On certain integral inequalities in two independent variables for retarded equations

On certain integral inequalities in two independent variables for retarded equations

Applied Mathematics and Computation 203 (2008) 608–616 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

201KB Sizes 0 Downloads 20 Views

Applied Mathematics and Computation 203 (2008) 608–616

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

On certain integral inequalities in two independent variables for retarded equations q Hongxia Zhang, Fanwei Meng * Department of Mathematics, Qufu Normal University, Qufu 273165, Shandong, People’s Republic of China

a r t i c l e

i n f o

a b s t r a c t In this paper, we establish some new retarded integral inequalities in two independent variables which can be used as tools in the theory of integral equations with time delays. Applications are given to illustrate the usefulness of the inequalities. Ó 2008 Elsevier Inc. All rights reserved.

Keywords: Two independent variables Retarded integral inequalities Partial differential Bounded Uniqueness

1. Introduction Integral inequalities play an important role in the qualitative analysis of differential and integral equations. Many retarded inequalities have been discovered (see [1–3,6,9,11]), recently Lipovan [5] presented a retarded inequality which has very well characters. Others results may be found in [4,7,8,10,12]. Very recently [13], we obtained some new integral inequalities with two independent variables. In this paper, we will establish some new retarded Volterra integral inequalities with two independent variables, which generalize the main results of [5,10,13], which can be used as tools in the theory of partial differential and integral equations with time delays, which provide explicit bounds on the unknown functions.

2. Main results Theorem 2.1. If uðx; yÞ; pðx; yÞ are real valued nonnegative continuous functions defined for x P 0; y P 0; aðx; y; t; sÞ; bðx; y; t; sÞ be continuous nondecreasing in x and y for each t; s. 0 6 aðxÞ 6 x; 0 6 bðyÞ 6 y; a0 ðxÞ; b0 ðyÞ P 0 are real valued continuous functions defined for x P 0; y P 0 satisfies

uðx; yÞ 6 pðx; yÞ þ

Z

aðxÞ 0

q

Z

bðyÞ

aðx; y; t; sÞuðt; sÞds dt þ

0

Z 0

x

Z

y

bðx; y; t; sÞuðt; sÞds dt;

0

This research was supported by the NNSF of China (10771118) and NSF of Shandong Province (Y2005A06). * Corresponding author. E-mail address: [email protected] (F. Meng).

0096-3003/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2008.05.006

ð2:1Þ

609

H. Zhang, F. Meng / Applied Mathematics and Computation 203 (2008) 608–616

then

R R  Z Rx Ry aðxÞ bðyÞ aðx;y;t;sÞds dtþ bðx;y;t;sÞds dt 0 0 0 uðx; yÞ 6 pðx; yÞ þ e 0  Z

o ol



Z

aðlÞ

0

Z

bðyÞ

aðl; y; t; sÞpðt; sÞds dt þ

0

0

e



aðlÞ 0

R bðyÞ 0

Rl Ry

aðl;y;t;sÞds dtþ

0

Z

l

R

x

0

0

bðl;y;t;sÞds dt



!

y

bðl; y; t; sÞpðt; sÞds dt dl:

ð2:2Þ

0

Proof. Let

Z

zðx; yÞ ¼

Z

aðxÞ

0

Z

bðyÞ

aðx; y; t; sÞuðt; sÞds dt þ

0

Z

x

0

y

bðx; y; t; sÞuðt; sÞds dt:

