FRACTALS IN PHYSICS L. Pietronero, E. Tosatti (editors) © Elsevier Science Publishers B.V.,
453 1986
NUMERICAL INVESTIGATION OF NONUNIFORM FRACTALS
Remo B A D I I * a n d A n t o n i o P 0 L I T I
+
P h y s i k - I n s t i t u t der U n i v e r s i t a t , S c h o n b e r g g a s s e 9 , 8001 Z u r i c h , S w i t1z e r l a n d * I s t i t u t o N a z i o n a l e di O t t i c a , L a r g o E . Fermi 6 , 50125 F i r e n z e , Italy" "
B e s i d e s the concept o f d i m e n s i o n , which g i v e s a f i r s t a v e r a g e c h a r a c t e r i z a t i o n o f f r a c t a l s , a s e cond r e l e v a n t q u a n t i t y , the nonuniform!'ty f a c t o r , i s here i n t r o d u c e d and d i s c u s s e d . A t h e o r e t i c a l c a l c u l a t i o n i s performed f o r the b i n a r y C a n t o r s e t i n o r d e r t o p o i n t out the i n t u i t i v e meaning o f n o n u n i f o r m i t y a s the s p r e a d among the d i f f e r e n t c o n t r a c t i o n r a t e s o f l e n g t h s . The S i n a i map i s then i n v e s t i g a t e d i n d e t a i l , a s a p r o t o t y p e f o r a map w i t h n o n - c o n s t a n t J a c o b i a n , both i n the i n v e r t i b l e and n o n i n v e r t i b l e parameter r e g i o n .
1.
2.
INTRODUCTION R e c e n t l y , t h e r e has been a g r e a t deal
terest
i n the s t u d y o f f r a c t a l
many a r e a s o f p h y s i c s .
1
them, many d i f f e r e n t d e f i n i t i o n s like quantities
characterize
two g r o u p s ,
one d e r i v i n g from p u r e l y g e o m e t r i c a l
The d e f i n i t i o n s
o f the f i r s t
to g i v e i d e n t i c a l while
results for physical
the d i f f e r e n c e s
. They can
Renyi
Κ (ε), q
under
as
= {in
/
Σ P.(e)}
i-thbox,
entropies
(1-q)
(1)
i
C o n s e q u e n t l y , the Renyi d i m e n s i o n s a r e g i v e n by
among q u a n t i t i e s b e l o n g i n g
o f the f r a c t a l
generalized
=0,l,2,...,n,
o f the
systems,
to the second one are a measure o f the degree 4-6 "nonuniformity"
introduced
ΚHα( ε )
theory.
group u s u a l l y seem
parti
t i o n o f the phase space w i t h boxes o f s i z e ε , and
the
first
definition
o f Renyi d i m e n s i o n o f o r d e r q . Assuming a
requests,
the second b e i n g r e l a t e d to i n f o r m a t i o n
here the
d e f i n i n g Ρ · ( ε ) as the p r o b a b i l i t y 2
of dimension2-4
have been i n t r o d u c e d
DIMENSION FUNCTION AND NONUNIFORMITY For c o n v e n i e n c e , we r e c a l l
in
sets occurring in
In order to
be r o u g h l y c l a s s i f i e d i n t o
of
DH
of
conside
ration.
= - l i m Κ ( ε )H /
In ε
(2)
ε-Κ)
In p a r t i c u l a r ,
D 0 i s the SSD ( u s u a l l y
evaluated
by means o f the b o x - c o u n t i n g a l g o r i t h m ) , D 2 i s
I n o r d e r to b e t t e r u n d e r s t a n d and q u a n t i f y
called information d i m e n s i o n
33
3
and D 2 i s the c o r
t h i s concept, a continuous i n f i n i t y of dimensions ( c a l l e d d i m e n s i o n f u n c t i o n ) has been r e c e n t l y i n 4
satisfy
D q> D p (when p > q ) , the
equa
troduced
lity
b e i n g o b t a i n e d i n the c a s e o f u n i f o r m
sets,
i.e.
such t h a t the p r o b a b i l i t y
Ρ(δ,η)
t h r o u g h the moments o f the
o f n e a r e s t - n e i g h b o u r (nn)
among η p o i n t s on the f r a c t a l .
