. Nanda and Das [8] also studied the symmetric dual nonlinear programming problem for arbitrary cones assuming the functions to be pseudo-invex. Kim et al. [4] studied a pair of multiobjective symmetric dual programs for pseudo-invex functions and arbitrary cones. Suneja et al. [10] formulated a pair of symmetric dual multiobjective programs of Wolfe type over q *

This work was supported by the Brain Korea 21 Project in 2006. Corresponding author. Tel.: +82 51 620 6315; fax: +82 51 611 6356. E-mail address: [email protected] (D.S. Kim).

0377-2217/$ - see front matter Ó 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.ejor.2007.05.005

M.H. Kim, D.S. Kim / European Journal of Operational Research 188 (2008) 652–661

653

arbitrary cones in which the objective function is optimized with respect to an arbitrary closed convex cone by assuming the function involved to be cone-convex. Very recently, Khurana [5] formulated a pair of differentiable multiobjective symmetric dual programs of Mond–Weir type over arbitrary cones in which the objective function is optimized with respect to an arbitrary closed convex cone by assuming the involved functions to be cone-pseudoinvex and strongly cone-pseudoinvex. In this paper, two pairs of non-differentiable multiobjective symmetric dual problems with cone constraints over arbitrary cones, which are Wolfe type and Mond–Weir type, are considered. On the basis of weak efficiency with respect to a convex cone, we obtain symmetric duality results for the two pairs of problems under cone-invexity and cone-pseudoinvexity assumptions on the involved functions. Our results extend the results in Khurana [5] to the non-differentiable multiobjective symmetric dual problem. First we consider the following multiobjective programming problem. ðP Þ K  Minimize subject to

f ðxÞ;  gðxÞ 2 Q;

x 2 C;

where f : Rn ! Rp ; g : Rn ! Rm and C  Rn , K and Q are closed convex cone with nonempty interior in Rp and Rm , respectively. Let X 0 ¼ fx 2 C : gðxÞ 2 Qg be the set of all feasible solutions of (P). Definition 1.1. A point x 2 X 0 is a weakly efficient solution of (P) if there exist no other x 2 X 0 such that f ðxÞ  f ðxÞ 2 int K: Definition 1.2. The positive polar cone K* of K is defined by K  ¼ fz 2 Rp : xT z = 0 for all x 2 Kg: Definition 1.3 [10]. Let f : Rn ! Rp be a function. Then f is K-preinvex with respect to the g if there exists a function g : C  C ! Rn such that for any x; y 2 Rn and a 2 ½0; 1, af ðxÞ þ ð1  aÞf ðyÞ  f ðy þ agðx; yÞÞ 2 K: Remark 1.1. If f : Rn ! Rp is differentiable and K-preinvex with respect to g T T f ðyÞ  rf ðyÞ gðx; yÞ 2 K. Moreover, 8k 2 K  ; ðkT f ÞðxÞ  ðkT f ÞðyÞ  rðkT f ÞðyÞ gðx; yÞ = 0:

then

f ðxÞ

Definition 1.4 [5]. Let f : Rn ! Rp be a differentiable function. Then f is K-pseudoinvex with respect to g at u 2 Rn if for all x 2 Rn T

rf ðuÞ gðx; uÞ 62 int K ) ðf ðxÞ  f ðuÞÞ 62 int K; where rf ðuÞ ¼ ðrf1 ðuÞ; rf2 ðuÞ; . . . ; rfp ðuÞÞT . Definition 1.5 [6]. Let C be a compact convex set in Rn . The support function sðx j CÞ of C is defined by sðxjCÞ :¼ maxfxT y : y 2 Cg: The support function sðx j CÞ, being convex and everywhere finite, has a subdifferential at every x in the sense of Rockafellar [9], that is, there exists z such that sðy j CÞ P sðx j CÞ þ zT ðy  xÞ for all y 2C. The subdifferential of sðx j CÞ is given by osðxjCÞ :¼ fz 2 C : zT x ¼ sðxjCÞg: For any set S  Rn , the normal cone to S at a point x 2 S is defined by N S ðxÞ :¼ fy 2 Rn : y T ðz  xÞ 6 0 for all z 2 Sg: It is readily verified that for a compact convex set C, y is in NC(x) if and only if sðyjCÞ ¼ xT y, or equivalently, x is in the subdifferential of s at y.

