Numerical implementation of Adomian decomposition method for linear Volterra integral equations of the second kind

Numerical implementation of Adomian decomposition method for linear Volterra integral equations of the second kind

Applied Mathematics and Computation 165 (2005) 223–227 www.elsevier.com/locate/amc Numerical implementation of Adomian decomposition method for linea...

157KB Sizes 4 Downloads 83 Views

Applied Mathematics and Computation 165 (2005) 223–227 www.elsevier.com/locate/amc

Numerical implementation of Adomian decomposition method for linear Volterra integral equations of the second kind E. Babolian, A. Davari

*

Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Islamic Azad University of Qazvin, 599 Teleghani Avenue, Tehran 15618, Iran

Abstract In this paper, we propose new ideas to implement Adomian decomposition method to solve Volterra integral equations. Numerical examples are presented to illustrate the method for linear Volterra integral equations of the second kind. Ó 2004 Elsevier Inc. All rights reserved.

1. Introduction Many papers have been written [2,5,7] in which Adomian method is used for solving linear and nonlinear equations, especially integral equations [5,6]. Consider the following linear Volterra integral equation

*

Corresponding author. E-mail address: [email protected] (A. Davari).

0096-3003/$ - see front matter Ó 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2004.04.065

224

E. Babolian, A. Davari / Appl. Math. Comput. 165 (2005) 223–227

uðxÞ ¼ f ðxÞ þ

Z

x

x 2 ½0; 1:

Kðx; tÞuðtÞ dt

ð1Þ

0

Adomian process assumes uðxÞ ¼ tain um(x) recursively by

P1

m¼0 um ðxÞ

and substitutes it in (1), to ob-

u0 ðxÞ ¼ f ðxÞ; Z x Kðx; tÞum ðtÞ dt: umþ1 ðxÞ ¼

ð2Þ

0

When the P1kernel of the integral equation is complicated or calculating terms of series m¼0 um ðxÞ are difficult or impossible analytically [1,3], Adomian method needs some modifications. In the following section we deal with these subjects.

2. Discussion An obvious numerical procedure is to approximate the integral term in (2) via a quadrature rule which integrals with respect to the variable t for a fixed value of x. It is natural to choose a regular mesh in x, thus setting x = xi = ih where h ¼ m1 is the fixed step length. We would approximate in an obvious notation [3,4] the integral term in Eq. (2) by Z xi i i X X Kðxi ; tÞum ðtÞ dt ’ h wij Kðxi ; tj Þum ðtj Þ ¼ h wij K ij um ðtj Þ; 0

j¼0

j¼0

where xi = ti, i = 0, 1, . . . ,m. This leads to the following set of linear equations umþ1 ðti Þ ’ h

i X

wij Kðti ; tj Þum ðtj Þ;

i ¼ 0; 1; . . . m ¼ 0; 1; 2; . . . :

j¼0

For choosing suitable weights wij, we note that for each i the set wij, j = 0, 1, . . ., i represents the weights for an (i + 1)-points quadrature rules of Newton–Cotes type for the interval [0, ih]. We implement the above idea on the following example with m = 20 or h ¼ 201 . Tables 1–4 show P20 u20 ðxi Þ ¼ i¼1 uðxi Þ; uðxi Þ and errors at points xi, i = 0, 1, . . ., m. Example 1. Consider the following Volterra integral equation Z x x3 x4 uðxÞ ¼ x x2 þ þ þ ðt xÞuðtÞ dt; 0 < x < 1; 6 12 0 with the exact solution u(x) = x x2.