0

Then zð0; yÞ ¼ zðx; 0Þ ¼ 0 our assumption on a; b; u; a and b imply that z is positive function that is nondecreasing in each of the variables. We have

zx ðx; yÞ ¼ a0 ðxÞ

bðyÞ

aðx; y; aðxÞ; sÞuðaðxÞ; sÞds þ

0

Z

þ

Z

y

bðx; y; x; sÞuðx; sÞds þ

0

Z

þ

Z0 x Z

þ

0

x

aðxÞ

Z

0

Z

0

Z

aðxÞ

Z

Z

bðyÞ

ox aðx; y; t; sÞuðt; sÞds dt

0

y

ox bðx; y; t; sÞuðt; sÞds dt 6 a0 ðxÞ

0

bðyÞ

ox aðx; y; t; sÞðpðt; sÞ þ zðt; sÞÞds dt þ

0

Z

bðyÞ

aðx; y; aðxÞ; sÞpðaðxÞ; sÞ þ zðaðxÞ; sÞds

0

Z

y

bðx; y; x; sÞðpðx; sÞ þ zðx; sÞÞds 0

y

ox bðx; y; t; sÞðpðt; sÞ þ zðt; sÞÞds dt:

0

Then we have

  Z bðyÞ Z aðxÞ Z bðyÞ zx ðx; yÞ  zðx; yÞ a0 ðxÞ aðx; y; aðxÞ; sÞds þ ox aðx; y; t; sÞds dt 0 0  0 Z y Z xZ y ox bðx; y; t; sÞds dt þ bðx; y; x; sÞds þ 0

0

0

Z aðxÞ Z bðyÞ aðx; y; aðxÞ; sÞpðaðxÞ; sÞds þ ox aðx; y; t; sÞpðt; sÞds dt 6 a0 ðxÞ 0 0 0 Z y Z xZ y þ bðx; y; x; sÞpðx; sÞds þ ox bðx; y; t; sÞpðt; sÞds dt; Z

bðyÞ

0

0

i.e.

 o 6 ox

Z

Z

aðxÞ 0

Z

o ox

zx ðx; yÞ  zðx; yÞ

aðyÞ

Z

0

0

aðx; y; t; sÞds dt þ

0

bðyÞ

aðx; y; t; sÞpðt; sÞds dt þ

R R aðxÞ bðyÞ

0



Multiplying (2.3) by e

0

0

Z

bðyÞ

Rx Ry

aðx;y;t;sÞds dtþ

R R aðxÞ bðyÞ

0

0

Z 0

x

Z

x

Z

0

y



y

bðx; y; t; sÞds dt

0

 bðx; y; t; sÞpðt; sÞds dt :

ð2:3Þ

0

bðx;y;t;sÞds dt

we obtain

!

Rx Ry

 aðx;y;t;sÞds dtþ bðx;y;t;sÞds dt o 0 0 0 0 zðx; yÞe ox R R  Rx Ry Z aðxÞ Z bðyÞ  Z xZ y aðxÞ bðyÞ  aðx;y;t;sÞds dtþ bðx;y;t;sÞds dt o 0 0 0 0 aðx; y; t; sÞpðt; sÞds dt þ bðx; y; t; sÞpðt; sÞds dt :  6e ox 0 0 0 0

ð2:4Þ Now integrating on the interval ½0; x for x, we get

R R aðxÞ bðyÞ zðx; yÞ 6 e

0

0

Z



R R aðlÞ bðyÞ

x

e 0

þ

Z 0

l

Z

aðx;y;t;sÞds dtþ

y



0

0

Rx Ry 0

0

bðx;y;t;sÞds dt

aðl;y;t;sÞds dtþ

Rl Ry 0

0



bðl;y;t;sÞds dt

! !

 

o ol

Z 0

aðlÞ

Z

bðyÞ

aðl; y; t; sÞpðt; sÞds dt

0

bðl; y; t; sÞpðt; sÞds dt dl :

ð2:5Þ

0

Combine (2.5) with uðx; yÞ 6 pðx; yÞ þ zðx; yÞ to get (2.2) and with this the proof is complete.

h

610

H. Zhang, F. Meng / Applied Mathematics and Computation 203 (2008) 608–616

Corollary 2.1. Assume that a; b; a; b are as in Theorem 2.1 and pðx; yÞ  p > 0, if u 2 ðRþ  Rþ ; Rþ Þ satisfies (2.1) then