654

M.H. Kim, D.S. Kim / European Journal of Operational Research 188 (2008) 652–661

2. Wolfe type symmetric duality We now state the following pair of Wolfe type non-differentiable symmetric dual problems and establish weak, strong and converse duality theorems. f1 ðx; yÞ þ sðxjD1 Þ  y T z1  y T

ðWPÞ K  minimize

p X

ki ðry fi ðx; yÞ  zi Þ; . . . ; fp ðx; yÞ

i¼1 T

þsðxjDp Þ  y zp  y

T

p X

! ki ðry fi ðx; yÞ  zi Þ ;

i¼1



subject to

p X

ki ðry fi ðx; yÞ  zi Þ 2 C 2 ;

ð1Þ

i¼1

zi 2 E i ;

i ¼ 1; . . . ; p;

ð2Þ

k 2 K ;

kT e ¼ 1;

ð3Þ

x 2 C1;

and ðWDÞ

K  maximize

f1 ðu; vÞ  sðvjE1 Þ þ uT x1  uT

p X

ki ðrx fi ðu; vÞ þ xi Þ; . . . ; fp ðu; vÞ  sðvjEp Þ

i¼1 T

þu xp  u

T

p X

!

ki ðrx fi ðu; vÞ þ xi Þ ;

i¼1

subject to

p X

ki ðrx fi ðu; vÞ þ xi Þ 2 C 1 ;

ð4Þ

i¼1

xi 2 Di ; 

k2K ; n

m

i ¼ 1; . . . ; p; T

k e ¼ 1;

ð5Þ

v 2 C2;

ð6Þ

p

where f : R  R ! R be a twice differentiable functions of x and y, Di and Ei (1 5 i 5 p) are compact convex set in Rn and Rm , C1 and C2 be closed convex cones in Rn ; Rm with nonempty interiors, respectively. C 1 and C 2 are positive polar cones of C1 and C2, respectively, K is a closed convex cone in Rp such that int K 6¼ ;. Theorem 2.1 (Weak duality). Let ðx; y; k; zÞ be feasible for (WP) and let ðu; v; k; xÞ be feasible for (WD). Let f ð; yÞ þ ðÞT x be K-preinvex with respect to g1 for fixed y and f ðx; Þ þ ðÞT z be K-preinvex with respect to g2 for fixed x. If g1 ðx; uÞ þ u 2 C 1 and g2 ðv; yÞ þ y 2 C 2 , then ðf1 ðx; yÞ þ sðxjD1 Þ  y T z1  y T

p X

ki ðry fi ðx; yÞ  zi Þ; . . . ; fp ðx; yÞ þ sðxjDp Þ  y T zp

i¼1

 yT

p X

ki ðry fi ðx; yÞ  zi ÞÞ  ðf1 ðu; vÞ  sðvjE1 Þ þ uT x1  uT

i¼1

 sðvjEp Þ þ uT xp  uT

p X

ki ðrx fi ðu; vÞ þ xi Þ; . . . ; fp ðu; vÞ

i¼1 p X

ki ðrx fi ðu; vÞ þ xi ÞÞ 62 intK:

i¼1 T

Proof. Let ðx; y; k; zÞ be feasible for (WP) and let ðu; v; k; xÞ be feasible for (WD). Since f ð; yÞ þ ðÞ x is Kpreinvex with respect to g1 for fixed y = v, by Remark 1.1, p X i¼1

ki ðfi ðx; vÞ þ xT xi  fi ðu; vÞ  uT xi Þ = g1 ðx; uÞ

T

p X i¼1

ki ðrx fi ðu; vÞ þ xi Þ:

M.H. Kim, D.S. Kim / European Journal of Operational Research 188 (2008) 652–661

655

From (4) and g1 ðx; uÞ þ u 2 C 1 , ½g1 ðx; uÞ þ u

T

p X

ki ðrx fi ðu; vÞ þ xi Þ = 0:

i¼1

Hence p X

ki ðfi ðx; vÞ þ xT xi  fi ðu; vÞ  uT xi Þ =  uT

i¼1

p X

ki ðrx fi ðu; vÞ þ xi Þ:

ð7Þ

i¼1 T

Since f ðx; Þ þ ðÞ z is K-preinvex with respect to g2 for fixed x, by Remark 1.1, p X