distances δ
As the d i m e n s i o n
f u n c t i o n DF can be proved t o y i e l d , points, quantities (SSD),
tool
suitable
other
Renyi
, i t s e v a l u a t i o n p r o v i d e s an u s e f u l
f o r the s t u d y o f n o n u n i f o r m i t y
systems.
in
as s e l f - s i m i l a r i t y d i m e n s i o n
i n f o r m a t i o n d i m e n s i o n and a l l 4b
dimensions
distribution
in physical
relation
Ρ Ί· ( ε )
integral
exponent ^.
the r e l a t i o n
These q u a n t i t i e s
P^ s c a l e s as 6
« ε ° , where D i n d i c a t e s any d i m e n s i o n . As
the d i r e c t impractical
e v a l u a t i o n o f the D ^ ' s i s , i n
general,
f o r computer memory r e a s o n s and l a c k
of s t a t i s t i c a l
c o n v e r g e n c e , we f o l l o w e d a d i f f e r
ent a p p r o a c h . C o n s i d e r a r e f e r e n c e d-dimensional
Euclidean space, plus
point χ in a (n-1)
others,
R. Baddi, A. Politi
454
all
o f them chosen a t random, w i t h r e s p e c t to the
natural
m e a s u r e , on the s e t * . We then d e f i n e
as the d i s t a n c e between χ and i t s bour y among the δ(η)
(n-1)
6(n)
nearest-neigh
other p o i n t s .
neral,
some a v e r a g e o v e r a l l >s η
- 1
/0.
Evidently,
points χ will
behave intro
distribution
P ( 6 , n ) o f nn
d i s t a n c e s among η p o i n t s . Now, f o l l o w i n g R e f .
Ύ
< 6 ( η ) > = Μ (η) Ύ
= /
Y
and a l l
i n the f i x e d
s u i t a b l e entropy
D
(3)
It
properties
0 o f dimen (DF).
The p r e f a c t o r
However,
i t s dependence on γ i s , by d e f i n i t i o n ,
irrelevant,
is
More
possi Η
Η
recovered.
T h e r e f o r e , the e v a l u a t i o n o f moments ( 3 ) a l l o w s determination
a first in t u r n ,
the
v a l u e o f γ i s chosen t o
obtain
e s t i m a t e o f the d e s i r e d d i m e n s i o n w h i c h , i s used a s a new i n p u t u n t i l
a satisfac
t o r y a c c u r a c y i s r e a c h e d . However, t h i s i s not general
n e c e s s a r y , a s the e s t i m a t i o n o f ϋ ( γ )
some p r e f i x e d
in
in
p o i n t s g i v e s the same i n f o r m a t i o n .
Anyway, i n o r d e r to check the s t a b i l i t y
of
the
First,
distri
S e c o n d l y , f o r some p h y s i c a l
systems,
s i n g l e p o i n t s a r e not a c c e s s i b l e but Ρ ( δ , η ) can be e v a l u a t e d , e i t h e r a n a l i t i c a l l y it
or
numerically
i n the f o l l o w i n g way: We c o n s i d e r by η unequal
b a l l s of
, n ) and then r e f i n e i t
t a k i n g more b a l l s o f s m a l l e r s i z e . For
by
percolating
probability
the
o f f i n d i n g a c l u s t e r o f s i z e δ i n a box
( o f s i z e L) c o n t a i n i n g η c l u s t e r s : Then ,one s h o u l d c o n s i d e r a l a r g e r box ( i . e . l a r g e r n) and r e n o r m a l i z e l
s h r i n k t o zero w i t h i n c r e a s i n g n . F i n a l l y , that, in general, Ρ(δ,η) w i l l tually,
o f any D^ by means o f a r e c u r s i v e
method: An i n i t i a l
P(6,n). t o the
i t t o the s c a l e L , i n such a way t h a t the 6 s
where D q i n d i c a t e s the o r d e r - q Renyi d i m e n s i o n . is
"uniformity
s y s t e m s , f o r example, Ρ ( δ , η ) would r e p r e s e n t
b l e to prove the g e n e r a l r e l a t i o n D{y = (1 - q)D } = D ,
For q = 0 , the f i x e d p o i n t r e l a t i o n
it
t o examine some
i s smooth, contrary
d i a m e t e r s δ^(ι = 1,
t h i s v a l u e o f the DF c o i n c i d e s w i t h the S S D , a t
o v e r , f o r the same c l a s s o f s y s t e m s , i t
sinthetize
has been c a l l e d
a c o v e r i n g o f the f r a c t a l
is satisfied,
l e a s t i n the c a s e o f s e l f - s i m i l a r ^ f r a c t a l s .
