5 A
-
0
-
NOTATIONS
W e always c o n s i d e r v e c t o r spaces over t h e complex
C, b u t a l l o u r r e s u l t s , w i t h obvious a d a p t a t i o n s , a r e v a l i d f o r real vector spaces. For i n t e r v a l s w e use t h e u s u a l n o t a t i o n , ]a,.[ , ( c , d ] e t c . l c , d l , where c < d , d e n o t e s any of t h e i n t e r v a l s ] c , d [ , ] c , d ) , field
[ c , d [ and [ c , d ) ; ( c , d ) denotes t h e i n t e r v a l ( c , d ) i f c s d and t h e i n t e r v a l [ d , c ) i f d s c. Given r e a l numbers s , t w e w r i t e s A t = i n d ( s , t ) and
--
s v t = 6LLP(S,t). h ( t , s ) E Y , f o r every Given a f u n c t i o n h: ( t , s ) E B x A t E B, ht d e n o t e s t h e f u n c t i o n S E A h ( t , s )E Y and f o r every S E A , hs denotes t h e f u n c t i o n t E B - h ( t , s ) E Y. Given a f u n c t i o n f : X v Y and A C X I f denotes t h e IA r e s t r i c t i o n of f t o A . Ix d e n o t e s t h e i d e n t i c a l automorphism of X . Given an A c X , xA denotes t h e c h a r a c t e r i s t i c f u n c t i o n of A: x ( x ) = 1 i f x E A and x A ( x ) = 0 i f x E X A and x @ A . Y : R -IR denotes t h e Heaviside f u n c t i o n Y =
x [ ~ , W~ e (d .e f i n e
sg: R
-
{-l,O,l}
by
sg t = 1 i f
= 0 f o r t = 0 and = -1 i f t < o . I f X and Y are t o p o l o g i c a l s p a c e s , E ( X , Y ) denotes t h e s e t of a l l c o n t i n u o u s f u n c t i o n s of X i n t o Y. I f a sequence xn converges t o x i n a t o p o l o g i c a l space x, w e t > O ,
write
x - xX n
x - x . n I f t h e sequence t n E R t e n d s t o t and i s d e c r e a s i n g w e w r i t e t G t ; i n an analogous way w e d e f i n e t n + t and 6 G O . For c~:~)a,b) X I a ( t - ) denotes t h e l i m i t a t t h e l e f t , when i t e x i s t s . I n an analogous way w e d e f i n e c r ( t + ) . where X i s a normed s p a c e , I l f ( 111 Given f : [ a , b ] - X I d e n o t e s t h e f u n c t i o n t E (alb] Ilf (t)II€ IR+ and u n l e s s (t)ll 1 a ,< t < b). o t h e r w i s e s p e c i f i e d If 11 denotes Aup The n o t i o n of summable series i s d e f i n e d i n t h e s e n s e of Bourbaki
-
.
or
-
{]If
NOTAT I O N S
2
-
B
Given a c l o s e d i n t e r v a l ( a , b ) c R
Id( = n
and
> 0 w e w r i t e DE = { d E D i s a f i l t e r b a s i s on D. E
Given two d i v i s i o n s d i v i s i o n of
[a,b)
dlld2E ID
write
I
Ad = AUp{lti-ti-ll
i = 1,2
I
Ad <
€1;
,..., Id[>. D(a,bb' U,={IDE
the class
o b t a i n e d by a l l p o i n t s of
w e say t h a t
d l < d 2 , i f every p o i n t of
E
and d2.
i s an o r d e r r e l a t i o n on D t h a t makes it t e r e d on t h e r i g h t . For every d € D w e d e f i n e
relation
Dd = { d ' E D
vG
the class
= {Dd
I
d€D)
f i n e r than t h e f i l t e r b a s i s 0.1
-
I
the
we The fil-
d,
i s a f i l t e r b a s i s on ID which i s V , and hence
L e t x b e a topoLogicaL bpace and f : D -X; the exibtence 0 6 L i m f ( d ) , t h a t i b t h e Limit o u c h t h e @-
t e h babia
Ad+O
VA, impLieb t h e exibtence 0 6
i b , t h e limit oveh t h e { i L t e h equal. If ACX
> 0)
d2.
dl, and
i s a p o i n t of
dl
<
I
or
d l v d2
dl
i s {Lneh t h a n
d2
(a,b]
w e denote by
dlld2EID
(a,b)
We write
D , denotes t h e s e t of a l l d i v i s i o n s of
o r simply
Given
.. . < t n=b.
d: t 0=a < t l
i s a f i n i t e sequence
a d i v i b i o n of
X
we d e f i n e t h e o b c i l a t i o n of
or
[ a , b) i = 1,2,.