T

ki ðfi ðx; yÞ  y T zi  fi ðx; vÞ þ vT zi Þ =  g2 ðv; yÞ

i¼1

p X

ki ðry fi ðx; yÞ  zi Þ:

i¼1

From (1) and g2 ðv; yÞ þ y 2 C 2 , T

½g2 ðv; yÞ þ y

p X

ki ðry fi ðx; yÞ  zi Þ 5 0:

i¼1

Hence p X

ki ðfi ðx; yÞ  y T zi  fi ðx; vÞ þ vT zi Þ = y T

i¼1

p X

ki ðry fi ðx; yÞ  zi Þ:

ð8Þ

i¼1

From (7) and (8), we have p X

ki ðfi ðx; yÞ  y T zi þ vT zi  fi ðu; vÞ þ xT xi  uT xi Þ =  uT

i¼1

p X

ki ðrx fi ðu; vÞ þ xi Þ

i¼1

þ yT

p X

ki ðry fi ðx; yÞ  zi Þ:

i¼1

Finally using xT xi 5 sðx j Di Þ and vT zi 5 sðv j Ei Þ, we obtain p X

ki ðfi ðx; yÞ  y T zi þ sðvjEi Þ  fi ðu; vÞ þ sðxjDi Þ  uT xi Þ =  uT

i¼1

p X

ki ðrx fi ðu; vÞ þ xi Þ

i¼1

þ yT

p X

ki ðry fi ðx; yÞ  zi Þ

i¼1

and hence p X

ki ðfi ðx; yÞ þ sðxjDi Þ  y T zi  y T

i¼1

 uT

p X

ki ðry fi ðx; yÞ  zi ÞÞ 

i¼1 p X

p X

ki ðfi ðu; vÞ  sðvjEi Þ þ uT xi

i¼1

ki ðrx fi ðu; vÞ þ xi ÞÞ = 0:

ð9Þ

i¼1

Suppose to the contrary that ðf1 ðx; yÞ þ sðxjD1 Þ  y T z1  y T

p X

ki ðry fi ðx; yÞ  zi Þ; . . . ; fp ðx; yÞ þ sðxjDp Þ  y T zp

i¼1

 yT

p X

ki ðry fi ðx; yÞ  zi ÞÞ  ðf1 ðu; vÞ  sðvjE1 Þ þ uT x1  uT

i¼1

 sðvjEp Þ þ uT xp  uT

p X i¼1

p X i¼1

ki ðrx fi ðu; vÞ þ xi ÞÞ 2 int K:

ki ðrx fi ðu; vÞ þ xi Þ; . . . ; fp ðu; vÞ

656

M.H. Kim, D.S. Kim / European Journal of Operational Research 188 (2008) 652–661

Then by the constraint (3), k 2 K* and k 5 0, p X

ki ðfi ðx; yÞ þ sðxjDi Þ  y T zi  y T

i¼1

p X

ki ðry fi ðx; yÞ  zi ÞÞ 

p X

i¼1

 uT

p X

ki ðfi ðu; vÞ  sðvjEi Þ þ uT xi

i¼1

ki ðrx fi ðu; vÞ þ xi ÞÞ < 0;

i¼1

which contradicts (9). Hence the result holds.

h

Theorem 2.2 (Strong duality). Let f : Rn  Rm ! Rp be a twice differentiable. Let ðx; y ; k; zÞ be a weakly efficient solution of (WP) and suppose that (I) ryy fi ðx; y Þ is positive definite for all i ¼ 1; . . . ; p. (II) fry fi ðx; y Þ  zi ; i ¼ 1; 2; . . . ; pg is linearly independent. (III) K is a closed convex cone with Rpþ  K.  such that ðx; y ;   is feasible for (WD), and the objective values of (WP) and (WD) are Then, there exists x k; xÞ equal. Furthermore, if the hypotheses of Theorem 2.1 are satisfied for all feasible solutions of (WP) and  is a weakly efficient solution for (WD). (WD), then ðx; y ;  k; xÞ Proof. Since ðx; y ;  k; zÞ is a weakly efficient solution of (WP), by modifying the Fritz John optimality condition in [6], we can check that there exist a 2 K  , b 2 C 2 , c 2 C 1 , d 2 K such that p X

 i þ ai ½rx fi ðx; y Þ þ x

i¼1 p X

p X

 ki ryx fi ðx; y Þðb  ðaT eÞy Þ  c ¼ 0;