Rx Ry R aðxÞ R bðyÞ aðx;y;t;sÞds dtþ bðx;y;t;sÞds dt 0 0 0 uðx; yÞ 6 pe 0 ;

x P 0; y P 0:

ð2:6Þ

Corollary 2.2. Assume a; b; a; b as in Theorem 2.1 and pðx; yÞ  p > 0 suppose u 2 CðRþ  Rþ ; Rþ Þ is a solution of the Volterra integral equation

Z

uðx; yÞ ¼ p þ

aðxÞ

Z

0

bðyÞ

aðx; y; t; sÞuðt; sÞds dt þ

Z

0

Z

x

0

y

bðx; y; t; sÞuðt; sÞds dt;

ð2:7Þ

0

x P 0; y P 0. If

 Z lim lim

x!1

y!1

Z

aðxÞ

0

Z

bðyÞ

aðx; y; t; sÞds dt þ

0

Z

x

0

y

bðx; y; t; sÞds dt

 < 1;

ð2:8Þ

0

then u is bounded. Theorem 2.2. Let m; a; b; p 2 ðRþ  Rþ ; Rþ Þa; b 2 C 1 ðRþ ; Rþ Þ and let a; b is nondecreasing with aðxÞ 6 x; bðyÞ 6 y if u 2 ðRþ  Rþ ; Rþ Þ satisfies

uðx; yÞ 6 pðx; yÞ þ mðx; yÞ

Z

aðxÞ

Z

0

bðyÞ

aðt; sÞuðt; sÞds dt þ

Z

0

Z

x

0

y

 bðt; sÞuðt; sÞds dt ;

ð2:9Þ

0

then

 Rl Ry Z x R aðlÞ R bðyÞ Rx Ry R aðxÞ R bðyÞ  aðt;sÞmðt;sÞds dtþ bðt;sÞmðt;sÞds dt aðt;sÞmðt;sÞds dtþ bðt;sÞmðt;sÞds dt 0 0 0 0 0 0 0 0 uðx; yÞ 6 pðx; yÞ þ mðx; yÞe  e 0   Z bðyÞ Z y aðaðlÞ; sÞpðaðlÞ; sÞds þ bðl; sÞpðl; sÞ dl; x P 0; y P 0:  a0 ðlÞ 0

ð2:10Þ

0

Proof. Let

zðx; yÞ ¼

Z

Z

aðxÞ

0

bðyÞ

aðt; sÞuðt; sÞds dt þ

Z

0

x

Z

0

y

bðt; sÞuðt; sÞds dt:

0

Then

zx ¼ a0 ðxÞ

Z

bðyÞ

aðaðxÞ; sÞuðaðxÞ; sÞds þ

Z

0

6 a0 ðxÞ

Z

y

bðx; sÞuðx; sÞds

0 bðyÞ

aðaðxÞ; sÞ½pðaðxÞ; sÞ þ mðaðxÞ; sÞzðaðxÞ; sÞds þ

Z

0

y

bðx; sÞ½pðx; sÞ þ mðx; sÞzðx; sÞds

0

in view of zðaðxÞ; bðyÞÞ 6 zðx; yÞ;

zx 6 a0 ðxÞ

Z

bðyÞ

aðaðxÞ; sÞ½pðaðxÞ; sÞ þ mðaðxÞ; sÞzðx; yÞds þ

0

Z

y

bðx; sÞ½pðx; sÞ þ mðx; sÞzðx; yÞds:

0

Hence

zx  zðx; yÞ 6 a0 ðxÞ

Z

Z

bðyÞ

aðaðxÞ; sÞmðaðxÞ; sÞds þ

0 bðyÞ

aðaðxÞ; sÞpðaðxÞ; sÞds þ

R R aðxÞ bðyÞ

0

Multiplying above inequality by e  o zðx; yÞe ox

R R aðxÞ bðyÞ 0

0



0

0

Rx Ry

aðt;sÞmðt;sÞds dtþ

0

0

Z

y

bðx; sÞmðx; sÞds



0

Z

y

bðx; sÞpðx; sÞds: 0

Rx Ry

aðt;sÞmðt;sÞds dtþ

bðt;sÞmðt;sÞds dt

0

0

bðt;sÞmðt;sÞds dt

!