E. Babolian, A. Davari / Appl. Math. Comput. 165 (2005) 223–227

225

Table 1 The exact approximate value of u(x), and its errors for Example 1 x

Exact u(x)

Approximation u(x)

Errors

0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.047500000 0.090000000 0.160000000 0.210000000 0.240000000 0.250000000 0.240000000 0.210000000 0.160000000 0.090000000 0

0 0.04752031 0.08999993 0.16000024 0.21000184 0.24000542 0.25001140 0.24001998 0.21003110 0.16004446 0.09005950 0.00007543

0 0.0000203

0.6770E 6 0.24373E 5 0.1847876E 5 0.542314E 5 0.00001140 0.00001998 0.00003110 0.00004446 0.00005950 0.00007543

Table 2 The exact approximate values of u(x), and its errors for Example 2 x

Exact u(x)

Approximation u(x)

Errors

0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.04997917 0.09983342 0.19866933 0.29552021 0.38941834 0.47942554 0.56464247 0.64421769 0.71735609 0.78332691 0.84147098

0 0.05000000 0.09983333 0.19866958 0.29552231 0.38942488 0.47944013 0.56466968 0.64426292 0.71742550 0.78342727 0.84160954

0 0.00002083

0.833134E 7 0.250454E 6 0.210334E 5 0.654704E 5 0.000014601 0.000027212 0.000045236 0.000069415 0.000100366 0.000138562

Example 2 uðxÞ ¼ x þ

Z

x

ðt xÞuðtÞ dt;

0 < x < 1;

0

with the exact solution u(x) = sin x.

Example 3 uðxÞ ¼ 1 þ

Z

x

ðx tÞuðtÞ dt;

0 < x < 1;

0

with the exact solution u(x) = cosh x.

226

E. Babolian, A. Davari / Appl. Math. Comput. 165 (2005) 223–227

Table 3 The exact approximate values of u(x), and its errors for Example 3 x

Exact u(x)

Approximation u(x)

Error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 1.0050042 1.0200668 1.0453385 1.0810724 1.1276260 1.1854652 1.2551690 1.3374350 1.4330864 1.5430806

1 1.00500972 1.02008904 1.04538899 1.08116298 1.12776937 1.18567506 1.25546016 1.33782378 1.43359109 1.54372151

0 0.55541E 5 0.00002229 0.00005048 0.00009061 0.00014341 0.00020985 0.00029115 0.00038884 0.00050470 0.00064087

Table 4 The exact approximate values of u(x), and its errors for Example 4 x

Exact u(x)

Approximation u(x)

Error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 0.899833250 0.798663998 0.695479707 0.589247674 0.478904694 0.363346418 0.241416298 0.111894018

0.02651673

0.17520119

1 0.89983888 0.79868602 0.69552792 0.58933100 0.47903126 0.36352357 0.24165066 0.11219147

0.02615105

0.17476298

0 0.563890E-5 0.00002202 0.00004821 0.00008333 0.00012656 0.00017715 0.00023436 0.00029745 0.00036566 0.00043821

Example 4 x2 uðxÞ ¼ 1 x þ 2

Z

x

ðx tÞuðtÞ dt;

0 < x < 1;

0

with the exact solution u(x) = 1 sinh x.

3. Conclusion Rx We know that the integral 0 f ðtÞ dt is not available in some cases [1] and practically the Adomain decomposition method fails. We illustrated that in this cases we can to use numerical integration and solve Volterra integral equations with Adomian method.

E. Babolian, A. Davari / Appl. Math. Comput. 165 (2005) 223–227

227

References [1] E. Babolian, A. Davari, Numerical implementation of Adomain decomposition method, Applied mathematics and computation 153 (2004) 301–305. [2] Y. Cherruault, G. Adomian, K. Abbaoui, R. Rach, Further remarks on convergence of decomposition method, International Journal of Biomedical Computing 38 (1995) 89–93. [3] L.M. Delves, J.L. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, 1985. [4] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 2002. [5] A.M. Wazwaz, S.A. Khuri, Two methods for solving integral equations, Applied mathematics and computation 77 (1996) 79–89. [6] A.M. Wazwaz, A First Course in Integral Equations, WSPC, New Jersey, 1997. [7] A.M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Applied mathematics and computation III (2000) 53–69.