Numerical scheme with high order accuracy for solving a modified fractional diffusion equation

Numerical scheme with high order accuracy for solving a modified fractional diffusion equation

Applied Mathematics and Computation 244 (2014) 772–782 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

486KB Sizes 0 Downloads 79 Views

Applied Mathematics and Computation 244 (2014) 772–782

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Numerical scheme with high order accuracy for solving a modified fractional diffusion equation Y. Chen, Chang-Ming Chen ⇑ School of Mathematical Sciences, Xiamen University, Xiamen 361006, China

a r t i c l e

i n f o

Keywords: Modified fractional diffusion equation Numerical scheme with second order temporal accuracy and fourth order spatial accuracy Convergence Stability Solvability Fourier analysis

a b s t r a c t In recent years, some researchers have developed various numerical schemes to solve the modified fractional diffusion equation. For the numerical solutions of the modified fractional diffusion equation, there are already some important progresses. In this paper, a numerical scheme with second order temporal accuracy and fourth order spatial accuracy is developed to solve a modified fractional diffusion equation; the convergence, stability and solvability of the numerical scheme are analyzed by Fourier analysis; the theoretical results extremely consistent with the numerical experiment. Ó 2014 Elsevier Inc. All rights reserved.

1. Introduction In recent years, the time or space or time–space fractional diffusion equations are widely used to describe anomalous diffusion processes in numerous physical and biological systems, many authors have developed various numerical schemes to solve these fractional diffusion equations. By the inclusion of a secondary fractional time derivative acting on a diffusion operator, a model for describing processes that become less anomalous as time progresses has been proposed [3,10,11]

@pðx; tÞ ¼ @t

A

! @ 1a @ 1b @ 2 pðx; tÞ þ B ; @x2 @t 1a @t 1b

ð1Þ

for this modified fractional diffusion equation, Langlands et al. proposed the solution with the form of an infinite series of Fox functions on an infinite domain [6]; Merdan et al. presented the numerical solution of time-fraction modified equal width wave equation, and show how an application of fractional two dimensional differential transformation method obtained approximate analytical solution of time-fraction modified equal width wave equation [9]; Liu et al. discussed the numerical method and analytical technique of the modified fractional diffusion equation with a nonlinear source term, they proved that this method has first order temporal accuracy and second order spatial accuracy using a new energy method [7]; Liu et al. researched the finite element approximation for a modified fractional diffusion equation, they proved that this approximation has first order temporal accuracy and m (here m is the degree of the piecewise polynomials) order spatial accuracy [8]; Zhang et al. studied the finite difference/element method for a two-dimensional modified fractional diffusion equation, they proved that this method has ð1 þ minfa; bgÞ order temporal accuracy and m (here m is the degree of the piecewise polynomials) order spatial accuracy [12]; Chen researched the numerical method ⇑ Corresponding author. E-mail address: [email protected] (C.-M. Chen). http://dx.doi.org/10.1016/j.amc.2014.07.044 0096-3003/Ó 2014 Elsevier Inc. All rights reserved.

773

Y. Chen, C.-M. Chen / Applied Mathematics and Computation 244 (2014) 772–782

for solving a two-dimensional variable-order modified fractional diffusion equation, this method has first order temporal accuracy and fourth order spatial accuracy, further, a numerical method for improving temporal accuracy have also been developed [4]; apply the fourth-order compact scheme of the second-order space partial derivative and the Grünwald–Letnikov discretization of the Rieman–Liouille fractional time derivative, Abbaszadeh et al. proposed a high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, they proved that this scheme has first order temporal accuracy and fourth order spatial accuracy using the Fourier method [1], and they also presented a fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term, they proved that this solution has first order temporal accuracy and fourth order spatial accuracy using the Fourier method [2]. On the basis of the literature, for the cases of one-dimensional and multidimensional of the modified fractional diffusion equation Eq. (1), although the numerical schemes with ideal spatial accuracy can be constructed by the fourth-order compact scheme of the second-order space partial derivative or the finite element approximation, but unfortunately that numerical scheme with second-order temporal accuracy is still unable to achieve. Chen constructed a numerical method for improving temporal accuracy for solving a two-dimensional variable-order modified fractional diffusion equation, but it should be point out that it only is supported by the numerical experiment, whereas it is not supported by rigorous numerical analysis [4]. Therefore to date, numerical scheme with second order temporal accuracy for solving modified fractional diffusions supported by rigorous numerical analysis does not exist. So, how to improve temporal accuracy of numerical scheme for solving modified fractional diffusions is a exciting and meaningful work. Easy to understand that the key problem is that convergence and stability analysis of numerical scheme are very difficult. We expect that this article will change this situation. In this paper, we study numerical scheme and perform related numerical analysis for solving the following modified fractional diffusion equation (MFDE)

! @ 1a @ 1b @ 2 pðx; tÞ þ þ f ðx; tÞ; @x2 @t 1a @t 1b

@pðx; tÞ ¼ @t

ð2Þ

with the following initial and boundary conditions:

pðx; 0Þ ¼ wðxÞ;

