On A Characterization of the Grasshann Manifold Representing the Planes in A Projective Space

On A Characterization of the Grasshann Manifold Representing the Planes in A Projective Space

Annals of Discrete Mathematics 14 (1982) 129-150 0 North-Holland Publishing Company ON A CHARACTERIZATION OF THE GRASSHANN MANIFOLD REPRESENTIRG THE ...

839KB Sizes 1 Downloads 42 Views

Annals of Discrete Mathematics 14 (1982) 129-150 0 North-Holland Publishing Company

ON A CHARACTERIZATION OF THE GRASSHANN MANIFOLD REPRESENTIRG THE PLANES I N A PROJECTIVE SPACE

Alessandro Bichara and Giuseppe Tal l i n i I s t i t u t o Matematico "G. Castelnuovo", U n i v e r s i t i i d i Roma, I t a l y 1.

INTRODUCTION The Grassmann manifold representing the planes i n a p r o j e c t i v e space w i l l

be characterized as a p a r t i a l l i n e space (G,

F ) whose maximal subspaces s a t i s f y

some s u i t a b l e conditions (see s e c t i o n 2 ) . The p r o o f uses the f o l l o w i n g : from

F ) i t i s possible t o construct - i n a natural way - another p a r t i a l l i n e space, say (S, R), which turns o u t t o be isomorphic t o the Grassmann manifold (G,

representing the l i n e s i n a p r o j e c t i v e space [ 3 1 . The r e s u l t s t h a t w i l l be proved here can be generalized t o t h e Grassmann manifold representing the d - f l a t s i n a p r o j e c t i v e space. The p r o o f o f such a general theorem, which goes by i n d u c t i o n ( s t a r t i n g from d = 2 , since the step from d

1 t o d = 2 i s q u i t e special), i s the subject o f another paper by the

authors.

2.

PRELIMINARIES L e t G be a non empty set, whose elements w i l l be c a l l e d p o i n t s , and

F a

(proper) non empty c o l l e c t i o n o f (proper) subsets o f G, which w i l l be c a l l e d

l i n e s . The p a i r (G,

F ) i s s a i d t o be a p a r t i a l l i n e space (PLS) i f the f o l l o w -

ing hold ( [ Z I ) : ( i ) Any two d i s t i n c t p o i n t s i n G belong t o a t most one l i n e i n F. ( i i ) Any l i n e i n F contains a t l e a s t two p o i n t s o f G. ( i i i ) F i s a covering o f G. Two d i s t i n c t p o i n t s p and p ' i n G w i l l be s a i d t o be c o l l i n e a r i f they belong 129

A . Bichara and G. Tallini

130

t o a l i n e , denoted by (p,p'),

i n F; by p

- p'

i t i s meant t h a t p and p '

(p# p ' ) are c o l l i n e a r ; otherwise, p and p ' are non-collinear: p f p ' . (G, F)

w i l l be c a l l e d a proper p a r t i a l l i n e space (PPLS) i f t h e r e

e x i s t two non-collinear p o i n t s i n G. A p o i n t subset H o f a PPLS (G, F) i s c a l l e d a subspace i f any two o f i t s p o i n t s a r e c o l l i n e a r and the l i n e j o i n i n g them i s completely contained i n H; a subspace H o f (G, F) i s a maximal subspace i f i t i s n o t p r o p e r l y contained i n any subspace o f (G, F ) . A PLS (G, F) w i l l be c a l l e d i r r e d u c i b l e i f t h e f o l l o w i n g holds: Any l i n e i n F c o n t a i n s a t l e a s t t h r e e p o i n t s o f G.

(ii')

F i n a l l y , a PPLS (G, F) i s s a i d t o be connected i f For any two d i s t i n c t p o i n t s p, p ' i n G t h e r e e x i s t s a polygonal

(iv)

path j o i n i n g them. L e t P(r,K)

(r

> 4)

be an r-dimensional p r o j e c t i v e space over a f i e l d K.

L e t G be t h e c o l l e c t i o n o f a l l t h e planes i n P(r,K) and F c o n s i s t s o f p e n c i l s o f planes i n P(r,K)

(a p e n c i l o f planes being the s e t o f a l l t h e planes

through a l i n e contained i n a 3 - f l a t P(3,K) i n P(r,K)),

Then (G,

F) i s a

proper i r r e d u c i b l e PLS which i s isomorphic t o Grassmann manifold G

rY2,K (As i t i s w e l l known, Gr,2,K i s an i r r e rtl ducible algebraic (3(r-2))-dimensional manifold i n an(( ) 1)-dimensional representing the planes i n P(r,K).

-

p r o j e c t i v e space; moreover, t h i s manifold i s an i n t e r s e c t i o n o f quadrics.) Any n o n - t r i v i a l ( i . e . p r o p e r l y containing some element o f F) subspace in

(G, F ) i s e i t h e r

( a ) the c o l l e c t i o n o f a l l the planes through a l i n e L belonging t o an h - f l a t (through L), h 3 4 (such a c o l l e c t i o n w i l l a l s o be c a l l e d an L - s t a r ) or (b) the c o l l e c t i o n o f a l l planes belonging t o a 3 - f l a t ; o r ( c ) the c o l l e c t i o n o f a l l the planes through a p o i n t i n a 3 - f l a t ;

such

a s e t o f planes w i l l be c a l l e d a s t a r o f planes. Therefore, a maximal subspace i n (G, F) i s e i t h e r an il-star, and the c o l l e c t i o n o f such maximal subspaces w i l l be denoted by S, o r the s e t o f a l l planes i n a 3 - f l a t i n P(r,K),

and the c o l l e c t i o n o f these maximal sub-

spaces w i l l be denoted by T. The PPLS (G, F) i s connected and s a t i s f i e s : Ale

If t h r e e p o i n t s i n G are pairwise c o l l i n e a r , then t h e r e e x i s t s a

The Grassmann manifold representing the planes in a projective space

131

subspace i n (G, F) through them.

No l i n e i n F i s a maximal subspace. Furthermore, t h e r e e x i s t two A2. c o l l e c t i o n s , say S and T, o f maximal subspaces i n (G, F ) and any maximal subspace belongs e i t h e r t o S o r t o T. Moreover: (1)

SES,TET*eitherSnT=fl,

(11)

VfEF*3!SES93!

(111)

I f S,

SO, S"

element i n S, d i s t i n c t from

E

TET:

or

SnTEF.

f c S , f C -T .

S p a i r w i s e meet a t d i s t i n c t p o i n t s , then any

S" and meeting both S and S' a t d i s t i n c t p o i n t s ,

meet S" too.

T

E

There e x i s t three subspaces f, n,

A3. T and

T

covers f and i s covered by

Axioms A1,

Remark 1.

7

i n (G, F) such t h a t f

E

F,

T.

