INT. OOMM. HEAT M A S S T R A N S F E R 0735-1933/86 $3.00 + .00 Vol. 13, pp. 665-674, 1986 ©Pergamon Journals Ltd. Printed in the United States
NUMERICAL SIMULATION OF HEAT TRANSFER IN THE SEPARATED AND REATTACHED FLOW ON A BLUNT FLAT PLATE
M.C. Thompson, K. Hourlgan and M.C. Welsh Commonwealth S c i e n t i f i c and I n d u s t r i a l R e s e a r c h O r g a n i z a t i o n D i v i s i o n of Energy T e c h n o l o g y , I Q g h e t t , V i c t o r i a , A u s t r a l i a
(C~ll~nicated by J.P. Hartnett and W.J. Minkowycz)
ABSTRACT The tlae-dependent heat transfer process in the region of a turbulent separation bubble at the leading edge of an isothermal square leading edge plate Is modelled numerically. A dlscrete-vortex model is used to d e t e r u f l n e t h e v e l o c i t y f i e l d and a t h l r d - o r d e r up~rlnd d i f f e r e n c i n g t e c h n i q u e i s used t o c a l c u l a t e t h e t h e r m a l f l e l d . The p r e d i c t i o n of t h e mean N u s s e l t numbers i s compared w i t h e x p e r i m e n t . The model p r e d i c t s t h e i n s t a n t a n e o u s s t r e a m l i n e s , i s o t h e r m s and l o c a l N u s s e l t numbers a t t h e p l a t e s u r f a c e . The i n f l u e n c e of t h e l a r g e - s c a l e v o r t e x s t r u c t u r e s on t h e l o c a l h e a t t r a n s f e r i s d e t e r m i n e d .
Introduction
Heat
transfer
in separated,
reattached and redeveloped flow regions
is
important in many engineering sltuatlons. There has been a large number of
investigations These
include
facing
steps
carried
out on such f l o w s f o r a wide v a r i e t y
clreular (e.g.
cyllnders
Gooray e t
e x p a n s i o n s or c o n t r a c t i o n s years,
(e.g. [2]),
in tubes
(Ota
and
MacCormlek et al. tlme-mean heat reattach.
Kon
[I]),
forward
r o u g h n ess
[ 4 ] , Zelenka
and
bodies. backward
e l e m e n t s and a b r u p t
Sparrow and O ' B r l e n [ 3 ] ) .
In r e c e n t
have been u n d e r t a k e n t o d e t e r m i n e t h e
of such f lo ws around b l u n t and
[7], Motwanl et al.
Loehrke
flat
plates
[ 5 ] , Cooper
et
which a r e al.
[6],
[8]). These measurements show that the
transfer is augmented when the flow is made to separate and
The heat
significantly;
Morgan surface
(e.g.
a number of e x p e r i m e n t a l s t u d i e s
mean t h e r m a l c h a r a c t e r i s t i c s heated
al.
of b l u f f
a
transfer
local
characteristics
minimum
in
along
the Nusselt
the plate
number
separation bubble and a local maximum near reattachment. 665
is
surface
found
inside
vary the
666
M.C. Thompson, K. Hourigan and M.C. Welsh Recently,
proposed
mechan~sm~
to explain (e.g.
reattachment
large-sca]e
Jnvolvlng
the enhanced K~ya
and
heat
Sasakl
Vol. 13, No. 6
vortex
structures
have
been
transfer near the polnt of t~me--mean
[9]). A determination of the mechanJsms
leading to the var~atlon of the heat transfer ~n different regions of the flow requires evaluatlon of the instantaneous numerical wthod the
turbulent
presented.
for Invastlgatlng
structures
formed
A dlscrete-vortex
Peclet
numbers.
convection transfer
in
separated
high
transfer
Reynolds
r a t e of
number f l o w s
solutlon as
obtained
the
valuable
flow
insights
is
of
restricted
energy
into
is
t h e h i g h Reynolds number
scheme i s used t o s o l v e t h e e n e r g y e q u a t i o n .
th e
However,
processes,
In this paper, an economical
model i s used to p r e d i c t
f l o w and a f l n l t e - d l f f e r e n c e economy of c o m p u t a t i o n ,
flow.
t h e i n f l u e n c e on t h e h e a t
is
here
still
t h e mechanisms
For
t o moderate doalnated
leading
by
to heat
a u g m e n t a t l o n a r e found t o emerge from t h i s type of a p p r o a c h .