0 6 x 6 L;

pð0; tÞ ¼ uðtÞ;

pðL; tÞ ¼ wðtÞ;

where 0 < a < b < 1, and 1c pðx; ;tÞ 0 Dt

¼

1

ð3Þ 0 6 t 6 T;

1c pðx; tÞ 0 Dt

@

Z

CðcÞ @t

t 0

ð4Þ

is the Rieman–Liouille fractional partial derivative of order 1  c defined by

pðx; sÞ ðt  sÞ1c

ds:

In this paper, we always suppose that pðx; tÞ 2 PðXÞ is the exact solution of the problem (1)–(3) and

@ 2 f ðx;tÞ @t 2

X ¼ fðx; tÞj0 6 x 6 L; 0 6 t 6 T g; ( PðXÞ ¼

) @ 6 pðx; tÞ @ 4 pðx; y; tÞ pðx; tÞj ; 2 CðXÞ : @x6 @x2 @t2

2. A numerical scheme for solving MFDE In this paper, we let

xj ¼ jh;

j ¼ 0; 1; . . . ; J;

where h ¼ L=J and

d2x

v

i j

¼v

i j1

tk ¼ ks;

k ¼ 0; 1; . . . ; K;

s ¼ T=K is space step and time step, respectively. And define

 2v ij þ v ijþ1 :

Integrating both sides of Eq. (2) from t k1 to t k and take x ¼ xj , get that

1 pðxj ; t k Þ  pðxj ; tk1 Þ ¼ CðaÞ

"Z

1 þ CðbÞ

tk

0

"Z 0

@ 2 pðxj ; sÞ ds  @x2 ðtk  sÞ1a tk

Z

t k1

0

@ 2 pðxj ; sÞ ds  @x2 ðt k  sÞ1b

Z 0

@ 2 pðxj ; sÞ ds @x2 ðt k1  sÞ1a

t k1

#

# Z tk @ 2 pðxj ; sÞ ds þ f ðxj ; sÞds 1b @x2 ðt k1  sÞ t k1

2 CðXÞ, where

774

Y. Chen, C.-M. Chen / Applied Mathematics and Computation 244 (2014) 772–782

from this we have that

"Z #       Z tk1 2 tk 2 1 1 1 1 @ pðxj ; sÞ ds @ pðxj ; sÞ ds 1 þ d2x pðxj ;t k Þ  1 þ d2x pðxj ;t k1 Þ ¼ 1 þ d2x  12 12 12 @x2 ðt k  sÞ1a @x2 ðt k1  sÞ1a CðaÞ 0 0 " #   Z tk 2 Z tk1 2 1 2 1 @ pðxj ;sÞ ds @ pðxj ; sÞ ds  þ 1 þ dx 12 @x2 ðt k  sÞ1b @x2 ðt k1  sÞ1b CðbÞ 0 0  Z tk 1 f ðxj ;sÞds: þ 1 þ d2x 12 t k1 Because pðx; tÞ 2 PðXÞ gives

  1 2 @ 2 pðxj ; t i Þ d2x pðxj ; t i Þ 4 1þ dx ¼ þ Oðh Þ; 2 12 @x2 h and

@ 2 pðxj ; sÞ t l  s @ 2 pðxj ; t l1 Þ s  tl1 @ 2 pðxj ; t l Þ ¼ þ þ Oðs2 Þ; @x2 @x2 @x2 s s

t l1 6 s 6 tl ;

then

"Z #   Z tk1 2 tk 1 2 1 @ 2 pðxj ; sÞ ds @ pðxj ; sÞ ds 1þ dx  12 @x2 @x2 CðaÞ 0 ðt k  sÞ1a ðt k1  sÞ1a 0 !   k Z tl 1 2 1 X t l  s @ 2 pðxj ; t l1 Þ s  t l1 @ 2 pðxj ; tl Þ ds 2 d þ þ Oðs Þ ¼ 1þ 12 x CðaÞ l¼1 tl1 @x2 @x2 s s ðt k  sÞ1a !   k1 Z t l 1 2 1 X t l  s @ 2 pðxj ; t l1 Þ s  t l1 @ 2 pðxj ; tl Þ ds 2  1þ d þ þ Oðs Þ 12 x CðaÞ l¼1 tl1 @x2 @x2 s s ðt k1  sÞ1a " #     Z k tl 1 X tl  s 1 2 @ 2 pðxj ; t l1 Þ s  t l1 1 2 @ 2 pðxj ; t l Þ ds 2 ¼ 1þ dx þ 1 þ d þ Oð s Þ 12 12 x CðaÞ l¼1 tl1 s s @x2 @x2 ðt k  sÞ1a " #     k1 Z t l 1 X tl  s 1 2 @ 2 pðxj ; t l1 Þ s  t l1 1 2 @ 2 pðxj ; t l Þ ds 2  1þ d þ 1þ d þ Oðs Þ 12 x @x2 12 x @x2 CðaÞ l¼1 tl1 s s ðt k1  sÞ1a " ! ! # k Z tl 1 X t l  s d2 pðxj ; tl1 Þ s  tl1 d2x pðxj ; t l Þ ds 4 4 2 ¼ þ Oðh Þ þ þ Oðh Þ þ Oðs Þ 2 2 CðaÞ l¼1 tl1 s s ðt k  sÞ1a h h " ! ! # k1 Z t l 1 X t l  s d2 pðxj ; tl1 Þ s  tl1 d2x pðxj ; t l Þ ds 4 4 2 þ þ Oð  þ Oðh Þ þ Oðh Þ s Þ 2 2 CðaÞ l¼1 tl1 s s ðt k1  sÞ1a h h ¼ la