U and
l a5 4=
..,Id1 . 0'
f:
f
WA(f) = b u p { l l f ( t ) - f ( S ) I I
V
VG , and b o t h
babin
i s a seminormed space and
on
I
Lim f ( d ) , t h a t
dsID
(a,b]-
,...,5 I d / 1
with
X I for
A
s,tEA);
denotes t h e s e t of a l l p a i r s
(5,
ahe
( d , O where
CiE [ti-l,ti],
denotes t h z s e t of a l l p a i r s
(d,E')
NOTATIONS where
dED
5'
and
=
(5;
-
,...,5 'Id1 )
with
3 <~E)ti-llti(.
W e s a y t h a t a f u n c t i o n f: (a,b) X is a step f u n c t i o n , w e w r i t e f E E ( [ a , b ] , X ) , i f t h e r e exists a d e n s u c h t h a t f i s c o n s t a n t i n ) t t - l I t i [ , i = 1,2,. ,I d / .
-
C
A b i e i n e a h thipk?e (BT) i s a s e t of t h r e e v e c t o r spaces F
mapping
+G; w e w r i t e
by
ExF
B:
(E,F,G)B
BT (E,F,G) where
and
are Banach s p a c e s , w i t h a b i l i n e a r x - y = B ( x , y ) and d e n o t e t h e
E l F, G , where BT
..
G
(E,F,G). A X o p o e o g i c d BT i s
o r simply E
t o o i s a normed s p a c e and
nuous ; w e suppose t h a t
B
a
is conti-
11 B I I < 1.
E X A M P L E S - L e t W, X and Y b e Banach s p a c e s . 1. E = L ( X , Y ) , F = X I G = Y and B ( u , x ) = u ( x ) . 2. E = L ( X , Y ) , F = L(W,X), G = L ( W , Y ) and B ( v , u ) = v o u .
0.2
-
3.
E = Y, F = Y',
4.
E = G = Y,
G = C
F = C
and
and
B(y,yl) =(y,y*).
B(y,X) = Xy.
a ) E x . 1 i s a p a r t i c u l a r i n s t a n c e of E x . 2 :
take
b ) Ex.3 i s a p a r t i c u l a r i n s t a n c e of E x . 2 :
t a k e X = C and
w
= Y.
c ) Ex.4 i s a p a r t i c u l a r i n s t a n c e of Ex.2: Given a BT ( E , F, G ) B IIXllB =
f o r every
EB = E x E E
EB
w i t h t h e norm
l o g i c a l BT (EB,F,G) D
-
Let
d e f i n e d on
E E
I
xEE
I
AuPE IIB(X,Y)ll
and
w e endow
t a k e X = W = C.
we define
IIYII .c< 1)
IIx\lB
11 [ I B
and w e s a y t h a t t h e
topo-
i s a b b o c i a t e d t o t h e BT ( E , F , G ) .
b e a v e c t o r s p a c e and such t h a t
plI...,pm~
rE
b ~ p t P l , . . . r ~ m ] ErE.
rE
W = C.
d e f i n e s a t o p o l o g y on
E: t h e sets
rE
a s e t of s e m i n o r m
implies
NOTATIONS
4
form a b a s i s of neighborhoods of 0 ; t h e s e t s xo+v form PIE a b a s i s of neighborhoods of xo€ E . Endowed w i t h t h i s topology E i s called a l o c a l l y convex space (LCS). A LCS E i s s e p a r a t e d i f and o n l y i f p ( x ) = 0 f o r every P E r implies x = 0. E A sequence xn of a LCS E i s c a l l e d a Cauchy beqUenCe i f f o r every P E TE and every E > 0 t h e r e e x i s t s an nE(p) such t h a t f o r n,m >,n,(p) w e have p(x,-x,) < E. A separated s e q u e n t i a l l y complete LCS (SSCLCS) i s a s e p a r a t e d LCS inwhich every Cauchy sequence i s convergent. A F r e c h e t space i s a SSCLCS whose topology can be d e f i n e d by a c o u n t a b l e s e t o f seminorms (and i s t h e r e f o r e m e t r i s a b l e )
.