ð10Þ

i¼1

ðai  ðaT eÞ ki Þ½ry fi ðx; y Þ  zi  þ

i¼1

p X

 ki ryy fi ðx; y Þðb  ðaT eÞy Þ ¼ 0;

T

ðb  ðaT eÞy Þ ðry fi ðx; y Þ  zi Þ  di ¼ 0; i ¼ 1; . . . ; p; ai y þ ðb  ðaT eÞy Þ ki 2 N E ðzi Þ; i ¼ 1; . . . ; p;

ð12Þ ð13Þ

i

bT

ð11Þ

i¼1

p X

 ki ½ry fi ðx; y Þ  zi  ¼ 0;

ð14Þ

i¼1

cT x ¼ 0; dT  k ¼ 0;

ð15Þ ð16Þ  Ti x x

 i 2 Di ; x

¼ sðxjDi Þ;

i ¼ 1; . . . ; p;

ð17Þ

ða; b; c; dÞ 6¼ 0:

ð18Þ

Multiplying (11) by ðb  ðaT eÞy Þ, p X

T ðai  ðaT eÞ ki Þ½ry fi ðx; y Þ  zi ðb  ðaT eÞy Þ þ ðb  ðaT eÞy Þ

i¼1

i¼1

Using the result in equality (12) and (16), we get p X

p X

ai di þ ðb  ðaT eÞy Þ

i¼1

T

p X

 ki ryy fi ðx; y Þðb  ðaT eÞy Þ ¼ 0:

i¼1 T

Since a 2 K* and d 2 K; a d = 0 and hence ðb  ðaT eÞy Þ

T

p X i¼1

 ki ryy fi ðx; y Þðb  ðaT eÞy Þ 5 0:

ki ryy fi ðx; y Þðb  ðaT eÞy Þ ¼ 0:

M.H. Kim, D.S. Kim / European Journal of Operational Research 188 (2008) 652–661

Since

657

Pp  x; y Þ is positive definite, then i¼1 ki ryy fi ð b ¼ ðaT eÞy :

ð19Þ

Pp

T  x; y Þ  zi  ¼ 0: Since fry fi ðx; y Þ  zi ; By (12), di ¼ 0; i ¼ 1; . . . ; p. From (11), i¼1 ðai  ða eÞki Þ½ry fi ð T  i ¼ 1; . . . ; pg is linearly independent, ai ¼ ða eÞki ; i ¼ 1; . . . ; p. If a = 0, then (19) implies that b = 0 and using (10), we get that c = 0, which contradicts (18). Hence ai 6¼ 0; i ¼ 1; . . . ; p, since a 2 K   Rpþ , ai > 0. Hence by (19), y 2 C 2 . By (10), (19) and ai ¼ ðaT eÞ ki ; i ¼ 1; . . . ; p, p X  i  ¼ c 2 C 1 : ðaT eÞ ki ½rx fi ðx; y Þ þ x

ð20Þ

i¼1

P  i  2 C 1 . Thus ðx; y ;   is feasible for (WD). ki ½rx fi ðx; y Þ þ x k; xÞ Since pi¼1   By multiplying both sides of Eq. (20) by x, hence from (15) we get xT

p X

  i  ¼ 0: ki ½rx fi ðx; y Þ þ x

i¼1

By (14) and the fact that b ¼ ðaT eÞy , ðaT eÞy T y T

p X

Pp  x; y Þ  zi  ¼ 0: Since ai > 0, i¼1 ki ½ry fi ð

 ki ½ry fi ðx; y Þ  zi  ¼ 0:

i¼1

But from (13), and b ¼ ðaT eÞy , ai y 2 N Ei ðzi Þ: Since ai > 0, y 2 N Ei ðzi Þ, we have y T zi ¼ sðy jEi Þ; i ¼ 1; . . . ; p: Thus (WP) and (WD) have equal objectives values.  is a weakly efficient solution of (WD), otherwise there would exist a We shall now show that ðx; y ;  k; xÞ feasible solution ðu; v;  k; xÞ of (WD) such that  1  xT ðf1 ðx; y Þ  sðy jE1 Þ þ xT x