R

6e



aðxÞ 0

ð2:11Þ

 we get

R bðyÞ 0

 Z  a0 ðxÞ 0

aðt;sÞmðt;sÞds dtþ

bðyÞ

Rx Ry 0

0

bðt;sÞmðt;sÞds dt



 Z aðaðxÞ; sÞpðaðxÞ; sÞds þ

y

bðx; sÞpðx; sÞds:

0

ð2:12Þ

611

H. Zhang, F. Meng / Applied Mathematics and Computation 203 (2008) 608–616

Integrating on the interval ½0; x for x we obtain

zðx; yÞ 6 e

R aðxÞ R bðyÞ 0

0



 a0 ðlÞ

aðt;sÞmðt;sÞds dtþ

Z

Rx Ry 0

bðt;sÞmðt;sÞds dt

0

bðyÞ

aðaðlÞ; sÞpðaðlÞ; sÞds þ

0



Z

Z

R

x

e



aðlÞ

R bðyÞ

0

0

aðt;sÞmðt;sÞds dtþ

Rl Ry 0

0

bðt;sÞmðt;sÞds dt



0

y

 bðl; sÞpðl; sÞ dl x P 0; y P 0:

ð2:13Þ

0

Combine (2.13) with uðx; yÞ 6 pðx; yÞ þ mðx; yÞzðx; yÞ we obtain inequality (2.10). h Corollary 2.3. Let m; a; b; p; a; b defined as in Theorem 2.2 suppose u 2 CðRþ  Rþ ; Rþ Þ is a solution of the integral equation

Z uðx; yÞ ¼ pðx; yÞ þ mðx; yÞ

aðxÞ

Z

0

bðyÞ

aðt; sÞuðt; sÞds dt þ

Z

0

Z

x

0

y

 bðt; sÞmðt; sÞds dt :

ð2:14Þ

0

If m; p are bounded and

lim lim

Z

x!1 y!1

aðxÞ

Z

0

bðyÞ

aðt; sÞds dt þ

Z

0

x

0

Z

y

bðt; sÞds dt

 < 1;

ð2:15Þ

0

then u is bounded. Corollary 2.4. Let m; a; b; a; b defined as in the Theorem 2.2 with pðx; yÞ ! 0 as x ! 1; y ! 1 suppose u 2 CðRþ  Rþ ; Rþ Þ is a solution of the integral equation

Z uðx; yÞ ¼ pðx; yÞ þ mðx; yÞ

aðxÞ

Z

0

If

R að1Þ R bð1Þ 0

0

Z lim lim mðx; yÞ

x!1 y!1

aðxÞ

Z

0

aðt; sÞuðt; sÞds dt þ

Z

0

R1 R1

aðt; sÞmðt; sÞds dt þ

bðyÞ

0

0

Z

x

0

y

 bðt; sÞuðt; sÞds dt :

0

bðt; sÞmðt; sÞds dt < 1 and

bðyÞ

aðt; sÞpðt; sÞds dt þ

Z

0

x

Z

0



y

bðt; sÞpðt; sÞds dt

¼ 0;