EXAMPLES LCS 1 - Every normed o r seminormed space E i s a LCS. LCS 2 - I f X i s a LCS and K a compact space there i s a n a t u r a l s t r u c t u r e of LCS on E = & ( K , X ) : f o r every seminorm PE rx w e d e f i n e a seminorm p E r E by p ( f ) = b u p p [ f ( t ) ] , where
f E E = 6 ( K , X ) ; w e o b t a i n on
6(K,X)
tEK
t h e topology of
uniform convergence on K . I f X i s a Banach o r a F r e c h e t space, so i s 6 ( K , X ) . LCS 3 - L e t X be a normed space; E = 6 ( )a , b [ , X ) becomes a LCS when endowed w i t h t h e family of seminorms
where [c,d) runs over a l l c l o s e d i n t e r v a l s of ] a , b ( . I f X i s complete, i . e . a Banach space, E i s a F r e e h e t space; i t s topology may be d e f i n e d by t h e countable s e t of seminorms , n€m. I' "[a+:, b-
i)
LCS 4
-
Let
X
be a LCS; E = &(]a,b[,
X)
becomes
t u r a l l y a LCS when endowed with t h e family of seminorms P(c,d] where
PE
rx
and
[f]
= bup{p[f(t)]
[c,d]
C
] a , b [.
I
c < t ( dl
na-
NOTATIONS For LCS
and
X
Y,
5
d e n o t e s t h e v e c t o r s p a c e of
L(X,Y)
a l l c o n t i n u o u s l i n e a r mappings from
X i n t o Y ; i n o r d e r that a l i n e a r mapping f : X 4 Y be c o n t i n u o u s i t i s s u f f i c i e n t t h a t it i s c o n t i n u o u s a t t h e o r i g i n and hence f o r e v e r y q e r y
there is a every
PE
rX
X
i s a normed s p a c e and
a >0
and
such t h a t
q[f ( x ) ] 6 a p ( x )
for
xEX.
-
LCS 5
If
L(X,Y) we
a LCS, on
Y
c o n s i d e r t h e t o p o l o g y d e f i n e d by t h e seminorms p ( f ) = bUp{P(f
Y
If
I
(XI)
i s a SSCLCS s o i s
XEX,
L(X,Y).
-
I f X i s a LCS and f : [a,b) d e f i n e t h e o s c i l a t i o n s as i n B: f o r w
deD
and f o r w
qrA
q,i
IIxII G 1 1 ,
PE
ry. q € Tx w e
f o r every A C X we w r i t e
( f ) = bUp{q(f(t)-f(S))
X
I
tlsEAl
we w r i t e
(f) = w
(f)
(ti-1*ti)
W;lIi(f)
I
etc.
-
= w
q I ) ti-1 I t i
[ (f)
I
A t o c a e e y convex BT (LCBT) i s a s e t o f t h r e e v e c t o r E l F , G , where F i s a Banach s p a c e , G a SSCLCS,
spaces
w i t h a b i l i n e a r mapping E
-
B: ExF
G.
-
T H E O R E M 0.3
Let
X
b e a c o m p l e t e m e t h i c bpace and
p o t o g i e a l &pace. Foh ewehy
i E I
te2
Ti:
that: 1)
-
I n c h a p t e r I11 w e w i l l u s e the f o l l o w i n g
X
X
a&
I
be
huch
LocaLty a unidahm c o n t h a c t i o n , i . e . , d o h evehy ioE I t h e h e k b a neighbohhood J and a c o n b t a n t c J < 1 buch t h a t (Ti)iEI
i6
d[TiXr
doh
aeL
2 ) Foh e v e h y
x,yEX XE X
tinuoua. T h e n , id d o h evehy
TiyJ
S
cJd(xry)
and ewehy i E J . t h e d u n c t i o n i €I XEX,
xi
MT
ixEX
id
denotes t h e d i x e d p o i n t
con06
Ti
6
NOTATIONS
-
( w h i c h e x i b t d b y Banach c o n t h a c t i o n mapping t h e o h e m ] , t h e mapping i € I xi€ x i4 c o n t i n u o u b . P R O O F . Obviously i t i s enough t o prove t h a t t h e mapping i s continuous a t
i
0
. W e have
d(xi8xi
) 0
= d[Tixi
s
0
cJd (xi
0
] +
d[Tixi
s
]
i
TiXio I
x
iO
d[Tixi
+ d[TiXi
0
0
)
0
s 1-c d[Tixi
t h a t by 2 ) goes t o zero when
i+io.
0
,T.
xi ]
lo
0
0
xi ]
0
‘Ti X i
hence d(xi8xi
‘Ti
0
]
0