p X

  i Þ; . . . ; fp ðx; y Þ ki ðrx fi ðx; y Þ þ x

i¼1

 p  xT  sðy jEp Þ þ xT x

p X

  i ÞÞ  ðf1 ðu; vÞ  sðvjE1 Þ þ uT x1 ki ðrx fi ðx; y Þ þ x

i¼1

 uT

p X

 ki ðrx fi ðu; vÞ þ xi Þ; . . . ; fp ðu; vÞ  sðvjEp Þ þ uT xp  uT

i¼1

p X

ki ðrx fi ðu; vÞ þ xi ÞÞ 2 int K:

i¼1

Pp  P  i  ¼ 0 ¼ y T pi¼1   i ¼ sðxjDi Þ; i ¼ 1; . . . ; p, ki ½ry fi ðx; y Þ  zi , y T zi ¼ sðy jEi Þ and xT x x; y Þ þ x Since x i¼1 ki ½rx fi ð it follows that T

ðf1 ðx; y Þ þ sðxjD1 Þ  y T z1  y T

p X

 ki ðry fi ðx; y Þ  zi Þ; . . . ; fp ðx; y Þ þ sðxjDp Þ  y T zp

i¼1

 y T

p X

 ki ðry fi ðx; y Þ  zi ÞÞ  ðf1 ðu; vÞ  sðvjE1 Þ þ uT x1  uT

i¼1

 sðvjEp Þ þ uT xp  uT

p X

ki ðrx fi ðu; vÞ þ xi Þ; . . . ; fp ðu; vÞ

i¼1 p X

 ki ðrx fi ðu; vÞ þ xi ÞÞ 2 int K;

i¼1

 is a feasible solution of (WD), ðx; y ; k; xÞ  is a weakly efficient which contradicts weak duality. Since ðx; y ;  k; xÞ solution of (WD). Hence the result holds. h We now state a converse duality theorem whose proof follows on the lines of Theorem 2.2.  be a weakly Theorem 2.3 (Converse duality). Let f : Rn  Rm ! Rp be a twice differentiable. Let ðu; v; k; xÞ    efficient solution of (WD). If rxx fi ð u; vÞ is negative definite for all i ¼ 1; . . . ; p, frx fi ðu; vÞ þ xi ; i ¼ 1; 2; . . . ; pg is linearly independent and K is a closed convex cone with Rpþ  K, then there exists z such that ðu; v; k; zÞ is feasible for (WP), and the objective values of (WP) and (WD) are equal. Also under the assumptions of Theorem 2.1, ðx; y ;  k; zÞ is a weakly efficient solution for (WP).

658

M.H. Kim, D.S. Kim / European Journal of Operational Research 188 (2008) 652–661

3. Mond–Weir type symmetric duality Now we state the following pair of Mond–Weir type non-differentiable symmetric dual problems and establish weak, strong and converse duality theorems. ðMPÞ K  minimize subject to

ðf1 ðx; yÞ þ sðxjD1 Þ  y T z1 ; . . . ; fp ðx; yÞ þ sðxjDp Þ  y T zp Þ; p X  ki ðry fi ðx; yÞ  zi Þ 2 C 2 ; yT

i¼1 p X

ki ðry fi ðx; yÞ  zi Þ = 0;

ð21Þ ð22Þ

i¼1

zi 2 E i ;

i ¼ 1; . . . ; p; T



k e ¼ 1;

k2K ;

ð23Þ

x 2 C1;

ð24Þ

and ðMDÞ

K  maximize subject to

ðf1 ðu; vÞ  sðvjE1 Þ þ uT x1 ; . . . ; fp ðu; vÞ  sðvjEp Þ þ uT xp Þ; p X ki ðrx fi ðu; vÞ þ xi Þ 2 C 1 ;

ð25Þ

i¼1

uT

p X

ki ðrx fi ðu; vÞ þ xi Þ 5 0;

ð26Þ

i¼1

xi 2 Di ; 

k2K ; n

m

i ¼ 1; . . . ; p; T

k e ¼ 1;

ð27Þ

v 2 C2;