Numerlca] Model
The f l o w c o n s i d e r e d heated flow.
flat
plate,
is
which I s
The f l o w u p s t r e a m
The f l u i d
is
that
assumed
is
past
is
taken
t o be o f u n i f o r m v e l o c i t y
t o he I n v l s c l d ,
allow representation
focussed
on t h e
The v o r t l c l t y negligible
shear
generated
effect
Incompresslble
Invlscld
of t h e
layer at
the
lo w e r
field
both
is th e
determined steady
due t o o t h e r
flow across
every-
a r e l o c a t e d . These
scale flow structures.
Attention
from t h e t o p l e a d i n g edge c o r n e r .
l e a d i n g edge c o r n e r
is
assumed t o have
model
e n t e r i n g t h e f l o w from t h e l e a d i n g edge
of t h e p l a t e i s a p p r o x i m a t e d by a d i s t r i b u t i o n vortex
and t m m p e r a t u r e .
on t h e s h e a r l a y e r a t the top of t h e p l a t e .
The c o n t i n u o u s s h e e t of v o r t i c i t y
field,
set/-Inflnlte
and i r r o t a t l o n a l
llne vortices
larger
separating
Vortlclt 7 E~uatlon: Discrete-vortex
each
two-dlmenslonal,
e l l g n e d w / t h a s q u a r e l e a d i n g edge normal t o t h e
where e x c e p t a t p o i n t s where s l a p l e vortices
a rigid,
and
line
the s o l i d
through
vortices.
plate
the
fluctuating
contributions components,
In o r d e r
boundary,
of l i n e v o r t i c e s .
to s a t i s f y
from and
the
from
The m o t i o n o f irrotattonel the
vorticity
the condtcton of zero
the following S c h w a r z - C h r i s t o f f e l
f o r m a l t r a n s f o r m a t i o n i s used t o l o c a t e image v o r t i c e s :
z = ().(~2 - 1) 1/2 - a r c o s h (A)) 21t/s + iH •
con-
VOl. 13, No. 6 This ~nto
SEP~A~D~FI/3WGNAPLATE
transformation
the
flow
Naps th e
bounded
by t h e
placed st conjugate p o s i t i o n s to
satisfy
vortices
the
flow around
rea3
axis
(~-p]ane).
of
st
the
An i m p o r t a n t
the
annlhilatlon
of v o r t l c l t y
the tangential
model,
adjusted turn
is
into
the
fluld
~tth
scheme used
(e.g.
here
is
u p s t r e a m of t l m e - ~ e a n r e a t t a c h m e n t fraction fractlonal
18
determlned value
untll
by the
running net
vortlclty.
is
th e
is
of t h e
responslble
for
vort-
(Morton
leads to a
[12]).
In t h e
the
surface,
code
is
which i n
For l o n g p l a t e s ,
found t o be a p p r o x l a a t e l y [13])
by a f i x e d
to
the
a t t h e c e n t e r of t h e l e a d l n g
strengths
vortlclty
fraction and
unity,
and by t h e p r e s e n t model. of v o r t i c e s
Iteratlvely
generation
reclrculatlng
each t l m e - s t e p ;
rate
is
w i t h i n one p e r c e n t of t h e tlme-mean p r e s s u r e drop a l o n g t h e p l a t e
Energy E q u a t i o n : F i u l t e - d l f f e r e n c e
strength
recognition
and of t h a t
same r a t e
and C h e r r y
reduce
the
drop a l o n g i t s
introduced
Itilller
to
of its
shed I n t o t h e f l o w a l o n g t h e p l a t e
downstream of r e a t t a c h a e n t
both experlnentally
The i n t r o d u c t i o n
i n a homogeneous f l u l d ,
in the nonaallzed pressure coefficient
edge and t h a t
[10].