A2, A3 and t h e connectedness hypothesis, besides being

s a t i s f i e d by Grassmann manifold representing t h e planes i n P(r,K),

are a l s o

s a t i s f i e d by the generalized Grassmann manifold representing the planes i n an e i t h e r i r r e d u c i b l e (and p o s s i b l y Pascalian) o r r e d u c i b l e p r o j e c t i v e space P even o f i n f i n i t e dimension. Remark 2.

The s e t t h e o r e t i c union o f Grassmann manifolds representing t h e

planes i n skew p r o j e c t i v e spaces i s a non-connected PLS s a t i s f y i n g axioms A1, A2, and A3. I n order t o characterize the (generalized) Grassmann manifold representi n g the planes i n one o r more p r o j e c t i v e spaces (see Remark 2 ) , PPLS's (G, F) s a t i s f y i n g A1, A2, and A

w i 11 be proved:

3

w i l l be studied. Namely, the f o l l o w i n g r e s u l t s

I f (G, F) i s a connected PPLS s a t i s f y i n g axioms A1, A2, and A3,

Theorem 1.

then t h e r e e x i s t a p r o j e c t i v e space (1, L ) and a mapping F from the c o l l e c t i o n %

P o f a l l planes i n (1, L ) i n t o G such t h a t : (i)

F i s one-to-one and onto;

( i i ) F consists o f e x a c t l y t h e images under F o f the p e n c i l s o f planes in

?; ( i i i ) S consists o f e x a c t l y the images under F o f L - s t a r s i n (1, L),

L E L; and ( i v ) T consists o f e x a c t l y t h e images under F o f the c o l l e c t i o n s o f planes

132 in

A . Bichara and G. Tallini

?,

each o f them being formed by a l l t h e planes i n a 3 - f l a t i n (G, F ) . Thus, (C,

L ) i s i r r e d u c i b l e i f f (G, F ) i s i r r e d u c i b l e . F i n a l l y ,

if

(I, L ) i s f i n i t e l y generated and Pascalian, then (G, F ) i s isomorphic t o Grassmann m a n i f o l d r e p r e s e n t i n g t h e planes i n (C, Theorem 2 .

L).

L e t (G, F ) be a PPLS s a t i s f y i n g axioms A

A2, and A3. Then each 1' connected component o f (G, F ) i s a PPLS s a t i s f y i n g axioms A1 and A2. I f f o r each connected component o f

(G, F ) A3 holds, then (G,

F) i s the set

t h e o r e t i c union o f g e n e r a l i z e d Grassmann m a n i f o l d s r e p r e s e n t i n g t h e planes i n p a i r w i s e skew p r o j e c t i v e spaces.

3. SOME PROPERTIES OF A CONNECTED PPLS Let

(G, F )

be a connected PPLS s a t i s f y i n g axioms A1, A 2 , and A

sect. 2 . Then: P r o p o s i t i o n I. The c o l l e c t i o n s S and T a r e skew. L e t M and

3

in

PI' ( w i t h M # M I )

be two maximal subspaces having two d i s t i n c t common p o i n t s p and p ' ; then

M and M ' belong t o d i f f e r e n t c o l l e c t i o n s o f maximal subspaces. Thus, two d i s t i n c t maximal subspaces belonging t o t h e same c o l l e c t i o n have a t most one common p o i n t . Proof.

I f a maximal subspace M" were contained i n S n T, then

M" n M"

MI';

a c o n t r a d i c t i o n t o A21, as MI' p r o p e r l y c o n t a i n s a l i n e . Since p and p ' belong t o M y they a r e c o l l i n e a r ; l e t f be t h e l i n e j o i n i n g them; o b v i o u s l y , f

5M

and f c

M' , t h e two maximal subspaces belong

t o d i f f e r e n t c o l l e c t i o n s ' a n d t h e statement i s proved. P r o p o s i t i o n 11.

L e t S and S ' be two d i s t i n c t maximal subspaces i n S, having

a common p o i n t p. I f T i s a maximal subspace i n T , meeting-S and S ' a t t h e l i n e s f and f ' , r e s p e c t i v e l y , then f and f ' meet a t p, so T passes through p. Proof.

f and f ' are d i s t i n c t l i n e s (otherwise, two d i s t i n c t maximal subspaces

133

The Grassrnann manifold representing the planes in a projective space S and S' i n S would meet a t t h e l i n e Since any l i n e i n

f = f ' , which i s impossible by prop. I ) .

F has a t l e a s t two points, t h e r e e x i s t p o i n t s p '

E f and

p" E f ' such t h a t p, p ' and p" are p a i f w i s e d i s t i n c t . These p o i n t s are p a i r wise c o l l i n e a r (indeed, p, p '

E

s,

p, p"



s',

and p ' , p"

T);



thus, by A1,

there e x i s t s a subspace H through them and N i s contained i n a maximal subspace M. I f 11 belonged t o

M

s,

then M = S (by prop. I, M n

2 Hence M

s i m i l a r l y , M = S ' ( s i n c e t1 n S '

= S);

t o S, then S = S' a c o n t r a d i c t i o n .

{p,p"l).

s ' 3 {p,p')

implies

Therefore, i f I1 belonged

$ S and, by A*,

H E T . Since !1

belongs t o T and contains the d i s t i n c t p o i n t s p ' and p" i n T E T , by prop. I,M = T. Moreover, p E M and 14 = T imply t o S; thus,

{p)

5T n S

f

and

p E T. The p o i n t p i n T belongs

p E f; s i m i l a r l y , p E f ' ; therefore, t h e

d i s t i n c t l i n e s f and f ' meet a t t h e p o i n t p and t h e statement i s proved. Proposition 111. Any T i n T i s a p r o j e c t i v e space. Proof. I t i s enough t o prove t h a t i n the l i n e space T Veblen-Nedderburn axiom holds : L e t fl and f

be two l i n e s i n T meeting a t the p o i n t p3; i f f3 and f4 2 are d i s t i n c t l i n e s i n T, each o f them meeting both fl and f2 a t p o i n t s d i s t i n c t from p3, then f3 and f4 meet a t a p o i n t . = f2 n f4; then

Through

..,4)

t h e r e i s e x a c t l y one maximal subspace S E S (see i A211). Such maximal subspaces a r e p a i r w i s e d i s t i n c t ( i f i # j and Si = sj, fi ( i = 1,.

then the maximal subspace Si would share w i t h T E T the p o i n t s i n fi which i s impossible by A21). Now, fi c Si,

i = 1,2

and {p

l 3

= fl

U

f

j'

n f2 imply

I p3 } -C 1S n S2; since S1 # S2, by prop. I, {p31 = S1 n S2. By the same argument, {pl} = S2 n Sg and {pz} = S1 n S3; moreover, S meets S1 and

4 S2 a t t h e p o i n t s q1 and q2, respectively. The t h r e e maximal subspaces S1, S2, and S pairwise meet a t d i s t i n c t p o i n t s (see (3.1)) and S4 meets S1 and S

2

3 a t d i s t i n c t points; therefore, by A2111, S4 meets S3 a t a p o i n t

134

A . Blchara and C. Tallini

q: {q} = S3 n S4. Since T meets l y , and S3 n

S4

S3 and S4 a t the l i n e s f3 and f 4' respective-

= {q}, by prop. 11, f 3 and f 4 meet a t the p o i n t q and the

statement i s proved. The p r o j e c t i v e space which a r e members o f T , c o n t a i n p r o j e c t i v e planes forming a c o l l e c t i o n 11 o f subsets o f G. Clearly, any element i n 11 i s a subspace i n (G,

F ) which i s contained i n a maximal subspace belonging t o

Proposition I V .