k X 2 k kðlÞ a dx pðxj ; t kl Þ þ Rj ; l¼0

where

la ¼ Rkj

sa Cð2 þ aÞh2

;

" k Z   X 4 2 ¼ Oðs Þ þ Oðh Þ l¼1

tl

ds

t l1

ðtk  sÞ1a



k1 Z X l¼1

tl

ds

t l1

ðt k1  sÞ1a

# ;

and

kðlÞ c ¼

8 1; > > > > 1þc < 2  3; 1þc

k ¼ 0; k ¼ 1; 1þc

1þc

1þc

ðl  2Þ þ 3ðl  1Þ  3l þ ðl þ 1Þ ; k ¼ 2; . . . ; k  1; > > > > : ð1 þ cÞkc  ðk  1Þc   ðk  2Þ1þc þ 2ðk  1Þ1þc  k1þc ; k ¼ k;

Similarly, we also have that

"Z #   Z tk1 2 k tk X 1 2 1 @ 2 pðxj ; sÞ ds @ pðxj ; sÞ ds ðlÞ ek; ¼ 1þ dx  l kb d2x pðxj ; tkl Þ þ R j b 12 @x2 @x2 CðbÞ 0 ðt k  sÞ1b ðt k1  sÞ1b 0 l¼0

ð5Þ

Y. Chen, C.-M. Chen / Applied Mathematics and Computation 244 (2014) 772–782

775

where

sb

lb ¼

Cð2 þ bÞh2

;

and

" k Z   X 4 k 2 e R j ¼ Oðs Þ þ Oðh Þ l¼1

By

@ 2 f ðx;tÞ @t 2

Z

tl

ds

t l1

ðtk  sÞ1b

k1 Z X



l¼1

tl

ds

t l1

ðtk1  sÞ1b

# :

2 CðXÞ, the following Trapezaoidal formula holds

tk

s

f ðxj ; sÞds ¼

2

t k1

 f ðxj ; tk1 Þ þ f ðxj ; tk Þ þ Oðs3 Þ:

According the above analysis, we have that

    k k X X 1 2 1 2 ðlÞ 2 1þ dx pðxj ; t k Þ  1 þ dx pðxj ; t k1 Þ ¼ la kðlÞ kb d2x pðxj ; tkl Þ a dx pðxj ; t kl Þ þ lb 12 12 l¼0 l¼0    s 1 2  dx f ðxj ; tk1 Þ þ f ðxj ; tk Þ þ Rkj ; 1þ þ 12 2

ð6Þ

where

e k þ Oðs3 Þ Rkj ¼ Rkj þ R j

" k Z   X 4 ¼ Oðs2 Þ þ Oðh Þ l¼1

 4 þ Oðs2 Þ þ Oðh Þ

tl

ds

t l1

" k Z  X l¼1

ðtk  sÞ

 1a

k1 Z X l¼1

tl

ds

t l1

ðtk  sÞ1b



tl

ds

t l1

ðt k1  sÞ1a

k1 Z X l¼1

#

tl

ds

t l1

ðtk1  sÞ1b

# þ Oðs3 Þ:

Notice that k Z X l¼1 k1 Z X l¼1 k Z X l¼1

tl tl1

tl tl1

tl tl1

ds 1a

ðt k  sÞ

¼

1a

ds 1b

ðt k  sÞ

tk

¼

¼

ds ðtk  sÞ

0

ds ðt k1  sÞ

Z

Z

tk1

0

Z

tk

a

a

ds

¼

;

ððk  1ÞsÞ

ðt k1  sÞ

1a

ds

ðksÞ ; b

a

a

;

b

1b

ðt k  sÞ

0

ðksÞ

¼

1a

¼

and k1 Z X l¼1

tl tl1

ds ðt k1  sÞ

1b

¼

Z

t k1

0

b

ds 1b

ðtk1  sÞ

¼

ððk  1ÞsÞ ; b

whereas ks 6 T, then 4

Rkj ¼ Oðs2 þ h Þ

ð7Þ

We now present the following numerical scheme for solving problem (2)–(4)

      k k  X X 1 2 k 1 2 k1 s 1 2  k1 ðlÞ 2 kl 2 kl fj þ fjk ; 1þ dx pj  1 þ dx pj ¼ la kðlÞ d p þ l k d p þ d 1 þ x b x j a x j b 12 12 12 2 l¼0 l¼0 k ¼ 1; 2; . . . ; K; p0j ¼ wj ;

ð8Þ

j ¼ 1; 2; . . . ; J  1;

j ¼ 0; 1; . . . ; J;

pk0 ¼ uðtk Þ; pkJ ¼ wðt k Þ;

ð9Þ k ¼ 0; 1; . . . ; K;

where fjl ¼ f ðxj ; tl Þ; wj ¼ wðxj Þ, whereas plj denote the numerical approximation to the exact solution pðxj ; tl Þ.