ð2:16Þ

0

then uðx; yÞ ! 0 as x ! 1; y ! 1 in particular, if mðx; yÞ; pðx; yÞ ! 0 R að1Þ R bð1Þ R1 R1 aðt; sÞds dt < 1; bðt; sÞds dt < 1 then uðx; yÞ ! 0 as x ! 1; y ! 1: 0 0 0 0

as

x ! 1; y ! 1

and

Theorem 2.3. Assume p; a; b; a; b be as in Theorem 2.1 xðuÞ is positive continuous nondecreasing for u > 0 with xð0Þ ¼ 0 and R 1 dt ¼ 1, if u 2 CðRþ  Rþ ; Rþ Þ satisfies 1 xðtÞ

uðx; yÞ 6 pðx; yÞ þ

Z

aðxÞ

0

Z

Z

bðyÞ

aðx; y; t; sÞxðuðt; sÞÞds dt þ

0

x

Z

0

y

bðx; y; t; sÞxðuðt; sÞÞds dt;

ð2:17Þ

0

x P 0; y P 0, then

 Z uðx; yÞ 6 G1 Gðpðx; yÞÞ þ

aðxÞ

0

x P 0; y P 0, where GðuÞ ¼

Ru

Z

bðyÞ

aðx; y; t; sÞds dt þ

Z

0

dt ;u 1 xðtÞ

x 0

Z

y

 bðx; y; t; sÞds dt ;

ð2:18Þ

0

> 0:

Proof. Without loss of generality we assume that p > 0, for x P 0; y P 0, otherwise we can be replaced p by p þ e for any e > 0. Assume T 1 ; T 2 > 0 be fixed, and let

zðx; yÞ ¼

Z

aðxÞ

0

Z

bðyÞ

aðx; y; t; sÞxðuðt; sÞÞds dt þ

Z

0

x

Z

0

y

bðx; y; t; sÞxðuðt; sÞÞds dt 0

with assumption on a; b; a; b imply that zðx; yÞ is nondecreasing about x and y. Hence for x 2 ½0; T 1 ; y 2 ½0; T 2  we have

zxy ¼ aðx; y; aðxÞ; bðyÞÞxðuðaðxÞ; bðyÞÞÞa0 ðxÞb0 ðyÞ þ Z

þ a0 ðxÞ Z xZ þ 0

Z

0 bðyÞ

aðxÞ

Z

bðyÞ

ox oy aðx; y; t; sÞxðuðt; sÞÞds dt

0

Z

aðxÞ

oy aðx; y; aðxÞ; sÞxðuðaðxÞ; sÞÞds þ b0 ðyÞ ox aðx; y; t; bðyÞÞxðuðt; bðyÞÞÞdt þ bðx; y; x; yÞxðuðx; yÞÞ 0 0 Z Z x y y ox oy bðx; y; t; sÞxðuðt; sÞÞds dt þ oy bðx; y; x; sÞxðuðx; sÞÞds þ ox bðx; y; t; yÞxðuðt; yÞÞdt

0

0 0

0

0

6 aðx; y; aðxÞ; bðyÞÞxððpðaðxÞ; bðyÞÞ þ zðaðxÞ; bðyÞÞÞÞa ðxÞb ðyÞ þ a ðxÞ þ zðaðxÞ; sÞÞds þ b0 ðyÞ