T.

L e t T and T ' be two elements i n T through a p o i n t p i n G.

, and S3 a r e three p a i r w i s e d i s t i n c t elements i n S through p 2 f { E F. I f t h e l i n e s fi, and such t h a t T n Si = fi E F , and T ' n S i i = 1,2,3, belong t o t h e same plane a i n T, then a l s o the l i n e s f; belong

Assume S1, S

t o a unique plane i n T I .

Proof.

I t i s enough the prove

L e t a' be the plane i n T' through f ' and f;. 1 t h a t f ' belongs t o a ' .

3

L e t f and f ' be two l i n e s n o t through p, the former i n a , t h e l a t t e r i n a ' . Since a and a' a r e p r o j e c t i v e planes, f meets fl,

meets

fi and f;.

Set {qi}

= f n fi,

i = 1,2,3,

I t i s easy t o check t h a t the f i v e p o i n t s qi,

and

'

f2 and f3, and f '

{q!} = f ' n f!, j = 1,2.

J

J

are pairwise d i s t i n c t ;

qj moreover, i f S and S' are the maximal subspaces i n

9 through

f and f ' ,

, S 2 , S 3 are p a i r w i s e d i s t i n c t 1 and {qi) = S n S i , Iq!) S' n Sj ' Since S1, S2, and S3 pairwise meet a t J d i s t i n c t p o i n t s and S' ( # S) meets S, and S2 a t d i s t i n c t p o i n t s , S and S' r e s p e c t i v e l y , then the f i v e subspaces S, S', S

have a common p o i n t q, which i s obviously d i s t i n c t from q1 and q ' Thus, 1' t h e three maximal subspaces S, S1 and S' pairwise meet a t d i s t i n c t p o i n t s

3 ( # S') meets S and S1 a t t h e d i s t i n c t p o i n t s q3 and p ( r e s p e c t i v e l y ) . Therefore, S3 and S' have a common p o i n t q ' . Since Sg n T ' = f i , S' n T ' = f '

and S

and I q ' ) = S3 n S', by prop. 11, f ' and f ' meet a t 4. Hence, f ' and f i a r e 3 coplanar. The plane through them contains f ' and t h e p o i n t p on f i ; thus, i t i s a'

and f i belongs t o a ' .

The Grassmann manifold representing the planes in a pmjective space

F)

4. THE PARTIAL LINE SPACE (S, R ) ASSOCIATED WITH (G, Take p E G, a E

n,

with p

135

o f S, c o n s i s t i n g P ,a o f those max'imal subspaces i n S meeting a a t l i n e s i n F through p, i . e .

r = {SES: P ,a i s uniquely defined. Proposition V. I f a , a'

(4.1

E

n

E

a; then the subset r

and S n a E F 1

S 3 p

and p

E

,

a , p ' E a ' , then

1

Proof. Since a i s a p r o j e c t i v e plane,

through t h e p o i n t p i n a there are a t

l e a s t two d i s t i n c t l i n e s fl and f 2 o f

F.

The maximal subspace S1 and S2 i n

r and now i t w i l l be shown P ,a t h a t S1 # S2. I f S1 = S2, then t h i s member o f S would share w i t h a maximal

S through fl and f 2 ( r e s p e c t i v e l y ) belong t o

subspace T i n T a s e t I containing the d i s t i n c t l i n e s

fl and f2, which

and S1 # S2; (4.1) f o l l o w s . i s impossible by A21. Therefore, S1, S2 E r P ,a L e t S1 and S2 be two d i s t i n c t elements i n r n r S1 and S2 p,a p',a'. meet a a t l i n e s i n F through p and a' a t l i n e s i n F through p'; thus p and p ' belong t o

S, n S2. By prop. I, p = p ' .

Mhen a

a ' , (4.2) i s obviously true. Assume a

#

a ' . L e t T and T ' be

the maximal subspaces i n T through a and a ' respectively; then (otherwise, S1 would meet T a t two l i n e s i n

T # T'

F through p, one belonging t o

a, t h e other t o a ' , which c o n t r a d i c t s A21) and T n T ' =

{PI.

Furthermore,

by prop. I V , any element Sg i n r , d i s t i n c t from S1 and S2, meets T' a t P ,a being coplanar w i t h S1 n T ' and S2 n T ' belongs t o a l i n e i n F, which

-

r

P,a"

hence, rp,a

5

-

rpl,al. By the same argument,

(4.2) follows.

r p',a'

C r

-

p,a

and

{r : a E ll , p ~ a o} f subsets o f S i s defined; P ,a since i t i s n o t a proper c o l l e c t i o n (see prop. V ) , l e t R be the proper Thus, the c o l l e c t i o n

c o l l e c t i o n associated w i t h it.

136

A . Bichara and G. Tallini

The pair (S, R ) is a PLS. Moreover, two d i s t i n c t elements

Proposition VI.

in S a r e collinear i n (S, R ) i f f they have a common point i n G. Proof. Let -

S and S ' be two d i s t i n c t elements in S. If S n S '

{p}, then l e t

f be a line in S through p; through f there i s a maximal subspace T E T meeting

s'

a t one point a t l e a s t ; thus, i t meets

s'

a t a line f '

F. In the

E

projective space T , the d i s t i n c t l i n e s f and f ' a r e joined by a plane therefore, S and S ' belong to r

.

CI E

II ;

P 9Q If S n S ' = 0, no element in R through S and S' exists.

Let f be a l i n e in S E S. Through f there i s a maximal subspace T E T . If p E f , l e t f ' be a l i n e in T through p , d i s t i n c t from f . Through f ' there i s a maximal subspace S'

E

S , which i s obviously d i s t i n c t from S and meets

S a t p ; thus, through S there i s an element of R (joining S and S'). Hence, R i s a cover of S. Moreover, f o r any r E R ,

I rl > 2

two elements i n R have a t most one common p o i n t

(s, R )

(see (4.1) and any (by (4.2 ); i t follows t h a t

i s a PLS.

Let p be a point in G . The collection S

of a l l elements n S through P p i s a subspace of (S, R ) . (Indeed, any two d i s t i n c t elements in S are P

collinear i n (S, R )

and the l i n e through them i s completely contained in S ) . P Let p be a point i n G and T an element i n T through p.

Proposition VII.

s in

(S, R ) i s isomorphic t o the s t a r F consisting P P ,T of the lines in F through p and belonging to the projective space T. Thus,

Then the subspace

s i s a projective space and i s of f i n i t e dimension h i f f T i s of f i n i t e P dimension

h

t

1.