ð10Þ

776

Y. Chen, C.-M. Chen / Applied Mathematics and Computation 244 (2014) 772–782

3. Convergence of the numerical scheme for solving MFDE In this section, we study convergence of the numerical scheme (8)–(10). Subtracting (8) from (6), we obtain the following error equation

    k k X X 1 2 k 1 2 k1 ðlÞ 2 kl 1þ dx Ej  1 þ dx Ej ¼ la kðlÞ kb d2x Ekl þ Rkj ; a d x E j þ lb j 12 12 l¼0 l¼0 k ¼ 1; 2; . . . ; K;

ð11Þ

j ¼ 1; 2; . . . ; J  1;

where Ekj ¼ uðxj ; t k Þ  ukj . For k ¼ 0; 1; . . . ; K, define the following grid functions:

8  i < Ek ; when x 2 x 1 ;x 1 ; j ¼ 1; 2; . . . ; J  1; j2 jþ2 j E ðxÞ ¼ : 0; when x 2 0; h S L  h ; L; 2 2 k

and

8  i < Rk ; when x 2 x 1 ;x 1 ; j ¼ 1; 2; . . . ; J  1; j2 jþ2 j R ðxÞ ¼ : 0; when x 2 0; h S L  h ; L; 2 2 k

respectively. Then, Ek ðxÞ and Rk ðxÞ can be developed Fourier series, respectively 1 X

Ek ðxÞ ¼

nk ðlÞei2plx=L ;

k ¼ 0; 1; . . . ; K;

l¼1

and

Rk ðxÞ ¼

1 X

gk ðlÞei2plx=L ; k ¼ 0; 1; . . . ; K;

l¼1

where

nk ðlÞ ¼

1 L

Z

L

Ek ðxÞei2plx=L dx;

gk ðlÞ ¼

0

Z

1 L

L

Rk ðxÞei2plx=L dx:

0

Let that

h iT Ek ¼ Ek1 ; Ek2 ; . . . ; EkJ1 ;

h iT Rk ¼ Rk1 ; Rk2 ; . . . ; RkJ1 :

Applying Parseval equalities:

Z

L

jEk ðxÞj2 dx ¼

0

1 X

jnk ðlÞj2 ;

Z

L

jRk ðxÞj2 dx ¼

0

l¼1

1 X

jgk ðlÞj2 ;

l¼1

we have, respectively k

kE k2 

J1 X hjEkj j2

!12 ¼

j¼1

kR k2 

!12 jnk ðlÞj

2

;

k ¼ 0; 1; . . . ; K

ð12Þ

k ¼ 0; 1; . . . ; K:

ð13Þ

l¼1

and k

1 X

J1 X hjRkj j2

!12 ¼

j¼1

1 X

!12 jgk ðlÞj

2

;

l¼1

We now assume that, respectively

Ekj ¼ nk eirjh ; where

Rkj ¼ gk eirjh ;

r ¼ 2pl=L. By substituting the above expressions into (11), we get     k k X X 1 1 2 rh 2 rh 2 rh 2 rh ðlÞ nk  1  sin nk1 ¼ 4la sin 1  sin kðlÞ k n þ gk ; a nkl  4lb sin 3 2 3 2 2 l¼0 2 l¼0 b kl k ¼ 1; 2; . . . ; K;

ð14Þ

Y. Chen, C.-M. Chen / Applied Mathematics and Computation 244 (2014) 772–782

777

We now arrange Eq. (14) as follows

nk ¼

"

1

U

Wnk1  4la sin2

k rh X

2

kðlÞ a nkl  4lb sin

2

l¼2

k rh X

2

# ðlÞ

kb nkl þ gk ;

ð15Þ

l¼2

k ¼ 1; 2; . . . ; K; where

U¼1

  1 2 rh 2 rh sin þ 4 la þ lb sin ; 3 2 2

W¼1

  1 2 rh 2 rh ð1Þ sin  4 la kð1Þ : sin a þ lb kb 3 2 2

Similar to [5], we have the following lemma: ðlÞ

Lemma 1. If 0 < c < 1, the coefficients kc ðl ¼ 0; 1; . . . ; kÞ possess the following properties: 1þc (1) kð0Þ kð1Þ  3; kðlÞ l ¼ 2; . . . ; k; c ¼ 1; c ¼ 2 c < 0; P c c k ðlÞ (2) k ¼ ð1 þ c Þ k  ðk  1Þ > 0; l¼0 c P k ðlÞ ð1Þ (3) 1 < kð1Þ c < 1,  l¼2 kc < 1 þ kc .