The p r e s e n c e of v i s c o s i t y the
the pressure
I n f l u e n c e d by p r e v l o u s l y
~ - p l an e
The a d v e c t i o n of t h e
r a t e of g e n e r a t i o n i s p r o p o r t l o n a l
at
t h e amount of v o r t l c l t y
t o be c o n s i s t e n t
difference
The
of v o r t l c l t y
surface pressure gradient.
f l u x of v o r t l c l t y
scheme i s
i n t h e f l o w . That i s ,
i s g e n e r a t e d a t a boundary and I t s
present
flow.
are
[II].
present
mechanism l e a d l n g t o t h e g e n e r a t i o n
(z-plane)
Jmnge v o r t i c e s
l e a d l n g edge c o r n e r end d e t e r n l n a t l o n
innovation in
plate
i n t h e upper h a l f of t h e
zero norual
bas ed on t h e scheme used by Nagano e t e l .
net
The
f o l l o w s c l o s e l y t h e scheme used by l ~ y a e t 81.
of vortlclty
Iclty
a semJ-tnftntte
to the v o r t i c e s
boundary c o n d i t i o n
667
adjusting consistent
this the to
surface.
approxlmatlon
The e n e r g y e q u a t i o n t o be s o l v e d i s g i v e n by
~T/~T + (u_.grad) T = Pe
The v e l o c i t y u 18 d e t e r a l n e d using a discrete
at
-I
d l v ( g r a d T) .
each s t e p by t h e d l s c r e t e - v o r t e x
approximation to the B i o t - S a v a r t I n t e g r a l .
scheme,
668
M.C. THOMPSON, K. Hourlgan and M.C. Welsh
Vol. 13, No.
The energy equation is solved using QUICKEST (Leonard scheme
uses
Jnc]udes manner
third
order
an estimation
to Lelth's
upstream
for the
method
differencing
truncated
for
the
[]4]). Th~s explicit advectlon
time difference
[15]. The method approaches
both time and space as the Peclet number
term~
and
terms in a slmJ]ar
thlrd order accuracy lu
approaches Jnflnlty
(for a constant
flow velocity).
GRID AND BOUNDARY CONDITIONS
51x31
GRIDPOINTS
T=T0
7--
4H T=T 0
dT ~xx=o
T:T1 t
FIG. I c o m p r e s s e d mesh u s e d f o r f l n l t e - d l f f e r e n c e wlth boundary condltlon8 marked
Quadratlcally
To a c c o m o d a t e quadratic
the higher
transformation
factor
of
Figure
1. F o r t h e p r e s e n t
for
both
(2H/V). Cyber
ten
the
is
used
for here.
205 c o m p u t e r .
temperature the vertical The
mesh
calculations
discrete-vortex
The P e c l e t
CPU t i m e p e r
--I
20 H
method
number used
is
The ( v e c t o r i z e d )
1000 t i m e s t e p s .
gradients
near
coordinate
is adopted;
and
boundary
and t h e Pe = 4 0 .
the plate
conditions
t h e mesh u s e d i s
code
scheme,
a
a compression are
shown i n
51 x 31. The t i m e s t e p
finite-difference The n u m e r i c a l
takes
surface,
scheme i s
0.05
code was r u n on a
approximately
350 s e c o n d s
of
Vol. 13, NO. 6
SEPARATI~AND R E A ~ F I E W O N
A PLATE
669
/~~,~
1.0
i|/
,°~/
--o-- EXPERIMENTAL[6]
"r
I
i
0
1.0
2-0 X/x R
FIG. 2 and observed (Cooper et al. [6]) time-mean local Nusselt numbers along the plate surface
Predicted
Results
The t l a e - ~ e a n The
Nusselt
attachment. and
a
Nusselt values number), the
9.3H.