Z 0

Z

0 bðyÞ

0

aðxÞ

ox aðx; y; t; bðyÞÞxðpðt; bðyÞÞ þ zðt; bðyÞÞÞdt þ

oy aðx; y; aðxÞ; sÞxðpðaðxÞ; sÞ Z 0

aðxÞ

Z 0

bðyÞ

ox oy aðx; y; t; sÞxððpðt; sÞ

612

H. Zhang, F. Meng / Applied Mathematics and Computation 203 (2008) 608–616

Z xZ y þ zðt; sÞÞÞds dt þ bðx; y; x; yÞxðpðx; yÞ þ zðx; yÞÞ þ ox oy bðx; y; t; sÞxðpðt; sÞ þ zðt; sÞÞds dt 0 0 Z y Z x þ oy bðx; y; x; sÞxðpðx; sÞ þ zðx; sÞÞds þ ox bðx; y; t; yÞxðpðt; yÞ þ zðt; yÞÞdt 0 0   Z aðxÞ Z bðyÞ 6 xðpðT 1 ; T 2 Þ þ zðx; yÞÞ aðx; y; aðxÞ; bðyÞÞa0 ðxÞb0 ðyÞ þ ox oy aðx; y; t; sÞds dt 0 0 Z aðxÞ Z bðyÞ Z xZ y 0 0 þ b ðyÞ ox aðx; y; t; bðyÞÞdt þ a ðxÞ oy aðx; y; aðxÞ; sÞdsþbðx; y; x; yÞ þ ox oy bðx; y; t; sÞds dt 0 0 0 0  Z y Z x þ oy bðx; y; x; sÞds þ ox bðx; y; t; yÞdt ; 0

0

i.e

Z

zxy o2 6 xðpðT 1 ; T 2 Þ þ zðx; yÞÞ ox oy

Z

aðxÞ

0

bðyÞ

aðx; y; t; sÞds dt þ

Z

0

Z

x

0

 bðx; y; t; sÞds dt :

y

ð2:19Þ

0

Noting that

  o zx zxy 6 : oy xðpðT 1 ; T 2 Þ þ zðx; yÞÞ xðpðT 1 ; T 2 Þ þ zðx; yÞÞ

We have

Z aðxÞ Z bðyÞ    Z xZ y o zx o2 aðx; y; t; sÞds dt þ bðx; y; t; sÞds dt : 6 oy xðpðT 1 ; T 2 Þ þ zðx; yÞÞ ox oy 0 0 0 0

ð2:20Þ

Integrating both sides of (2.20) with respect to y from 0 to y we have

zx o 6 xðpðT 1 ; T 2 Þ þ zðx; yÞÞ ox

Z

Z

aðxÞ

0

bðyÞ

aðx; y; t; sÞds dt þ

Z

0

x

Z

0

y

 bðx; y; t; sÞds dt ;

ð2:21Þ

0

then integrating above inequality with respect to x from 0 to x we obtain

GðpðT 1 ; T 2 Þ þ zðx; yÞÞ 6 GðpðT 1 ; T 2 ÞÞ þ

Z

aðxÞ

Z

0

bðyÞ

aðx; y; t; sÞds dt þ

Z

0

x 2 ½0; T 1 ; y 2 ½0; T 2 : R1 In view of 1 xdu ðuÞ ¼ 1 we have from (2.22)

 Z pðT 1 ; T 2 Þ þ zðx; yÞ 6 G1 GðpðT 1 ; T 2 ÞÞ þ

0

Z

aðxÞ 0

Z

x

bðyÞ

aðx; y; t; sÞds dt þ 0

y

bðx; y; t; sÞds dt;

ð2:22Þ

0

Z 0

x

Z

y

 bðx; y; t; sÞds dt :

ð2:23Þ

0

Let x ¼ T 1 ; y ¼ T 2 in (2.23) we have

 Z pðT 1 ; T 2 Þ þ zðT 1 ; T 2 Þ 6 G1 GðpðT 1 ; T 2 ÞÞ þ

aðT 1 Þ 0

Z

bðT 2 Þ

aðT 1 ; T 2 ; t; sÞds dt þ

Z

T1

0

0

Z

T2

 bðT 1 ; T 2 ; t; sÞds dt :

0

Due to T 1 ; T 2 are arbitrarily and uðx; yÞ 6 pðx; yÞ þ zðx; yÞ we have obtain (2.18). h Corollary 2.5. Let a; b; pa; b; x be as in Theorem 2.3 suppose u 2 CðRþ  Rþ ; Rþ Þ is a solution of the nonlinear Volterra equation

uðx; yÞ ¼ pðx; yÞ þ

Z

aðxÞ

Z

0

bðyÞ

aðx; y; t; sÞxðuðt; sÞÞds dt þ

0

Z

x

Z

0

y

bðx; y; t; sÞxðuðt; sÞÞds dt;