Proof. -

Any element in S meets T a t a l i n e i n F (see A21). P P,T Let cp be the mapping defined by

q:SES+SnTEF Clearly,

cp

P,T'

i s one-to-one and onto (see A211). Moreover,

cp

-1

maps pencils

onto lines, i n R , belonging t o S (Indeed, any pencil i n F conP ,T P' P,T s i s t s of a l l lines in T through p , b e l o n g i n g t o a plane n; such a pencil in F

i s the image under

cp

of the l i n e r

).

P Now, i t will be proved t h a t cp maps lines in S onto pencils i n F P P,T' ,Q

137

The Grassmann manifold representing the planes in a projective space be a l i n e i n S and S and S ' two d i s t i n c t p o i n t s on it; they p,a' P meet T a t ( d i s t i n c t ) l i n e s f and f ' , which are j o i n e d by a plane a through Let r

= r (see prop. V); furthermore, v(rp,a) = v ( r p ) Psa' p,a ,,I i s the p e n c i l c o n s i s t i n g of the l i n e s i n F through p and belonging t o a . P,T It f o l l o w s t h a t cp i s an isomorphism between S and the s t a r o f l i n e s through P p i n t h e p r o j e c t i v e space T.

p i n T; then, r

From prop. Proposition

VII,

VIII.

i t f o l l o w s immediately:

L e t T and T ' be any two d i s t i n c t elements i n T through

a p o i n t p i n G. Then T i s o f f i n i t e dimension h t 1 i f f TI i s o f f i n i t e dimension

h t 1.

Next, we prove: Proposition

IX. Any T i n

T i s a 3-dimensional p r o j e c t i v e space. Furthermore,

the c o l l e c t i o n S o f a l l elements i n S through a p o i n t p i n G i s a p r o j e c t P i v e plane, which i s a subspace o f (S, R ) .

Proof. I f T Assume T #

i s the space

r, and

7

l e t q1

i n A3,

then T i s a 3-dimensional p r o j e c t i v e space.

-

be a p o i n t i n T

and q

2 (G, F ) i s connected, t h e r e e x i s t both a f i n i t e subset

p o i n t s i n G and a f i n i t e subset P1 = 41 3 Pn = q2 and l i n e fi

fi

3

{fl,

{pi,

..., f n - l 1

i = 1, 2,

pitll,

a p o i n t i n T. Ip

l,..., p n l

o f lines i n

. . ., n - 1.

have t h e common p o i n t p1 = 9,;

since

T

of

F such t h a t Through any

there i s e x a c t l y one T . i n T (see A211). The subspaces 1

Since

and T1

has f i n i t e dimension equal t o three,

V I I I , T1 i s a 3-dimensional p r o j e c t i v e space. Since TinTitl 2 [pitll ( i = 1, ...,n - 2 ) and Tn-l n T2 {pnl, a l l Tiis ( i = 1, n-1) and T

by prop.

...,

are 3-dimensional p r o j e c t i v e spaces. F i n a l l y , t o prove t h a t S i s a p r o j e c t i v e plane, i t i s enough t o r e c a l l P t h a t t h e r e e x i s t s an element T i n T through p (through p t h e r e i s a t l e a s t one l i n e f i n F which i s contained i n a maximal subspace i n T); T i s a 3-dimensional p r o j e c t i v e space and from prop. V I I the statement follows.

138 5.

A . Bichara and G. TaNini

THE SUBSPACES OF (S, R ) F i r s t we prove: Given t h r e e p a i r w i s e c o l l i n e a r p o i n t s i n (S,R), Sly

P r o p o s i t i o n X.

S2, and

S3, t hro ugh t h e same p o i n t p i n G (when c o n sidered as subspaces o f ( F , G ) ) ,

t h e r e e x i s t s a p r o j e c t i v e p l a n e i n (S, R ) through them. Proof. -

By prop. I X , S

and S3.

P

i s a p r o j e c t i v e p l a ne i n (S, R), t hrough Sly

S2,

Given t h r e e independent p a i r w i s e c o l l i n e a r p o i n t s i n (S,

Proposition X I .

n o t t hro ugh t h e same p o i n t i n G (when c o n s i dered as subspaces o f

R),

(G, F ) ) ,

t h e r e e x i s t s , i n (S, R ) , a p r o j e c t i v e p l a n e t hrough them.

P roof .

Under t h e assumptions, t h e t h r e e p o i n t s (which o b v i o u s l y e x i s t )

a r e p a i r w i s e d i s t i n c t . (Indeed,

p1 = p2 would i m p l y p1 E S1

and p1 E S2,

= p ) . Thus, t h e t h r e e l i n e s (pi,p.) i # j, i,j = 1,2,3, J 2 3 i n F are p a i r w i s e d i s t i n c t (otherwise, S , and S 3 would c o n t a i n t h e l i n e 1 ' s2 (pl,p2) = (pl,p3), which c o n t r a d i c t s A 1 1 ) . Consequently, t h e r e e x i s t s a 2 subspace i n (G, F ) c o n t a i n i n g ply p2, and p3 (see A1); t h i s subspace i s a

and t h en

p1 = p

member a o f subspace

T

n.

( S i n c e i t meets S1 a t a l i n e , i t i s cont ained i n a maximal

E T and i s t h e p r o j e c t i v e p l a n e spanned i n

Consider t h e f o l l o w i n g subset o f

:

ab t u r n s o u t t o be a p r o j e c t i v e p l a n e . I n f a c t , i f S i

elements i n lines

~ l h ,t h e n

fl and f

T b y pl, p2, and p3).

and S;

a r e two d i s t i n c t

t h e y meet t h e p r o j e c t i v e p l a n e a a t two ( d i s t i n c t )

o f F and f, and f 2 meet a t a p o i n t p i n a ; thus, S i and S; 2 belong t o t h e l i n e r i n R. L e t r and r , p # p ' , be two Pya Pya P' ,a

The Grassmann manifold representing the planes in a projective space ( d i s t i n c t ) l i n e s i n a s . Since t h e l i n e (p,p')

in

F on

CY

139

e x i s t s , the maximal

subspace S E S through i t i s the o n l y element belonging t o

r P,"

The statement f o l l o w s .

nr PI,"'

As a c o r o l l a r y t o prop. X and X I : Proposition X I I .

Any subspace o f (S, R ) i s a p r o j e c t i v e space.

6. THE COLLECTION

P

OF MAXIMAL SUBSPACES I N (S, R)

L e t p be a p o i n t i n G and S

Proposition X I I I .

(1

F ) i s a PPLS, such a subspace e x i s t s ) . p and S n S 0) i s e i t h e r a l i n e i n R

(E G) and n o t through p (since (G,

Then, the set

{S

L

E S: S 3

an element o f S through q

9 o r t h e empty set. By prop. I X , the elements i n S through p form a p r o j e c t i v e

R); thus, t h e r e i s always some element i n S through p which i s skew w i t h S * consequently, (S, R) i s a proper p a r t i a l space (see V I ) .

plane i n (S,

(1'

Proof.