downstream
number is
to
at
the
Nusselt
reattachment.
the
For
the
Nusselt
the normalized
experimental
results.
lower
are
shown i n F i g u r e occurring
near
minimum i n t h e s e p a r a t i o n predicted
number decreases
n u m b e r s m e a s u r e d by C o o p e r e t a l . of
surface
maximum v a l u e
a local
reattachment;
The l o c a l of
the plate
normalized
maximum n e a r
xR being
direction
numbers at
are
The N u s s e l t
local
length
llusselt
numbers
and Discussion
comparison,
tlme-mean
bubble
reattachment
monotonically the
2. re-
normalized
in the local
[6] a r e s h o w n . A l t h o u g h t h e a b s o l u t e
numbers
are
Nusselt
n u m b e r s a r e f o u n d t o be i n good a g r e e m e n t w i t h
(due
to
the
use
of
a lower
Peclet
670
M.C. Thompson, K. HouriganandM.C. Welsh A typical
time t r a c e
of the p o i n t
F i g u r e 3. I t i s seen t h a t a
new r e a t t s c h m e n t
shortened. and
result
[9];
these
reattachment
i n g e n e r a l t h e bubble s t e a d i l y
point
This
SasakJ
of s t r e a m ] i n e
Vol. 13, No. 6
ls
forms
upstream
consistent
showed the
and
vlth
the
the
continual
bubble
Js
mxperlnentsl
formation
Js shown ~n
grows Jn l e n g t h u n t i l discontinuously findlngs
of new p o J n t s
v m l o c l t y u p s t r m s s o f t h e p o i n t o f mean r e s t t a c h m s m t as l a r s m - s c a l e
of Y~lya of z e r o
structures
were r e l e a s e d from t h e s e p a r a t i o n b u b b l e . 20 -
X
15-
°'[ |
0 0.0
I TIME
7
FIG. 3 Predicted tism t r a c e of the r e a t t a c l m e n t
A t l s m - e v e r a s e d measure o f t h e i n t e n s i t y the
vertlcal
direction
eddy d l f f u s l v l t y fluctuations position
l
,l 2S.0
due t o v o r t i c e s
Dr. M~Ich i n d i c a t e s
and t u s p e r a t u r e
of t r a n s p o r t
In t h e
flow is
th e c o r r e l a t i o n
fluctuations.
o f muctmm d £ f f n s t v i t y
length for the flow nodel
Thls
Is
of thermal energy In the
vertlcal
between v e r t l c a l plotted
in the chordsdse d i r e c t i o n
thermal velocity
I n F i g u r e 4. aloq
The
t h e p l a t e 18
found In t h e n e l s h b o r h o o d of t h e position of a n s l s m a N u s n s l t number downstream o f t h e l e a d i n g edl~e. This r e s u l t fer results cool fluld
sugsests that
t h e a u g m e n t a t l o n of h e a t t r a n s -
from v o r t e x a c t i o n I n moving warm f l u i d towards t h e h e a t e d p l a t e .
away from t h e s u r f a c e and
VOl. 13, No. 6
0
S ~ > ~
4
R~D ~
FIEW ON A PIATE
8
12
16
671
20
x/N FIG. 4 PredLcted contours of the vertlcal thermal eddy dlffusivlty D v
(b)
_z~ 0
I
O
I
x H
10
,
I
20
F'rG. 5 P r e d i c t e d s n a p s h o t s of (a) I n s t a n t a n e o u s v o r t e x p o s l t l o n s and i s o t h e r m s and (b) I n s t a n t a n e o u s l o c a I N u s s e l t number p r o f i l e
672
Vol. 13, No. t,
M.C. Thc~pson, K. HOurlgan and M.C. Welsh
More ~mportantly, from the point of v~ew of understanding the mechanisms leading to the augmented heat transfer when the flow Is made to separate and reattsch,
are
the
predJctlons
of
tlme-dependent
quantities.