ð28Þ

p

where f : R  R ! R be a twice differentiable functions of x and y, Di and Ei (1 5 i 5 p) are compact convex set in Rn and Rm , C1 and C2 be closed convex cones in Rn ; Rm with nonempty interiors, respectively. C 1 and C 2 are positive polar cones of C1 and C2, respectively, K is a closed convex cone in Rp such that intK 6¼ ;. Theorem 3.1 (Weak duality). Let ðx; y; k; zÞ be feasible for (MP) and let ðu; v; k; xÞ be feasible for (MD). Let f ð; yÞ þ ðÞT x be K-pseudoinvex with respect to g1 for fixed y and f ðx; Þ þ ðÞT z be K-pseudoinvex with respect to g2 for fixed x. If g1 ðx; uÞ þ uinC 1 and g2 ðv; yÞ þ y 2 C 2 , then ðf1 ðx; yÞ þ sðxjD1 Þ  y T z1 ; . . . ; fp ðx; yÞ þ sðxjDp Þ  y T zp Þ  ðf1 ðu; vÞ  sðvjE1 Þ þ uT x1 ; . . . ; fp ðu; vÞ  sðvjEp Þ þ uT xp Þ 62 intK: Proof. Let ðx; y; k; zÞ be feasible for (MP) and let ðu; v; k; xÞ be feasible for (MD). From (25) and g1 ðx; uÞ þ u 2 C 1 , ½g1 ðx; uÞ þ uT

p X

ki ðrx fi ðu; vÞ þ xi Þ = 0:

i¼1

From (26), g1 ðx; uÞ

T Pp i¼1 ki ðrx fi ðu; vÞ

þ xi Þ = 0: This gives

g1 ðx; uÞT ðrx f ðu; vÞ þ xÞ 62 int K; T

T

where rx f ðu; vÞ þ x ¼ ðrx f1 ðu; vÞ þ x1 ; . . . ; rx fp ðu; vÞ þ xp Þ . Since f ð; yÞ þ ðÞ x is K-pseudoinvex with respect to g1 for fixed y =v, ðf1 ðx; vÞ þ xT x1  f1 ðu; vÞ  uT x1 ; . . . ; fp ðx; vÞ þ xT xp  fp ðu; vÞ  uT xp Þ 62 int K: Then k 2K* and k 5 0, p X i¼1

ki ½fi ðx; vÞ þ xT xi  fi ðu; vÞ  uT xi  = 0:

ð29Þ

M.H. Kim, D.S. Kim / European Journal of Operational Research 188 (2008) 652–661

659

Similarly from (21) and g2 ðv; yÞ þ y 2 C 2 , we get T

½g2 ðv; yÞ þ y

p X

ki ðry fi ðx; yÞ  zi Þ 5 0:

i¼1

From (22), g2 ðv; yÞ

T Pp i¼1 ki ðry fi ðx; yÞ

 zi Þ 5 0: This gives

T

g2 ðv; yÞ ðry f ðx; yÞ  zÞ 62 int K; T

T

where ry f ðv; yÞ  z ¼ ðry f1 ðv; yÞ  z1 ; . . . ; ry fp ðv; yÞ  zp Þ . As f ðx; Þ þ ðÞ z be K-pseudoinvex with respect to g2 for fixed x, ðf1 ðx; yÞ  y T z1  f1 ðx; vÞ þ vT z1 ; . . . ; fp ðx; yÞ  y T zp  fp ðx; vÞ þ vT zp Þ 62 int K: Then k 2 K* and k 5 0, p X

ki ½fi ðx; yÞ  y T zi  fi ðx; vÞ þ vT zi  = 0:

ð30Þ

i¼1

From (29) and (30), p X

ki ½fi ðx; yÞ þ xT xi  y T zi  fi ðu; vÞ þ vT zi  uT xi  = 0:

i¼1

Finally using xT xi 5 sðx j Di Þ and vT zi 5 sðv j Ei Þ, p X

ki ½fi ðx; yÞ þ sðxjDi Þ  y T zi  fi ðu; vÞ þ sðvjEi Þ  uT xi  = 0:

ð31Þ

i¼1

Suppose to the contrary that ðf1 ðx; yÞ þ sðxjD1 Þ  y T z1 ; . . . ; fp ðx; yÞ þ sðxjDp Þ  y T zp Þ  ðf1 ðu; vÞ  sðvjE1 Þ þ uT x1 ; . . . ; fp ðu; vÞ  sðvjEp Þ þ uT xp Þ 2 int K: Then k 2 K* and k 5 0, p X

ki ½fi ðx; yÞ þ sðxjDi Þ  y T zi  fi ðu; vÞ þ sðvjEi Þ  uT xi  < 0;

i¼1

which contradicts (31). Hence the result holds.