Lemma 2. For 0 < a < b < 1, if the temporal and spatial steps satisfy

s2 ¼ h4 , then

U P 1: Proof. By 0 < a < b < 1 and

la þ lb ¼

sa Cð2 þ aÞh

2

s2 ¼ h4 , we have that

þ

2ða1Þ

sb 2

Cð2 þ bÞh

¼

2ðb1Þ

h h 1 1 P þ þ ¼1 Cð2 þ aÞ Cð2 þ bÞ Cð3Þ Cð3Þ

from this we complete the proof of Lemma 2. h Lemma 3. For 0 < a < b < 1, if

ð1Þ ð1Þ ð1Þ 1 la kð1Þ a þ lb kb  0, or if 0 < la ka þ lb kb 6 6, then

WP0 From (7), then there is a positive constant C 1 , such that 4

jRkj j 6 C 1 ðs2 þ h Þ;

k ¼ 1; 2; . . . ; K;

ð16Þ

again noticing the first equality of (13), we have

pffiffiffi 4 kRk k2 6 C 1 Lðs2 þ h Þ;

k ¼ 1; 2; . . . ; K:

ð17Þ

In terms of the convergence of the series in RHS of (13), then there is a positive constant C 2 , such that

jgk j  jgk ðlÞj 6 C 2 sjg1 ðlÞj  C 2 sjg1 j;

k ¼ 1; 2; . . . ; K:

ð18Þ 2

f ðx;tÞ Theorem 1. Suppose that pðx; tÞ 2 PðXÞ is the exact solution of the problem (2)–(4), @ @t 2 CðXÞ, and the temporal and spatial 2 4 ð1Þ ð1Þ ð1Þ ð1Þ 2 1 steps satisfy s ¼ h , if la ka þ lb kb  0, or if 0 < la ka þ lb kb 6 6, then the numerical scheme (8)–(10) is convergent with the 4 order Oðs2 þ h Þ.

Proof. Firstly, we certify the following conclusion: there is a positive constant C, such that

jnk j 6 Ckjg1 j;

k ¼ 1; 2; . . . ; K;

where nk ðk ¼ 1; 2; . . . ; KÞ be the solution of (15). For k ¼ 1, from E0 ¼ 0 lead to n0 ¼ 0, further applying Lemma 2 and (18), from Eq. (15) immediately gets

jn1 j ¼

1

U

jg1 j 6 jg1 j 6 C 2 sjg1 j:

ð19Þ

778

Y. Chen, C.-M. Chen / Applied Mathematics and Computation 244 (2014) 772–782

Suppose that

jnn j 6 C 2 nsjg1 j;

n ¼ 1; 2; . . . ; k  1;

in term of Lemmas 1–3, from Eq. (15), we have that

nk ¼

6

6

6

¼ 6





k k X X 1



2 rh 2 rh ðlÞ kðlÞ n  4 l sin k n þ g

Wnk1  4la sin kl k

b kl a b

2 l¼2 2 l¼2 U

1

Wjnk1 j þ 4la sin

U 1

2

Wðk  1Þ þ 4la sin ("

W þ 4la sin2

U 1

(" 2

W  4la sin

U 1

2

"

U 1

k

rh X

ðlÞ

2



U

l¼2

2

ka jnkl j þ 4lb sin

l¼2

2

ka ðk  lÞ þ 4lb sin

k

rh X

ðlÞ

2

rh



2

2

k

rh X

ðlÞ

2

2

ka þ 4lb sin

l¼2 k X

2

ðlÞ

ka  4lb sin

l¼2



2 W þ 4la 1 þ kð1Þ sin a

rh 2

kb jnkl j þ jgk j

l¼2

l¼2

k rh X

2

#

k

rh X

ðlÞ

2

l¼2

#

k

rh X

ðlÞ

2

!

k

rh X

ðlÞ

kb ðk  lÞ þ 1 C 2 sjg1 j )

kb ðk  1Þ þ 1 C 2 sjg1 j #

ðlÞ kb

)

ðk  1Þ þ 1 C 2 sjg1 j

l¼2

  2 ð1Þ þ 4lb 1 þ kb sin



rh 2

   1 ðk  1Þ þ 1 C 2 sjg1 j ¼ k  1 þ C 2 sjg1 j 6 C 2 ksjg1 j

U

This proves the conclusion (19) by induction. Applying the conclusion (19), (12), (13) and (17), we have that 4

kEk k2 6 C 2 kskR1 k2 6 Cðs2 þ h Þ:

pffiffiffi where C ¼ C 1 C 2 LT. This completes the proof of Theorem 1.

h

Remark 1. It is well known that since there are many numerical integration formulas with high order accuracy, thus to continue to construct numerical scheme with high temporal accuracy for solving the modified fractional diffusion Eq. (2) is not difficult. However, the problem is that convergence and stability analysis may be very difficult.