Character~stle
instantaneous isotherms together with the vortex positions and Nusselt numbers are shown in Figure 5. The influence of the large-scale vortex structures on
tha is
local heat
transfer
found from t h i s
large-scale
structure.
in
cooler
drawing
vortex positions.
rate
This i s
fluld
plate
and
peak i n t h e N u s s e l t number
the
as
the a c t i o n
surface
of t h e s e
immediately
b e i n g drawn c l o s e
to
structures
downstream
the i n s t a n t a n e o u s
of
the
point
of
c o o l , h a v i n g flowed o v e r the s e p a r a t i o n bubble away
surface.
this
A local
interpreted
towards
reattachment is relatlvely
the
apparent.
and o t h e r s n o t shown, t o be a s s o c i a t e d w l t h each
The f l u i d
from t h e h e a t e d
is
snapshot,
The r e l a t l v e l y
cooler
fluld
large
accounts
observed at the reattachment p o i n t .
temperature
for
difference
the higher heat
between
transfer
Inside the s e p a r a t i o n bubble,
rates
the r e c l r c u -
latlng flow is generally less turbulent and of lower velocity; this leads to a generally higher thermal resistance, as reflected by the lower values of both
t h e tlme-mean and i n s t a n t a n e o u s
It Istlcs
is,
perhaps,
along
Invlscld,
the
N u s s e l t numbers i n t h i s
significant
plate
that
surface
are
t w o - d l m e n s l o n a l model.
prlmarily
responslble
for
th e
the
large-scale
which may t h e r e f o r e
heat
quite
transfer
mell
character-
by an e s s e n t l a l l y
agreement i s not s u r p r i s i n g
:
[16] indicate that the spanwlse vortices
region
n e i g h b o r h o o d of the mean r e a t t a c h m e n t transport,
relative
However, t h i s
the findings of Rothe and Johnston
are
the
predicted
region.
of
unsteady
point;
structures,
are
reversing
flow in
t h e dominant v e h l c l e s little
influenced
the
of e n e r g y
by v i s c o s i t y ,
be n e g l e c t e d .
Conclusions
A tlme-dependent separation vortlclty tharmal
of
the
heat
bubble has been p r e s e n t e d . fleld
fleld
difference
model
that is
is
process
The v e l o c l t y
field
p r o v i d e d by a d l s c r e t e - v o r t e x
calculated
approximation
transfer
to
slmultaneously solve
the
energy
using
near
is
a
turbulent
deduced from t h e
model of t h e f l o w . The a
equation
thlrd-order on
a
finite-
quadratically
compressed g r i d . The peak tlme-mean N u s s e l t number downstream of t h e l e a d i n g edge i s found t o be l o c a t e d i n t h e r e g i o n of t h e peak v e r t l c a l
t h e r m a l eddy d l f f u s l v l t y
and
Vol. 13, No. 6
SI~ARATI~AND ~
FIK~ONAPLATE
673
the tlme-mean point of reattachment of the separating streamline. The profile of the local tlme-mean Nusselt number compares well with those obtained experImentally
towards
at hlgher
the p l a t e
number along the
Peclet
surface plate
numbers,
leads
surface;
Vortex
action
in drawing
to i n s t a n t a n e o u s l o c a l
cooler
fluid
peaks i n the N u s s e l t
a prominent peak i s l o c a t e d a t
the p o i n t of
reattachment,
Acknowledgement s
M.C. Thompson g r a t e f u l l y
acknowledges the s u p p o r t of a CSIRO P o s t d o c t o r a l
F e l l o w s h l p Award. The computing was s u p p o r t e d by a CSIRONET Cyber 205 G r a n t .