Assume t h a t , through p, t h e r e are two d i s t i n c t elements o f

S' and S", both meeting S a t a p o i n t : q

S' n S = q ' , S" n S

q q ' # 9". (Indeed, q ' = q" i m p l i e s t h a t through t h e l i n e (p,q') there are two d i s t i n c t elements of

q

= 9".

say

S,

Then,

= (p,q")

S, a c o n t r a d i c t i o n ) . Since the three

p o i n t s p, q ' , and q" a r e pairwise c o l l i n e a r , there e x i s t s a subspace

a

in

n

through them. The l i n e r i n (S, R) consists o f those elements i n S P ,a through p, meeting S a t a p o i n t on (q',q"); moreover, any p o i n t on (q',q'') q i s j o i n e d t o p by a l i n e belonging t o some element i n r PP' Now, assume S"' i s an element i n S through p, n e i t h e r skew w i t h S q' nor belonging t o r ; then, S"' meets S a t a p o i n t q"' n o t on (q',q"). P ,a q Since the p o i n t s q', q"', and p a r e pairwise c a l l i n e a r , they are contained i n a plane a'

of

n,

and q"' E (q',q"), (p,Ci').

which i s d i s t i n c t from CY (otherwise, a n S a c o n t r a d i c t i o n ) ; these two planes i n

IT

= a' n S q 9 meet a t the l i n e

L e t T and 1' be the maximal subspace i n T through a and a ' ,

respectively. Then,

T

= T' (by prop.

contains the l i n e (p,q')

I , t a k i n g i n t o account t h a t T n T '

= a n a'). The three p o i n t s q ' , q", and q"' belong

140

A . Bichara and G. Tallini

t o T nS thus, the p r o j e c t i v e plane through them i n T i s completely contained q' i n S , which i s impossible (see A21). q F i n a l l y , i t must be proved t h a t i f an element S i n S through p and i n P c i d e n t w i t h S e x i s t s , then there e x i s t s a l i n e r , any element o f which q P ,a i s an element o f S through p and i n c i d e n t w i t h S Set S n S 2 {q'}; q P qthrough the l i n e (p,q') t h e r e i s a maximal subspace T o f T, meeting S a t a q l i n e through q ' , a l l whose p o i n t s are c o l l i n e a r w i t h p ; and t h i s l i n e and

.

p span a plane belonging t o Prbposition X I V .

Let S

P

n.

The statement f o l l o w s ,

be the s e t o f a l l elements i n S through a p o i n t p

i n G. I f S belongs t o S and doesn't pass through p, then the subset

(S'

'L

S

i n (S, R ) means S' i s i n c i d e n t w i t h S i n (G, F ) ) o f S

empty o r a l i n e i n R . Furthermore, S P

Proof.

P i s a maximal subspace i n

i s either (S, R ) .

The f i r s t p a r t o f the statement f o l l o w s from prop. X I I I . Again by

i s a subspace i n (S, R ) , containing some element which i s P non-collinear w i t h S. Therefore, no subspace containing both S and S e x i s t s P i n (S, R ) and S i s a maximal subspace.

prop. X I I I , S

P

Thus, the c o l l e c t i o n P = {S : p E GI o f maximal subspace i n (S, R ) , P any o f them being a p r o j e c t i v e plane (see prop. I X ) , arises. Proposition XV.

The c o l l e c t i o n

P = ISp : p E GI i s proper.

Furthermore,

any two d i s t i n c t elements i n P share a t most one p o i n t o f S.

Proof.

L e t p and q be any two d i s t i n c t p o i n t s i n G. The maximal subspace

and S i n (S, R ) share a l l the elements i n S through both p and q. I f p P q and q are non-collinear i n (G, F), then there i s no element o f S through

S

them. I f p and q are j o i n e d by a l i n e f

E

F, then ( i n ( G , F ) )

there exists

e x a c t l y one maximal subspace belonging t o S which passes through f and so through p and q. I n both cases,

S n S G 1, and the statement follows. I P 91

141

The Grassmann manifold representing the planes in a projective space

7. THE COLLECTION E OF MAXIFlAL SUBSPACES I N (S, l?) F i r s t we prove: Proposition X V I .

L e t S and S ' be two d i s t i n c t elements i n S meeting a t a

p o i n t p i n G. I f S1 and S2 are d i s t i n c t elements i n S both meeting S and S ' a t d i s t i n c t p o i n t s i n G, then S1 and S E S belonging t o the l i n e

3

s2

are c o l l i n e a r i n (S, R ) and any element

(S1, S2) i n R e i t h e r meets both S and S ' a t

d i s t i n c t p o i n t s of G o r belongs t o the l i n e ( S ,

Proof.

S') i n R.

From A I 1 1 i t follows t h a t S1 and S2 meet: I q l = S1 n S2, and thus

2

they a r e c o l l i n e a r i n (S, R ) (see prop. V I ) . Since n e i t h e r S1 nor S p, then q # p. I f q E S, any element

s

contains

2 # S on the l i n e (S1,S2) i n l?, passing

through q, meets S a t t h a t p o i n t . I f q 4 S, t h e s e t o f a l l elements i n S through q and i n c i d e n t w i t h S i s e i t h e r a l i n e i n R o r t h e empty s e t (see prop. XIV); since both S, and S2 pass through q and are i n c i d e n t w i t h S, any element on the l i n e (S1, S 2 ) i n R i s i n c i d e n t w i t h S. By the same argument, any element on (S1, S2) i s proved t o be i n c i d e n t w i t h S ' ; thus, i t i s o n l y

S2) passing through p, then i t belongs t o the l i n e (S, S ' ) . Under these assumptions, S3 contains both p and { S t c E S: S" 3 p q, and, thus, meets S1 a t q. Hence, S3 E L ' , where L ' and S" n S1 # 01; a l s o S and S ' belong t o L ' (by hypothesis). By prop. X I V , S3, S and S' belong t o a l i n e i n R ; so, S3 E (S,S') and the statement i s t o be proved t h a t i f S3 i s an element on (Sly

proved. L e t S and S ' be two d i s t i n c t elements i n S, which are c o l l i n e a r i n (S, R ) ; then S and

S' share a p o i n t p i n G. Denote by o(S,S') t h e s e t con-

s i s t i n g o f a l l elements i n S t h a t e i t h e r belong t o the l i n e (S,S')

i n R,

o r meet both S and S ' a t p o i n t s i n G d i s t i n c t from p. Proposition X V I I .

I f S and S ' a r e d i s t i n c t elements i n S which are c o l l i n e a r

i n (S, R ) , then the s e t

o(S, S ' ) i s a subspace i n (S, R ) and i t properly

contains the l i n e (S, S') i n R. Proof

.