h

Theorem 3.2 (Strong duality). Let f : Rn  Rm ! Rp be a twice differentiable. Let ðx; y ; k; zÞ be a weakly efficient solution of (MP) and suppose that (I) ryy fi ðx; y Þ is positive definite for all i ¼ 1; . . . ; p. (II) fry fi ðx; y Þ  zi ; i ¼ 1; 2; . . . ; pg is linearly independent. (III) K is a closed convex cone with Rpþ  K.  such that ðx; y ;   is feasible for (MD), and the objective values of (MP) and (MD) are Then, there exists x k; xÞ equal. Furthermore, if the hypotheses of Theorem 3.1 are satisfied for all feasible solutions of (MP) and  is a weakly efficient solution for (MD). (MD), then ðx; y ;  k; xÞ Proof. Since ðx; y ;  k; zÞ is a weakly efficient solution of (MP), by modifying the Fritz John optimality condition in [6], there exist a 2 K*, b 2 C 2 , c 2 Rþ ; d 2 C 1 , f 2 K such that

660

M.H. Kim, D.S. Kim / European Journal of Operational Research 188 (2008) 652–661 p X

 i þ ai ½rx fi ðx; y Þ þ x

i¼1

p X

 ki ryx fi ðx; y Þðb  cy Þ  d ¼ 0;

p p X X  ki ryy fi ðx; y Þðb  cy Þ ¼ 0; ðai  c ki Þ½ry fi ðx; y Þ  zi  þ i¼1

ð33Þ

i¼1 T

ðb  cy Þ ðry fi ðx; y Þ  zi Þ  fi ¼ 0; ai y þ ðb  cy Þ ki 2 N Ei ðzi Þ; bT

ð32Þ

i¼1

p X

i ¼ 1; . . . ; p;

ð34Þ

i ¼ 1; . . . ; p;

ð35Þ

 ki ½ry fi ðx; y Þ  zi  ¼ 0;

ð36Þ

i¼1

cy T

p X

 ki ½ry fi ðx; y Þ  zi  ¼ 0;

ð37Þ

i¼1

dT x ¼ 0;

ð38Þ

k ¼ 0; fT 

ð39Þ

i 2 x

 Ti x Di ; x

¼ sðxjDi Þ;

i ¼ 1; . . . ; p;

ð40Þ

ða; b; c; d; fÞ 6¼ 0:

ð41Þ

Multiplying (33) by ðb  cy Þ, p X

T ðai  c ki Þ½ry fi ðx; y Þ  zi ðb  cy Þ þ ðb  cy Þ

p X

i¼1

ki ryy fi ðx; y Þðb  cy Þ ¼ 0:

i¼1

Using the result in equality (34) and (39), we get p X

ai fi þ ðb  cy Þ

i¼1

T

p X

 ki ryy fi ðx; y Þðb  cy Þ ¼ 0:

i¼1

Since a 2 K* and f 2 K; aT f = 0 and hence ðb  cy ÞT

p X

 ki ryy fi ðx; y Þðb  cy Þ 5 0:

i¼1

Since

Pp  x; y Þ is positive definite, then i¼1 ki ryy fi ð b ¼ cy :

Pp

ð42Þ

By (34), fi ¼ 0; i ¼ 1; . . . ; p. From (33), i¼1 ðai  cki Þ½ry fi ðx; y Þ  zi  ¼ 0: Since fry fi ðx; y Þ  zi ; i ¼ 1; . . . ; pg is linearly independent, ai ¼ c ki , i ¼ 1; . . . ; p. If c = 0, then a = 0, (42) implies that b = 0 and using (32), d = 0, which contradicts (41). Thus c > 0. Hence by (42), y 2 C 2 . By (32), and the fact that b ¼ cy and ai ¼ c  ki ; i ¼ 1; . . . ; p, c