to a
increasing nonuniformity:
o f the n n - d i s t r i b u t i o n
interpreting
c l a s s o f s y s t e m s , to an u n e s s e n t i a l p e r i o d i c i t y 8 4 i n l n ( n ) . I t has been shown t h a t , whenever relation
i s related
i s then w o r t h w h i l e
the f r a c t a l .
w h i l e the dependence on η r e d u c e s , i n a l a r g e
a fixed-point
to 0
b u t i o n o f p o i n t s i n the E u c l i d e a n s p a c e c o n t a i n i n g
s i o n hereafter c a l l e d dimension f u n c t i o n Κ depends on both γ and n :
i s equal
and can be used to
grows towards 1 f o r
factor".
where D(y) i s a γ-dependent d e f i n i t i o n
i.e.
p o i n t x = D ' ( D 0) 4
hence, t h i s q u a n t i t y
P(
has
d i m e n s i o n s c o i n c i d e . M o r e o v e r , the s l o p e
note t h a t i t
γ = 0(γ),
p o i n t s . In Ref. 4 b , i t
the degree o f n o n u n i f o r m i t y o f f r a c t a l s , a s
4,
we compute the moments o f Ρ ( δ , η ) a s oo
the DF i n the f i x e d
0 and 1 a n d , f o r u n i f o r m f r a c t a l s ,
To be more s p e c i f i c , we
duce the p r o b a b i l i t y
i s n e c e s s a r y t o compute the s l o p e o f
been shown t h a t D ' ( Y ) i s a l w a y s bounded between
i s a nonincreasing function of η and, in ge
as <δ(η)
method, i t
lative
i n K e f . 4b i t r . m . s . Δ(η)
would notice
s p r e a d when η g r o w s : A c
has been shown t h a t the
o f the d i s t r i b u t i o n ^)
1 / 2
/M
for
be
haves a s Δ ( η ) = ( M
2 D- M o
λ: T h i s c l a r i f i e s
the meaning o f n o n u n i f o r m i t y a s
Do
* n \
re
Ρ(δ,η)
the s p r e a d among the d i f f e r e n t c o n t r a c t i o n o f l e n g t h s , when η goes t o i n f i n i t y . sets
(i.e.
small
rates
For u n i f o r m
λ = 0 ) al 1 d i s t a n c e s d e c r e a s e w i t h
the
same s p e e d . The DF i s , i n d e e d , bounded by two
* I n the c a s e o f dynamical s y s t e m s , p o i n t s a r e g e n e r a t e d i n a s e q u e n t i a l way. For f r a c t a l s such a s p e r c o l a t i n g l a t t i c e s o r polymer a g g r e g a t e s , they can be p i c k e d up a c c o r d i n g t o any r u l e , i n o r d e r t o g e t information on the s t r u c t u r e : F o l l o w i n g d i f f e r e n t r u l e s c o r r e s p o n d s t o a s s i g n i n g d i f f e r e n t p r o b a b i l i t y w e i g h t s t o the v a r i o u s r e g i o n s o f the o b j e c t .
Numerical investigation of nonuniform fractals
horizontal
asymptotes c o r r e s p o n d i n g to the f a s t e s t
( γ = -οο) and the s l o w e s t (γ = ») c o n t r a c t i o n
rates.
455
p o s i t i o n of d i s t r i b u t i o n s of uniform Cantor s e t s w i t h d i f f e r e n t d i m e n s i o n s . Note t h a t D r a n g e s b e tween - l o g p x and - l o g p 2 which c o i n c i d e
the asymptotes o f the DF D(-°°) and D(°°). M o r e
3. FRACTAL MEASURES Let us now i n v e s t i g a t e tion Ρ(δ,η)
the shape o f the
func
i n a s i m p l e c a s e : The u n i f o r m C a n t o r
s e t , generated by keeping two segments o f l e n g h t a and d e l e t i n g
the middle p a r t o f the u n i t
A l s o , the same p r o b a b i l i t y parts. P(6,n)
segment.