Let T be a member o f T through the p o i n t p, where { p l = S n S';

5y

142

A. Bichara and G. Tallini

A21, T meets S and S' a t the lines f and f ' in F , respectively. I f q

E

f,

q ' E f ' , q , q ' # p , then q # q ' and q and q ' belong to a l i n e f " i n T. Through

f " there i s an element S" E S meeting S and S' a t q and q ' , respectively. Thus, S" belongs t o a(S,S') \ (S,S'); therefore, the l i n e (S,S') i s properly contained i n G(S,S'). To prove t h a t a(S,S')

points S l y S2

E

o(S,S')

i s a subspace in (S, R ) ( i . e . any two d i s t i n c t

are collinear in (S, R ) and the l i n e joining them

i s completely contained in o(S,Sl)), three cases will be considered. ( i ) If S1 and S2 both belong t o the l i n e (S,S'), then there i s nothing

t o prove. ( i i ) If

f1 and

S2 meet S and

S' a t d i s t i n c t points, then the statement

follows from prop. XVI. ( i i i ) If S1 meets both S and S' a t d i s t i n c t points and S2 belongs t o the line (S,S'), then

-

by an argument simular t o t h a t in prop. XVI

- it

is

easy to prove t h a t S and S are collinear and any element on ( S l y S2) belongs 1 2 to o(S,S'). Proposition XVIII.

Let S and S' be two d i s t i n c t elements i n S which are

collinear i n (S, R ) , i . e . they meet a t a point p i n G. Then there e x i s t exactly two maximal subspaces o f (S, R ) t h r o u g h S and

s';

the f i r s t one i s S ( i . e . P

i t consists o f a l l elements i n S through p ) and belongs t o P; the second one i s a(S,S'). Proof.

These two subspaces share exactly the elements on the l i n e ( S , S l ) .

Let H be a subspace of (S, R ) containing both S and S' and so the

l i n e (S, S l ) in R. Then: e i t h e r H consists of elements in S a l l of them through p and H i s a subspace of S , o r there exists some S" E S contained i n H and P not passing through p. Since H i s a subspace and S", S, and S' belong t o H,

S" i s collinear w i t h b o t h S and S ' , i . e . meets S and S' a t d i s t i n c t points. By prop. XIV, the elements in S which are collinear with S" a r e exactly the

P

elements on the line ( S , S l ) i n R; hence, H n S = (S, S'). Therefore, any P element i n H (S, S'), being collinear w i t h both S and S', meets S and S' a t points i n G d i s t i n c t from p (and from each other). Thus H C o(S, S') and the statement follows. Proposition XIX.

Let S and S' be two d i s t i n c t elements i n S, which are col-

143

The Grassmann manifold representing the planes in a projective space l i n e a r i n (S, R ) . IfS1 and S 2 are d i s t i n c t elements i n u(S,S'), then they meet and u(S1, S 2 ) = u ( S , S'). Proof. Since S, and S2 belong t o the subspace and thus have a common p o i n t

(I E

u ( S , S'), they a r e c o l l i n e a r

G. By prop. X V I I I , the subspace

u(S, S ' ) ,

containing S1 and S2, i s contained i n e i t h e r the maximal subspace S , o r the q maximal subspace u(S1, S2). Since the elements i n u ( S , S l ) d o n ' t a l l pass through a same p o i n t ,

u(S, S ' )

5 u(S1,

S 2 ) . E q u a l i t y f o l l o w s from

a(S, S ' )

being a maximal subspace i n (S, R ) .

8.

FURTHER PROPERTIES OF

P AND C

I n the PLS (S, R ) two c o l l e c t i o n o f maximal subspaces have been defined (see prop. X I V and X V I I I ) :

P = IS : p P

E

GI, a proper c o l l e c t i o n ;

X = {u(S, S') : S, S' E S , S # S', S n S' # 01. Proposition XX.

For any r i n R , t h e r e e x i s t a unique S

u i n E such t h a t r C S and r 5 u.

P

i n P and a unique

P

Proof.

Since any two d i s t i n c t elements on r a r e i n c i d e n t , t h e statement

f o l l o w s from prop. X V I I I and X I X . Proposition X X I . or a l i n e i n R.

If S E P

P and u

E

X, then S n u i s e i t h e r t h e empty s e t

Proof, -

The Set S n u consists o f a l l elements i n S through p which are P c o l l i n e a r w i t h any element i n u. Take S E S n u and l e t S' be any other P element i n a; then (see prop. X I X ) u = u(S, S') and S E S I f {p) = S n S ' ,

P'

then the statement f o l l o w s from prop. X V I I I . I f p 4 S ' , then the s e t o f a l l elements i n S

- by prop.

XIV

-

i n c i d e n t w i t h S ' i s a l i n e r i n R , containing P S. L e t S" be a p o i n t on r, d i s t i n c t from S. Since S" meets S and S ' a t d i s t i n c t

144

A . Bichara and G. Tallini

p o i n t s , S " E u ( S , S'); t h e r e f o r e ,

( b y prop. XIX) u(S, S ' ) = u ( S , S " ) and t h e

p r e v i o u s argument proves t h e statement. Any two d i s t i n c t elements i n

Proposition X X I I .

c s h a r e a t most one p o i n t o f

S. I f u , u ' and u" a r e t h r e e p a i r w i s e d i s t i n c t elements i n l u ' n u''1 = 1, t h e n Iu n u"I

=

1. Consequently, i f {uj : j

i s a f i n i t e sequence of elements i n

1 t h e n Iu n u o ntl Proof.

>

c

such t h a t Iui n uitlI

and Iu n u ' l = 1,

E

{O,l,...,ntl}}

2 1 (i=0,

...,n ) ,

1.

From prop. X V I I I i t f o l l o w s t h a t any two d i s t i n c t elements i n Z share

a t most one p o i n t i n S. l l r i t e I S ' ) = u n u ' and IS") = u ' n u". I f S ' = S", t h e n t h e s t a t e m e n t i s o b v i o u s l y t r u e . I f S' # S " , t h e n S' and S " , b e l o n g i n g t o t h e subspace u ' , a r e c o l l i n e a r i n (S, R ) and l e t r be t h e l i n e j o i n i n g i n P t h r o u g h r, which P meets u ' a t t h e l i n e r ( s e e prop. XXI) and u a t a l i n e s' t h r o u g h S ' and u" them. By p r o p . XX, t h e r e e x i s t s a maximal subspace S

a t a l i n e s" t h r o u g h S". The l i n e s s' and s" i n R a r e d i s t i n c t ( o t h e r w i s e , b y prop. XX, u = u " , w h i c h i s i m p o s s i b l e ) and b e l o n g t o S , a p r o j e c t i v e p l a n e P ( b y prop. I X ) . I t f o l l o w s t h a t t h e r e e x i s t s e x a c t l y one element S i n S bel o n g i n g t o s' n so'; c l e a r l y , S belongs t o u ( a s S

u" (as S

E

s" and s" 5

0");

an element i n u Proof.

i

Let u

1

s' and s' C u ) and t o

thus, IS} C u n u". S i n c e u # u'', b y t h e f i r s t

p a r t o f t h e statement, IS1 = u n u"; t h e r e f o r e , Proposition X X I I I .