4. Stability and solvability of the numerical scheme for solving MFDE 4.1. Stability of the numerical scheme for solving MFDE In this subsection, we research stability of the numerical scheme (8)–(10), to this end consider the following difference equation

    k k X X 1 2 k 1 2 k1 ðlÞ 2 kl 1þ dx qj  1 þ dx qj ¼ la kðlÞ kb d2x qkl j ; a dx qj þ lb 12 12 l¼0 l¼0 k ¼ 1; 2; . . . ; K;

j ¼ 1; 2; . . . ; J  1;

p kj is an approximation for pkj . where q ¼  whereas e For k ¼ 0; 1; . . . ; K, define the following grid function: k j

e p kj ,

pkj

8  i < qk ; when x 2 x 1 ;x 1 ; j ¼ 1; 2; . . . ; J  1; j2 jþ2 j q ðxÞ ¼ : 0; when x 2 0; h S L  h ; L; 2 2 k

then qk ðxÞ can be developed Fourier series 1 X

qk ðxÞ ¼

fk ðlÞei2plx=L ;

k ¼ 0; 1; . . . ; K;

l¼1

where

fk ðlÞ ¼

1 L

Z

L

uk ðxÞei2plx=L dx:

0

Let that

h

iT

qk ¼ qk1 ; qk2 ; . . . ; qkJ1 ;

ð20Þ

779

Y. Chen, C.-M. Chen / Applied Mathematics and Computation 244 (2014) 772–782

applying Parseval equality

Z

L

jqk ðxÞj2 dx ¼

0

1 X

jfk ðlÞj2 ;

l¼1

we have that J1 X hjqkj j2

k

kq k2 

!12

1 X

¼

j¼1

!12 2

jfk ðlÞj

;

k ¼ 0; 1; . . . ; K:

ð21Þ

l¼1

We now assume that

qkj ¼ fk eirjh ; where

r ¼ 2pl=L. By substituting the above expression into (20) gives     k k X X 1 1 2 rh 2 rh 2 rh 2 rh ðlÞ fk  1  sin fk1 ¼ 4la sin 1  sin kðlÞ k f ; a fkl  4lb sin 3 2 3 2 2 l¼0 2 l¼0 b kl

ð22Þ

k ¼ 1; 2; . . . ; K: We rewrite Eq. (22) as follows

fk ¼

"

1

U

Wfk1  4la sin2

k rh X

2

2

kðlÞ a fkl  4lb sin

l¼2

k rh X

2

# ðlÞ

ð23Þ

kb fkl ;

l¼2

k ¼ 1; 2; . . . ; K;

4

ð1Þ

ð1Þ

ð1Þ

ð1Þ

Theorem 2. Suppose that the temporal and spatial steps satisfy s2 ¼ h , if la ka þ lb kb  0, or if 0 < la ka þ lb kb 6 16, then the numerical scheme (8)–(10) is stable.

Proof. At first, we demonstrate the following conclusion:

jfk j 6 jf0 j;

k ¼ 1; 2; . . . ; K;

ð24Þ

where fk ðk ¼ 1; 2; . . . ; KÞ be the solution of (23). For k ¼ 1, by Lemmas 1–3, from Eq. (23) immediately gives

jf1 j ¼

1

U

Wjf0 j 6 jf0 j;

Suppose that

jfn j 6 jf0 j;

n ¼ 1; 2; . . . ; k  1:

Combining Lemmas 1–3, from Eq. (23) gets that





k k X X 1



2 rh 2 rh ðlÞ ðlÞ jfk j ¼ Wfk1  4la sin ka fkl  4lb sin kb fkl

2 l¼2 2 l¼2 U

6

6

1

Wjfk1 j þ 4la sin2

U 1

2

W þ 4la sin

U

rh 2



k

rh X

ðlÞ

2

l¼2

k

X l¼2

2

ka jfkl j þ 4lb sin



ðlÞ

2

ka þ 4lb sin

rh 2

k

rh X

ðlÞ

2 l¼2 !

1

ðlÞ

kb jf0 j ¼

k

X l¼2

!

kb jfkl j

U

2

W  4la sin

    1 2 rh 2 rh ð1Þ jf0 j ¼ jf0 j: 6 W þ 4la 1 þ kð1Þ þ 4 l 1 þ k sin sin b a b 2 2 U

k rh X

2

ðlÞ

2

ka  4lb sin

l¼2

k rh X

2

ðlÞ kb

! jf0 j

l¼2

So, the conclusion (24) is proved by induction. Applying the conclusion (24) and (21), then the solution qk of difference Eq. (20) satisfies that

kqk k2 6 kq0 k2 ;

k ¼ 1; 2; . . . ; K:

This prove the Theorem 2.