i s a s s i g n e d to the
two
For t h i s s e t , the f o l l o w i n g e x p r e s s i o n f o r 4b has been o b t a i n e d D
Ρ ( δ , η ) = 2 D 0n ( 2 6 ) o "
1
υ
χ θρ { - η ( 2 δ ) 0 } .
s e l f i n the shape o f the p r o b a b i l i t y us c o n s i d e r a b i n a r y Cantor s e t
Ρ(δ,η),
or
i n R e f . 4b s u g g e s t t h a t d e v i a t i o n s
the form (4)
are an i n d i c a t i o n o f
and i n f o r m a t i o n
from
nonuniformity.
LYAPUNOV DIMENSION IN NONINVERTIBLE MAPS
As a more p h y s i c a l example o f f r a c t a l . . c 3c,10 . • we c o n s i d e r the S i n a i map χ'
= χ + y + g cos(2*y)
mod 1
y'
= χ + 2y
mod 1
sufficiently
o f area w i l l
"non-lacunar (i.e.
dimen
measure,
(6)
s m a l l g . A s , however,
the sum o f
s h r i n k to zero i n t i m e :
t h a t the p r o b a b i l i t y
element
T h i s means
distribution will
be h i g h l y
peaked, t h a t i s , the a t t r a c t o r i s a f r a c t a l measu re.
integral
S ( o , n ) f o r a r e f e r e n c e p o i n t χ to h a
ve a n n , chosen among ( n - 1 )
points, within a d i s -
S(&9n)=J
I n R e f . 4 b , we o b
tained
Ρ(δ,η)
Lyapunov exponents i s a l w a y s n e g a t i v e , an
s i o n c o i n c i d e { D x = - ( P i l n ( p ! ) + P2"In(p 2) ) / l n 2 < 1 } .
tance δ ,
higher
whose s o l u t i o n c o v e r s the whole u n i t s q u a r e f o r
This i s
We are i n t e r e s t e d i n the e v a l u a t i o n o f the probability
embedded i n
I n d e e d , some p l o t s o f
ex
The whole u n i t segment i s f i l l e d
D0 = 1 ) , while Hausdorff
reported
centered
Similar considerations
should apply a l s o to f r a c t a l s dimensional s p a c e s :
let
probabili
t i e s pi and p 2 ( P i + P 2 = l ) > r e s p e c t i v e l y . g
1
it
i s a Gaussian
d i m e n s i o n w h i c h , hence, appears
to play a s p e c i a l r o l e .
, t h a t i s the s e t
p a n s i o n c o n t a i n s zeros and ones w i t h
1
a t the i n f o r m a t i o n
3 a
of p o i n t s χ ( 0 < χ < 1) such t h a t t h e i r b i n a r y
an example of f r a c t a l measure
o v e r , the w e i g h t f u n c t i o n
4.
(4)
I n o r d e r to see how n o n u n i f o r m i t y m a n i f e s t s
fractal" :
with
P(y,n)dy.
the f o l l o w i n g e x p r e s s i o n f o r the comple
mentary d i s t r i b u t i o n
S = l-S
r-
*
_ exp C
P 9 Pg log
Γ'°
1 2/ ,1/2 S e c [-log 2 δ ]
log 2 8 V:
- - log loa
*
p. D.
e x p [-n ( 2 8 ) ° ]
where l o g i n d i c a t e s the b a s e - o f - t w o and Ρ 2 < Ρ ι · The f i r s t
(5)
^ 2/ ΧrΊ > Γ ( D - K X , ) ] dD
logarithm
term i n the i n t e g r a l
r e s u l t one would o b t a i n f o r a uniform Cantor s e t of d i m e n s i o n D
4 b
. Therefore,
is
the
ternary the
whole
e x p r e s s i o n f o r S can be i n t e r p r e t e d as a s u p e r -
Lyapunov dimension D|_ ( f u l l l i n e ) and Dimension F u n c t i o n ϋ ( γ ) ( d o t s ) v e r s u s g . The DF i s computed f o r 5 d i f f e r e n t v a l u e s of γ ( - 2 , - 1 , 0 , 1 , 2 ) .