ICJ n u"1

= 1.

and u2 be two d i s t i n c t elements i n C .

( i = 1, 2 ) , t h e n I S 1 n S21

>

I f Si

1 i m p l i e s (ul n u,l I

>

is

1.

I f S1 = S2, t h e s t a t e m e n t i s o b v i o u s l y t r u e . Assume S1 # S2; t h e n

S1 n S2 c o n s i s t s o f a p o i n t p i n G. L e t fl be a l i n e o f

F in

S1 t h r o u g h p

t h e r e i s e x a c t l y one T E T which 1 meets S2 a t a l i n e f 2 o f F. T i s a 3-dimensional p r o j e c t i v e space ( s e e p r o p . (and such a l i n e does e x i s t ) ; t h r o u g h f

I X ) ; thus, t h e r e e x i s t s a l i n e f i n T t h r o u g h p d i s t i n c t f r o m fl and f2. Through f t h e r e i s an element S i n S , w h i c h i s c l e a r l y d i s t i n c t f r o m S1 and S2. Therefore, t h e maximal subspace

floreover, ul n u(S1, S)

3

u(S

S ) and i' I S 1 l , u(S1,S) n u(S,S2)

From p r o p . X X I I t h e s t a t e m e n t f o l l o w s .

u(S, S 2 ) i n Z e x i s t .

2

I S } , and u(S,S2) n u2 ?IS2}.

145

The Grassmann manifold representing the planes in a projective space Proposition X X I V .

and u ' i n X share e x a c t l y one

Two d i s t i n c t elements u

p o i n t i n S.

Proof,

By prop. X X I I , i t i s enough t o prove t h a t there e x i s t s a c o l l e c t i o n

,...

,...

: j E t0 , n t l I l o f elements i n Z such t h a t lul nu. I 1 (i=O ,n) j 1t 1 and uo = u, untl = u'. Take S E u and S ' E u'. Assume S # S' (otherwise t h e

{u

q2 a p o i n t i n S ' , w i t h

statement i n t r i v i a l ) and l e t q1 be a p o i n t i n S,

F ) i s connected, t h e r e e x i s t a f i n i t e subset o f G, {p1,...,pnt21, and a f i n i t e subset o f F, Ifl ,. . ,fntl I, such t h a t q1 = p1 , phtll (h = 1, ...,n t l ) . Through each l i n e fh i n F q2 = pnt2 and fh 1 {p,, q1 # q2.

Since (G,

.

there i s a maximal subspace Sh i n S (see A211). The c o l l e c t i o n {S1,...,S

ntl e i t h e r are equal o r have

consists o f elements i n S such t h a t Sk and S ktl' the maximal subspace uk = u(Sk,Sktl) t i o n {ak : k = l,...,nI,

>

lat n

1

(t

>

ktl i t may be assumed Sk # Sktl.

H.1.o.g.

e x a c t l y one common p o i n t p

at n u

1,

3 tS I ttl

ttl

l,...,n-1).

(k

Writing u

...,n)

..., n-1);

u and u

=

> 1. Since

Then,

i n I: e x i s t . I n the c o l l e c -

( t = 1, 0

1

ntl

hence,

= u', l e t ' s prove

and S n S 2 E u 1 1 1and q2 E S', {qll, by prop. X I I I , Iuo n ulI > 1. Since q2 E Sntl 'ntl 'n and S' E u', lan n u') > 1 and t h e statement i s proved.

t h a t luo n ull

9.

1 and lan n untlI

S E uo, S

THE PROOFS OF THEOREH 1 AN0 2 By the previous sections, t h e space (G,

F ) i s associated v i t h t h e PPLS

(S, R) (see prop. X I I I ) s a t i s f y i n g :

Given t h r e e pairwise c o l l i n e a r points, t h e r e e x i s t s a subspace conA;) t a i n i n g them (see prop. X and XI).

No l i n e i s a maximal subspace; moreover, t h e r e e x i s t two c o l l e c t i o n s , say c and P, o f maximal subspaces i n (S, R) such t h a t an:' maximal subspace belongs e i t h e r t o C o r t o P (see prop. X I V , X V I I I and XX) and A')

(I) (11) (1111

a,

U'

E

c,

u # u'

u E Z, n E P

v

r E R

=s>

* d!

u

*

l o n o ' \ = 1 (see prop. X X I V ) ;

either E

C,

u n n = 0 or

j! n

E

P :

r

5

u n n E R (see prop. X X I ) ;

u, r

5n

(see prop. X X ) .

Therefore (see [ 31 ), ts being the s e t o f a l l elements i n C through S E S

Its( > 2 ; furthermore, I: =

I t s : S E S I i s a proper c o l l e c t i o n and the p a i r

,

A . Bichara and C. Tallini

146

i s a p r o j e c t i v e space. The mapping p: L

(C,L)

+

S, defined by

p ( l l s ) = S, i s

one-to-one and onto and maps p e n c i l s o f l i n e s i n L onto elements o f R and i t s -1 inverse mapping p maps l i n e s i n R onto p e n c i l s o f l i n e s i n L. F i n a l l y , P maps r u l e d planes onto elements o f P and p-’ maps elements i n P onto r u l e d planes. be an element i n et be the c o l l e c t i o n o f a l l planes i n L). L e t -P andLLTI the s e t o f a l l l i n e s i n then p(LTI) i s an element S i n P. Consider

: P’+

F

the mapping

(C,

TI

IT;

P

G, defined by

I t i s easy t o check t h a t :

Proposition XXV.

F i s one-to-one and onto.

Next, L e t L be a l i n e i n L. The image under F o f t h e s e t o f a l l

Proposition XXVI. planes i n

7 through L

i s the element S = p ( L ) i n S. The image under F - l o f an

element S i n S i s the s e t o f a l l planes i n

7 through

the l i n e

L

p-l(S) i n

L. Therefore, S i s the c o l l e c t i o n o f the images under F o f t h e sets o f a l l

planes i n (C,

Proof. L c

TI

If Q

L ) through any l i n e i n L.

7 and

IT E

$? E

p(LTI) = S

L T I ep ( L )

B

then P’ p(LTI) Q S

- by E

S

P

- F(n)

(9.1) Q

p

E

= p.

Moreover,

S, and the statement follows.

Two d i s t i n c t elements p1 and p2 i n G are c o l l i n e a r i n

Proposition X X V I I .

(G, F ) i f f they are t h e images under F o f two planes i n (C,

L)

which meet

a t a l i n e o f L. Proof.

Set ri

F

-1

(p.), i .1

1,2.

By prop. X X V I , F(ni) E S , i = 1,2;

t h e subspace S o f (G,

I f rl n n

2

i s a l i n e L i n L, s e t S = ~ ( l ) .

hence, the p o i n t s p1 and p2, belonging t o

F), a r e c o l l i n e a r i n (G, F).

Conversely, i f p1 and p2 a r e j o i n e d by the l i n e f i n

F , l e t S be the

The Grassmann manifold representing the planes in a projective space

maximal subspace i n S through f.