h

780

Y. Chen, C.-M. Chen / Applied Mathematics and Computation 244 (2014) 772–782

4.2. Solvability of the numerical scheme for solving MFDE In this subsection, we study solvability of the numerical scheme (8)–(10). It can be seen that the corresponding homogeneous linear algebraic equations for the numerical scheme (8)–(10) is

    1 2 k 1 2 k1 1þ dx pj  1 þ dx p j 12 12 k k X X ðlÞ 2 kl kb d2x pkl ¼ la kðlÞ j ; a dx pj þ lb l¼0

ð25Þ ð26Þ

l¼0

k ¼ 1; 2; . . . ; K;

j ¼ 1; 2; . . . ; J  1;

p0j ¼ 0;

j ¼ 0; 1; . . . ; J:

pk0 ¼ 0;

pkJ ¼ 0;

ð27Þ

k ¼ 0; 1; . . . ; K:

ð28Þ k

Similar to the proof of Theorem 2, we can also verify that the solution p of the homogeneous linear algebraic Eqs. (26)– (28) satisfies that

kpk k2 6 kp0 k2 ;

k ¼ 1; 2; . . . ; K:

0

By p ¼ 0 immediately gets

pk ¼ 0;

k ¼ 1; 2 . . . ; K:

This reveals that the corresponding homogeneous equations for the numerical scheme (8)–(10) have only zero solution. So, we have the following result: 4

ð1Þ

ð1Þ

ð1Þ

ð1Þ

Theorem 3. Suppose that the temporal and spatial steps satisfy s2 ¼ h , if la ka þ lb kb  0, or if 0 < la ka þ lb kb 6 16, then the numerical scheme (8)–(10) is uniquely solvable.

5. Numerical experiment In order to verify the theoretical analysis results, we now apply the numerical scheme (8)–(10) to solve the following initial-boundary value problem of a modified fractional diffusion equation

@pðx; tÞ ¼ @t 0 < t 6 1;

! @ 1a @ 1b @ 2 pðx; tÞ þ þ f ðx; tÞ; @x2 @t 1a @t 1b 0 < x < 1;

pðx; 0Þ ¼ 0; pð0; tÞ ¼ t 2 ;

ð29Þ

0 6 x 6 1: 

ð30Þ

pð1; tÞ ¼ et2 ;

0 6 t 6 1;

ð31Þ

 where f ðx; tÞ ¼ 2ex t  Cð2þaÞ  Cð2þbÞ . The exact solution of the problem (29)–(31) is t 1þa

t 1þb

pðx; tÞ ¼ ex t 2 :

Table 1 The maximum error E1 , temporal accuracy a and spatial accuracy b of the numerical scheme (8)–(10) for solving for the problem (29)–(31).

a

b

0.1

0.7

0.2

0.8

0.3

a

b

3:5759  10

6

a

b

3.87

6

7:4432  10

1.94

3:5591  105

7:4432  106

1.93

2:4953  10

1.90

3.80

3.86

2:4953  106

1.90

0.9

3:5422  105

7:3461  106

3.80

1.94

3.88

2:2508  106

2.06

0.4

0.5

3:5675  105

4.11

7:4432  106

1.93

3.87

2:4272  106

1.95

0.5

0.6

3.90

3:5506  105

7:3461  106

1.94

3.89

2:4272  106

1.92

0.6

3.85

0.7

3:5253  105

7:2489  106

1.95

3.90

2:4272  106

1.90

3.80

0.7

0.71

3:5169  105

7:2489  106

1.95

3.90

2:2508  106

2.03

4.07

0.8

0.82

3:4916  105

7:3461  106

1.93

3.84

2:4272  106

1.92

3.85

0.9

0.93

3:4748  105

7:1571  106

1.95

3.90

2:0066  106

2.21

4.42

1 s2 ¼ h4 ¼ 16

1 s2 ¼ h4 ¼ 81 5

1 s2 ¼ h4 ¼ 256

Y. Chen, C.-M. Chen / Applied Mathematics and Computation 244 (2014) 772–782

781

3 E.S.(t=1/4) N.S.(t=1/4) E.S.(t=2/4) N.S.(t=2/4) E.S.(t=3/4) N.S.(t=3/4) E.S.(t=1) N.S.(t=1)

2.5

2

1.5

1

0.5

0

0

0.2

0.4

x

0.6

0.8

1

Fig. 1. The comparison of the numerical solution (N.S.) using the numerical scheme (8)–(10) and the exact solution (E.S.) for the problem (29)–(31) at 4 1 t ¼ 14 ; 24 ; 34 ; 1, respectively, for a ¼ 0:5; b ¼ 0:6 and s2 ¼ h ¼ 256 .

2.5 E.S.(x=1/4) N.S.(x=1/4) E.S.(x=2/4) N.S.(x=2/4) E.S.(x=3/4) N.S.(x=3/4)

2

1.5

1

0.5

0

0

0.2

0.4

t

0.6

0.8

1

Fig. 2. The comparison of the numerical solution (N.S.) using the numerical scheme (8)–(10) and the exact solution (E.S.) for the problem (29)–(31) at 4 1 x ¼ 14 ; 24 ; 34, respectively, for a ¼ 0:5; b ¼ 0:6 and s2 ¼ h ¼ 256 .