0

x P 0; y P 0, if p is bounded and

lim lim

x!1 y!1

Z 0

aðxÞ

Z

bðyÞ

aðx; y; t; sÞds dt þ

0

Z 0

x

Z



y

bðx; y; t; sÞds dt

< 1;

0

then u is bounded. Theorem 2.4. Suppose m; a; b; p 2 CðRþ  Rþ ; Rþ Þa; b 2 C 1 ðRþ ; Rþ Þ, and let m; n; p; a; b are nondecreasing function with R aðxÞ 6 xbðyÞ 6 y for x P 0; y P 0 assume x 2 CðRþ ; Rþ Þ be a nondecreasing function such that xðtÞ > 0 for t > 0 and 11 xdtðtÞ ¼ 1 if u 2 CðRþ  Rþ ; Rþ Þ satisfies

uðx; yÞ 6 pðx; yÞ þ mðx; yÞ

Z 0

aðxÞ

Z 0

bðyÞ

aðt; sÞxðuðt; sÞÞds dt þ

Z 0

x

Z 0

y

 bðx; yÞxðuðt; sÞÞds dt ;

ð2:24Þ

613

H. Zhang, F. Meng / Applied Mathematics and Computation 203 (2008) 608–616

x P 0; y P 0, then

 Z uðx; yÞ 6 G1 Gðpðx; yÞÞ þ mðx; yÞ

aðxÞ

Z

0

x P 0; y P 0; where GðuÞ ¼

Ru

dt ;u 1 xðtÞ

bðyÞ

aðt; sÞds dt þ

Z

0

Z

x

0

y

bðt; sÞds dt

 ð2:25Þ

;

0

> 0.

Proof. Without loss of generality we assume that p > 0, for x P 0; y P 0, otherwise we can be replaced p by p þ e for any e > 0. Let T 1 ; T 2 > 0 be fixed, then for x 2 ½0; T 1 ; y 2 ½0; T 2  relation (2.24) and hypotheses on m; p imply

uðx; yÞ 6 pðT 1 ; T 2 Þ þ mðT 1 ; T 2 Þ

Z

aðxÞ

Z

0

bðyÞ

aðt; sÞxðuðt; sÞÞds dt þ

Z

0

x

Z

0

y

 bðt; sÞxðuðt; sÞÞds dt :

0

Let

zðx; yÞ ¼

Z

aðxÞ

0

Z

bðyÞ

aðt; sÞxðuðt; sÞÞds dt þ

0

Z

x

0

Z

y

bðt; sÞxðuðt; sÞÞds dt:

0

Then we have

zxy ¼ aðaðxÞ; bðyÞÞxðuðaðxÞ; bðyÞÞÞa0 ðxÞb0 ðyÞ þ bðx; yÞxðuðx; yÞÞ ¼ aðaðxÞ; bðyÞÞxðpðaðxÞ; bðyÞÞ þ mðaðxÞ; bðyÞÞzðaðxÞ; bðyÞÞÞa0 ðxÞb0 ðyÞ þ bðx; yÞxðpðx; yÞ þ mðx; yÞzðx; yÞÞ 6 xðpðT 1 ; T 2 Þ þ mðT 1 ; T 2 ÞÞzðx; yÞðaðaðxÞ; bðyÞÞa0 ðxÞb0 ðyÞ þ bðx; yÞÞ; i.e.



 zxy 6 aðaðxÞ; bðyÞÞa0 ðxÞb0 ðyÞ þ bðx; yÞ: xðpðT 1 ; T 2 Þ þ mðT 1 ; T 2 Þzðx; yÞÞ