R. Baddi, A. Politi
456
Another r e a s o n t o expect n o n u n i f o r m i t y f o r t r a n s f o r m a t i o n i s the nonconstancy o f the b i a n J = 1 + 2^g s i n ( 2 * y ) .
Infact,
G r a s s b e r g e r and P r o c a c c i a point-like
this jaco-
1 1
, fluctuations in
the
i n t h e s e systems and are r e s p o n s i b l e f o r the
dif
ference among the v a r i o u s d i m e n s i o n s . M o r e o v e r , the i n f o r m a t i o n d i m e n s i o n Di o f the a t t r a c t o r
can
be computed i n terms o f the Lyapunov exponents a s * ϋ χ . The e q u a l i t y 12
mensional i n v e r t i b l e
maps
holds for
while,
two-di-
f o r more g e n e
ral
s y s t e m s , D L p r o v i d e s a good a p p r o x i m a t i o n
ϋχ.
It
i s , therefore,
the b e h a v i o u r o f t h i s
interesting
to
to
(the
values of
central
the
one c o r r e s
ponding to the i n f o r m a t i o n d i m e n s i o n ) , v e r s u s g . At the p o i n t g = l / ( 2 7 r )
(indicated
by a
(North-Holland,
3 . a) J . D . Farmer, Z . N a t u r f o r s c h . 37A ( 1 9 8 2 ) 1 3 0 4 , b) P. G r a s s b e r g e r and I . P r o c a c c i a , P h y s . Rev. L e t t . 50 (1983) 3 4 6 , c ) J . D . Farmer, E . O t t and J . A . Y o r k e , P h y s i c a 7D (1983) 153, d) Y . Termonia and Z . A l e x a n d r o v i t c h , P h y s . Rev. L e t t . 51 (1983) 1265, e) J . Guckenheimer and G. B u z y n a , P h y s . Rev. L e t t . 51 (1983) 1438. 4.
R. B a d i i and A . P o l i t i , a ) P h y s . Rev. L e t t . 52 (1984) 1 6 6 1 , b) J . S t a t . P h y s . 40 (1985) 725.
and,
g i v e s o n l y an upper bound
to Di = D ( 0 ) , a s e x p e c t e d . M o r e o v e r , the s y s t e m nonuniform a l r e a d y a t g = 0.1
and the
h i g h e s t s p r e a d among the v a r i o u s d i m e n s i o n s i s o b t a i n e d a t the t r a n s i t i o n p o i n t g = l / ( 2 i r ) .
It
however, e v i d e n t t h a t n o n u n i f o r m i t y changes smoothly w i t h g and does n o t have a w i t h the n o n i n v e r t i b i l i t y
o f the map.
5 . P. G r a s s b e r g e r , P h y s . L e t t . 6 . H . G . E . Hentschel and I . 8D (1983) 435.
relation
is, rather
97A (1983)
227.
Procaccia, Physica
7.
C . T r i c o t , M a t h . P r o c . Camb. P h i l . S o c . 91 (1982) 57.
8.
R. B a d i i and A . P o l i t i , P h y s . 303.
vertical
the map becomes n o n i n v e r t i b l e
for larger g-values,
i s rather
2 . A . R e n y i , P r o b a b i l i t y Theory Amsterdam, 1 9 7 0 ) .
investigate
g . I n F i g u r e 1 , we d i s
l i n e ) and f i v e
dimension f u n c t i o n D ( y )
dashed l i n e ) ,
B . B . M a n d e l b r o t , The F r a c t a l Geometry o f N a t u re (Freeman, San F r a n c i s c o , 1 9 8 3 ) .
"Lyapunov d i m e n s i o n " a s a
f u n c t i o n o f the parameter play D L (as a f u l l
1.
a s shown by
v a l u e o f Lyapunov exponents are s t r o n g
D,= 1 + λι/|λ2|
REFERENCES
Lett.
9. B . B . Mandelbrot, M u l t i p l i c a t i v e F r a c t a l s , t h i s volume.
104A (1984)
Chaos and
1 0 . Y a . S i n a i , R u s s . M a t h . S u r v e y s 4 (1972) 2 1 . 1 1 . P . G r a s s b e r g e r and I . (1984) 34.
P r o c a c c i a , P h y s i c a 13D
1 2 . L . S . Young, J . E r g o d i c Theory and Dynam. S y s . 2 (1982) 109.