Obviously, pl,

147

p, E S; hence n 1 and n 2

meet a t the l i n e p - l ( S ) i n L and the statement follows. Proposition X X V I I I .

If

7

7 which

i s the s e t o f a l l t h e planes i n

a 3-dimensional subspace i n (C, L ) , then the image under F o f

7

belong t o

belongs t o T .

Furthermore, the inverse image under F o f an element i n T i s t h e s e t o f a l l the planes i n a 3 - f l a t o f

Proof.

First it w i l

be proved t h a t i f T

F),

E

T, then F-’(T) c o n s i s t s o f a c o l -

contained i n the same 3 - f l a t i n (1, L ) . Since T i s a

l e c t i o n o f planes a1 subspace of (G,

(c, L ) .

t s p o i n t s a r e pairwise c o l l i n e a r ; hence, F-’(T)

o f planes p a i r w i s e meeting a t l i n e s i n L (see prop. X X V I I ) .

consists

Thus, F-’(T) con-

s i s t s o f e i t h e r planes i n a 3 - f l a t o f (I, L ) , o r planes through a l i n e . L e t ’ s prove t h e l a t t e r case i s impossible. L e t

pl,

-

p,

and p be t h r e e independent 3 by A2 T c a n ’ t be a l i n e ) . The

-

p o i n t s i n T (such p o i n t s do e x i s t because -1 -1 planes F (p,) = n1 and F (p,) = n, meet a t a l i n e L i n L. F-l(p3) meets

IT^

The plane r3=

and IT, a t l i n e s d i s t i n c t from L and from each other. (Indeed,

i f n l s IT,, and n3 passed through L , then t h e t h r e e p o i n t s pl, would belong t o the element

p ( L ) = S i n S, which would share w i t h T t h e p o i n t s

on the l i n e s j o i n i n g a l l t h e p a i r s o f p o i n t s pi, this i s

impossible (see A,I).)

the 3 - f l a t j o i n i n g nl and n,;

p2, and p3

pj,

i # j, i,j

1 , 2 , 3 , and

Thus, F - l ( T ) consists o f a l l t h e planes i n t h i s space w i l l be denoted by ( n l ,

IT,). Let n

i = 1,2,3. Then n n n = L i is i is = 1,2,3, are t h r e e l i n e s i n L, two of them a t l e a s t being d i s t i n c t (as nl, IT, be a plane i n (nl, n,),

d i s t i n c t from n

and n3 d o n ’ t form a p e n c i l ) . Assume Ll # 1, (a s i m i l a r argument holds i n t h e other cases).

The t h r e e p o i n t s p = F(n), p1 and p2 a r e p a i r w i s e c o l l i n e a r

(as IT, nl and n, p a i r w i s e meet a t l i n e s i n L). subspace i n (G,

F) containing p, pl, and p.,

Thus, by A1, t h e r e e x i s t s a

L e t H be a maximal subspace i n

(G, F ) through these points. H cannot belong t o S, because n = F-’(p), -1 -1 and n, = F (p,) d o n ’ t pass through t h e same l i n e (see prop. n1 = F (p,)

XXVI).

Hence, H i s an element i n T through p1 and p, and so H = T (T being

the o n l y maximal subspace i n T through the l i n e (pl,

p,))

and p E T.

Thus, the image under F o f any plane i n IT^, IT,) i s an element i n T, -1 and conversely, i.e. F (T) i s t h e s e t o f a l l planes i n (nl, n,).

148

A . Bichara and G. Tallini

planes i n

By a s i m i l a r argument, the image under F o f t h e set o f a l l t h e

a 3-flat o f

(c, L) i s proved t o be an element T i n T, and t h e p r o o f i s complete.

Proposition X X I X .

Three planes

IT^, IT2 , and IT3 i n

(C,

L ) form a p e n c i l ( i . e .

they belong t o the same 3 - f l a t and have a common l i n e ) i f f t h e i r images under p2, and p3’ are t h r e e p o i n t s i n G which belong t o the same l i n e i n F .

F, pl,

IT^, and IT3 form a p e n c i l , then they pass through a l i n e .t i n L and belong t o t h e 3 - f l a t (v1, IT^) spanned by v and IT Set S = P ( L ) and 1 2‘ Proof.

If v1 ,

l e t T be t h e image under F o f the s e t o f a l l the planes i n X X V I and X X V I I I , {p1,p2,p31

5

S, {p1,p2,p3)

e i t h e r the empty s e t o r a l i n e i n

5

T.

IT^).

(n1,

Since (by A21)

By prop.

T nS is

F , t h e p o i n t s ply p2, and p3 belong t o a

line. Conservely, i f

ply

p2 and p3 belong t o t h e l i n e f i n

T E T be the two maximal subspaces i n (G,

IT^,

n2, and

IT^

pass through the l i n e p-’(S)

a l l the planes i n a 3 - f l a t i n

(c, L).

F, l e t S

E

S and

F ) through f. The t h r e e planes and belong t o t h e s e t F-’(T) o f

Therefore,

IT,,

n2 and

and the statement i s proved.

IT

3

form a p e n c i l

From the r e s u l t s i n t h i s section theorem 1 f o l l o w s . F i n a l l y , i f (G, F ) i s a non-connected PPLS s a t i s f y i n g A1 and A2 and G P i s the connected component o f p (p E G) ( i . e . the s e t o f a l l t h e p o i n t s t h a t

F), then

can be reached from p by a polygonal path c o n s i s t i n g o f l i n e s i n

F containing a p o i n t i n G i s completely contained i n G and any P P subspace i n (G, F ) which i s n o t skew w i t h G i s completely contained i n G P’ P Hence, denoting by F t h e s e t o f a l l t h e l i n e s i n F which are contained i n G P P’ the p a i r ( G F ) i s a connected PPLS s a t i s f y i n g axioms A1 and A,. Theorem 2

any l i n e i n

follows.

P’

P

ACKNOWLEDGEHENT.

L

This research was p a r t i a l l y supported by GNSAGA o f CNR.

The Grassmann manifold representing the planes in a projective space

149

REFERENCES

[ 11 [

B. Segre, Lectures on modern geometry, CremoneseEd. Roma (1961)

21 G. T a l l i n i , Spazi p a r z i a l i d i r e t t e , spazi p o l a r i , Geometrie subimmerse, Quaderni Sem. Geom. Combinatorie, 1 s t . Mat. Univ. Roma, n. 14 (gennaio 1979).

[3]

G. T a l l i n i , On a c h a r a c t e r i z a t i o n o f t h e Grassmann m a n i f o l d r e p r e s e n t i n g t h e l i n e s i n a p r o j e c t i v e space, i n : P.J. Cameron, J.!4.P. H i r s h f e l d , D.R. Hughes (eds.) F i n i t e Geometries and designs. London l l a t h . SOC. Lect. Notes S e r i e s n. 49. Cambridge U n i v e r s i t y Press (1981) 354-358.