Let that the maximum error of the numerical solutions

n o b E1 ¼ max kEk k2 ¼ Oðsa þ h Þ: 06k6K

ðf Þ Assume that in the front experiment, the spatial step, temporal step, maximum error of the numerical solutions are hf ; sf ; E1 , respectively, whereas in the subsequent experiment, the spatial step, temporal step, maximum error of the numerical solu-

tions are hs ; ss ; EðsÞ 1 , respectively, then the temporal accuracy a and spatial accuracy b calculated by the following formulas

a ¼ log sss f

ðsÞ E1

Eðf1Þ

;

b ¼ log hs hf

ðsÞ E1

Eðf1Þ

:

782

Y. Chen, C.-M. Chen / Applied Mathematics and Computation 244 (2014) 772–782

−6

x 10

Absolute error |E(x,t)|

4 3 2 1 0 1 0.5

t

0

0

0.2

0.4

0.6

0.8

1

x

Fig. 3. The absolute error of the numerical solution for the problem (29)–(31) using the numerical scheme (8)–(10) for a ¼ 0:5; b ¼ 0:6 and

1 s2 ¼ h4 ¼ 256 .

Table 1 explains the maximum error of the numerical solutions for the problem (29)–(31) using the numerical scheme 4 (8)–(10) versus various a; b and s2 ¼ h , respectively. From Table 1, it can be seen that the numerical experiment extremely consistent with our theoretical analysis results. Fig. 1 illustrates the comparison of the numerical solution using the numerical scheme (8)–(10) and the exact solution for 4

1 . Fig. 2 reveals the comparison of the the problem (29)–(31) at t ¼ 14 ; 24 ; 34 ; 1, respectively, for a ¼ 0:5; b ¼ 0:6 and s2 ¼ h ¼ 256 numerical solution using the numerical scheme (8)–(10) and the exact solution for the problem (29)–(31) at x ¼ 14 ; 24 ; 34, 1 s2 ¼ h4 ¼ 256 . Fig. 3 illustrates the absolute error Eðx; tÞ of the numerical solution for 4 1 , where the problem (29)–(31) using the numerical scheme (8)–(10) for a ¼ 0:5; b ¼ 0:6 and s2 ¼ h ¼ 256

respectively, for a ¼ 0:5; b ¼ 0:6 and

Eðx; tÞ ¼ pðx; tÞ  e p ðx; tÞ; whereas e p ðx; tÞ is the numerical approximation for pðx; tÞ. Fig. 1–3 show that the numerical solution are very consistent with the exact solution. 6. Conclusion In this paper, a numerical scheme with second order temporal accuracy and fourth order spatial accuracy for solving a modified fractional diffusion equation has been developed; the convergence, stability and solvability of the numerical scheme have been analyzed by Fourier analysis; the numerical experiment extremely consistent with our theoretical results. References [1] A. Mohebbi, M. Abbaszadeh, M. Dehghan, A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term, J. Comput. Phys. 240 (2013) 36–48. [2] M. Abbaszadeh, A. Mohebbi, A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term, Comput. Math. Appl. 66 (2013) 1345–1359. [3] A. Chechkin, R. Gorenflo, I. Sokolov, V. Gonchar, Distributed order time fractional diffusion equation, Fract. Calc. Appl. Anal. 6 (3) (2003) 259–279. [4] Chang-Ming Chen, Numerical methods for solving a two-dimensional variable-order modified diffusion equation, Appl. Math. Comput. 225 (2013) 62– 78. [5] H. Huang, X. Cao, Numerical method for two dimensional fractional reaction subdiffusion equation, Eur. Phys. J. Spec. Top. 222 (2013) 1961–1973. [6] T.A.M. Langlands, Solution of a modified fractional diffusion equation, Physica A 367 (2006) 136–144. [7] F. Liu, C. Yang, K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J. Comput. Appl. Math. 231 (2009) 160–176. [8] Q. Liu, F. Liu, I. Turner, V. Anh, Finite element approximation for a modified anomalous subdiffusion equation, Appl. Math. Model. 35 (2011) 4103– 4116. [9] M. Merdan, A. Yildirim, A. Gokdogan, Numerical solution of time-fraction modified equal width wave equation, Eng. Comput. 29 (7–8) (2012) 766–777. [10] I. Sokolov, A. Chechkin, J. Klafter, Distributed-order fractional kinetics, Acta. Phys. Pol. B 35 (2004) 1323–1341. [11] I. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion, Chaos 15 (2) (2005) 026103. [12] N. Zhang, W.H. Deng, Y.J. Wu, Finite difference/element method for a two-dimensional modified fractional diffusion equation, Adv. Appl. Math. Mech. 4 (2012) 496–518.