p X

  i  ¼ d 2 C 1 : ki ½rx fi ðx; y Þ þ x

i¼1

Pp  i  2 C 1 . By multiplying both sides of equation by x, hence from (38) we get ki ½rx fi ðx; y Þ þ x Since c > 0, c i¼1  P p  i  ¼ 0. Thus ðx; y ;   is feasible for (MD). xT i¼1  ki ½rx fi ðx; y Þ þ x k; xÞ By (35) and the fact that b ¼ cy , ai y 2 N Ei ðzi Þ; i ¼ 1; . . . ; p: Since a 2 K   Rpþ , ai > 0, and hence y 2 N Ei ðzi Þ, so that y T zi ¼ sðy jEi Þ; i ¼ 1; . . . ; p: Thus (MP) and (MD) have equal objectives values.  is a weakly efficient solution for (MD), otherwise there would exist a feasible solution Clearly, ðx; y ;  k; xÞ  ðu; v; k; xÞ of (MD) such that  1 ; . . . ; fp ðx; y Þ  sðy jEp Þ þ xT x  p Þ  ðf1 ðu; vÞ  sðvjE1 Þ þ uT x1 ; . . . ; fp ðu; vÞ ðf1 ðx; y Þ  sðy jE1 Þ þ xT x  sðvjEp Þ þ uT xp Þ 2 int K:

M.H. Kim, D.S. Kim / European Journal of Operational Research 188 (2008) 652–661

661

 i ¼ sðxjDi Þ; i ¼ 1; . . . ; p, it follows that Since y T zi ¼ sðy jEi Þ and xT x ðf1 ðx; y Þ þ sðxjD1 Þ  y T z1 ; . . . ; fp ðx; y Þ þ sðxjDp Þ  y T zp Þ  ðf1 ðu; vÞ  sðvjE1 Þ þ uT x1 ; . . . ; fp ðu; vÞ  sðvjEp Þ þ uT xp Þ 2 int K;  is a feasible solution of (MD), ðx; y ; k; xÞ  is a weakly effiwhich contradicts by weak duality. Since ðx; y ;  k; xÞ cient solution of (MD). Hence the result holds. h We now state a converse duality theorem whose proof follows on the lines of Theorem 3.2.  be a weakly Theorem 3.3 (Converse duality). Let f : Rn  Rm ! Rp be a twice differentiable. Let ðu; v; k; xÞ  i ; i ¼ 1; 2; . . . ; pg efficient solution of (MD). If rxx fi ð u; vÞ is negative definite for all i ¼ 1; . . . ; p, frx fi ðu; vÞ þ x is linearly independent and K is a closed convex cone with Rpþ  K, then there exists z such that ðu; v; k; zÞ is feasible for (MP), and the objective values of (MP) and (MD) are equal. Also under the assumptions of Theorem 3.1, ðx; y ;  k; zÞ is a weakly efficient solution for (MP). Remark 3.1. When Di = Ei = {0}, then the support functions and inner products in the problems (MP) and (MD) in the draft are disappeared, and hence (MP) and (MD) in the draft collapse to (P) and (D) in the paper of S. Khurana (EJOR, Vol. 165, 2005, pp. 592–597), respectively. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

M.S. Bazaraa, J.J. Goode, On symmetric duality in nonlinear programming, Operations Research 21 (1) (1973) 1–9. W.S. Dorn, A symmetric dual theorem for quadratic programs, Journal of Operations Research Society of Japan 2 (1960) 93–97. G.B. Dantzig, E. Eisenberg, R.W. Cottle, Symmetric dual nonlinear programs, Pacific Journal of Mathematics 15 (1965) 809–812. D.S. Kim, Y.B. Yun, W.J. Lee, Multiobjective symmetric duality with cone constraints, European Journal of Operational Research 107 (1998) 686–691. S. Khurana, Symmetric duality in multiobjective programming involving generalized cone-invex functions, European Journal of Operational Research 165 (2005) 592–597. B. Mond, M. Schechter, Non-differentiable symmetric duality, Bulletin of the Australian Mathematical Society 53 (1996) 177–188. B. Mond, T. Weir, Generalized concavity and duality, in: S. Schaible, W.T. Ziemba (Eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York, 1981, pp. 263–280. S. Nanda, L.S. Das, Pseudo-invexity and duality in nonlinear programming, European Journal of Operational Research 88 (1996) 572–577. R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970. S.K. Suneja, S. Aggarwal, S. Davar, Multiobjective symmetric duality involving cones, European Journal of Operational Research 141 (2002) 471–479.