Nomenclature
Cp
heat c a p a c i t y of f l u i d a t c o n s t a n t p r e s s u r e
Dv
vertical
H
s e m l - t h l c k n e s s of p l a t e
t h e r m a l eddy d l f f u s l v l t y
[~--r~/(DT/~y)]
la/=T k
t h e r m a l c o n d u c t i v i t y of f l u i d
Nu
S u s s e l t number [-~(T/AT)/~(y/2H)]y=O tlme-mean N u s s e l t number
mAX
maximum v a l u e of ~
occurring near reattachment
Pe
P e c l e t number CpO V 2 R / k
t
time
T
t e m p e r a t u r e of f l u i d
TO
t e m p e r a t u r e of u n h e a t e d f l u i d
T1
temperature at plate surface
V'
fluctuation
V
m a g n i t u d e of v e l o c i t y of flow a t u p s t r e a m i n f i n i t y
x
horizontal coordinate direction
of v e r t i c a l
velocity
f l u i d v e l o c i t y n o r m a l i z e d to V
xR
reattachment length
y
vertical
z-=x+ly
complex c o o r d i n a t e i n p h y s i c a l p l a n e
A
complex coordinate in transformed plane
AT
temperature difference between plate and incident fluid
coordinate direction
complex flow velocity potential O
fluid density
T
d l m e n s l o n l e s s time t V J 2 H
674
M.C. Thompson, K. Hourlgan and M.C. Welsh
Vol. 13, No. 6
References I.
V.T. Morgan, (1975).
Advances
Jn Heat
2.
A.M. Gooray, C.B. Watklns and W. Aung, J . Heat T r a n s f e r , 107p 70 ( 1 9 8 5 ) .
3.
E.M. Sparrow and J . E . (1980).
4.
T. Ota and N. Kon, J . Heat T r a n s f e r ,
5.
R.L. Z e l e n k a and R . I . (1983).
6.
P . I Cooper, J . C . 61 ( 1 9 8 6 ) .
7.
D.C. McCormick, R.C. Lessmann and F . L . ASME, 106, 276 ( 1 9 8 4 ) .
Heat T r a n s f e r ,
Trans.
8.
D.G. blotwani, U.N. G a i t o n d e and S . P . Sukhatme, J . Heat T r a n s f e r , ASME, 107, 307 ( 1 9 8 5 ) .
Trans.
9.
M. Kiya and K. S a s a k l , P r o c . 5th Symp. on T u r b u l e n t Shear Flows, C o r n e l l U n i v e r s i t y , I t h a c a , New York, 5.7 ( 1 9 8 5 ) .
10.
M. K i y a , K. S a s a k t and M. A r i a , J . F l u i d Mech. 120, 219 (1982).
11.
S. Nagano, M. S a i t o and H. T a k e r s , Computers and F l u i d s l _ ~ 0 2 4 3
12.
B.R Morton, Geophys. A s t r . F l u i d Dynamtcs S_~6277 ( 1 9 8 4 ) .
13.
R. R i l l i e r
14.
E.P. L e o n a r d , Computer Methods i n A p p l i e d Mechanics and E n g i n e e r i n g 1._99, 59 ( 1 9 7 9 ) .
15.
C.E. L e i t h , Methods i n Comp. Phys. 4~ l ( 1 9 6 5 ) .
16.
P.R. Rothe and J . P . 117 ( 1 9 7 9 ) .
O'Brlen,
Transfer,
J.
Loehrke, J .
l._~l,Academic
Heat T r a n s f e r ,
Press,
Trans.
New York
T r a n s . ASME, ASIa, I 0 2 , 408
T r a n s . ASME, 9_~6, 459 (1974). Rear T r a n s f e r ,
Trans.
ASME, 105,
172
S h e r i d a n and G . J . F l o o d , I n t . J . Heat and F l u i d Flow 7_j Test,
J.
(1982).
and N . J . C h e r r y , J . Wind gngng. I n d . Aerodyn. 8_749 ( 1 9 8 1 ) .
Johnston,
J.
Fluids Engineering,
Trans.
ASME, 101,