ð2:26Þ

Noting that

  o zx zxy 6 ; oy xðpðT 1 ; T 2 Þ þ mðT 1 ; T 2 ÞÞzðx; yÞ xðpðT 1 ; T 2 Þ þ mðT 1 ; T 2 ÞÞzðx; yÞ we have

  o zx 6 aðaðxÞ; bðyÞÞa0 ðxÞb0 ðyÞ þ bðx; yÞ: oy xðpðT 1 ; T 2 Þ þ mðT 1 ; T 2 ÞÞzðx; yÞ

ð2:27Þ

Integrating both sides of the (2.27) with respect to y from 0 to y we have

Z

zx 6 a0 ðxÞ xðpðT 1 ; T 2 Þ þ mðT 1 ; T 2 ÞÞzðx; yÞ

y

aðaðxÞ; bðsÞÞdbðsÞ þ

Z

0

y

bðx; sÞds;

ð2:28Þ

0

R1

then integrating (2.28) with respect to x from 0 to x in view of

GðpðT 1 ; T 2 Þ þ mðT 1 ; T 2 Þzðx; yÞÞ 6 GðpðT 1 ; T 2 ÞÞ þ

Z

Z

aðxÞ

0

dt

¼ 1; we get

xðtÞ

1

bðyÞ

aðt; sÞds dt þ

0

Z

Z

x

0

y

bðt; sÞds dt;

0

x 2 ½0; T 1 ; y 2 ½0; T 2 ; we obtain

 Z pðT 1 ; T 2 Þ þ mðT 1 ; T 2 Þzðx; yÞ 6 G1 GðpðT 1 ; T 2 ÞÞ þ

aðxÞ

Z

0

bðyÞ

aðt; sÞds dt þ

0

Z

x

0

Z

y

 bðt; sÞds dt :

ð2:29Þ

0

Let x ¼ T 1 ; y ¼ T 2 in (2.12) we have

 Z pðT 1 ; T 2 Þ þ mðT 1 ; T 2 ÞzðT 1 ; T 2 Þ 6 G1 GðpðT 1 ; T 2 ÞÞ þ

aðT 1 Þ

Z

0

bðT 2 Þ

aðt; sÞds dt þ

Z

T1

Z

0

0

due to T 1 ; T 2 are arbitrarily and uðx; yÞ 6 pðx; yÞ þ mðx; yÞzðx; yÞ; we have (2.25) hold.

T2

 bðt; sÞds dt ;

0

h

Corollary 2.6. Let m; a; b; p; a; b; x be as in Theorem 2.4. Suppose u 2 CðRþ  Rþ ; Rþ Þ is a solution to the integral equation

Z uðx; yÞ ¼ pðx; yÞ þ mðx; yÞ

aðxÞ

Z

0

x P 0; y P 0; if m; p are bounded and

bðyÞ

aðt; sÞxðuðt; sÞÞds dt þ 0

0

R aðxÞ R bðyÞ 0

Z

0

aðt; sÞds dt þ

Rx Ry 0

0

x

Z

y

 bðt; sÞxðuðt; sÞÞds dt ;

0

bðt; sÞds dt < 1 then u is bounded.

614

H. Zhang, F. Meng / Applied Mathematics and Computation 203 (2008) 608–616

Remark. Using similar method of those in the proof of Theorems 2.2 and 2.4 we can obtain the reversed inequality of (2.9) and (2.24) as follows: Theorem 2.5. Let m; n; p 2 CðRþ  Rþ ; Rþ Þa; b 2 C 1 ðRþ ; Rþ Þ and assume that a; b are nondecreasing with aðxÞ P x; bðyÞ P y for x P 0; y P 0 if u 2 CðRþ  Rþ ; Rþ Þ satisfies

uðx; yÞ P pðx; yÞ þ mðx; yÞ

Z

aðxÞ

Z

0

bðyÞ

aðt; sÞuðt; sÞds dt þ

Z

0

Z

x

0

y

 bðt; sÞuðt; sÞds dt ;

0

then

uðx; yÞ P pðx; yÞ þ mðx; yÞ

Z

Z

x

0

y

e

R aðxÞ R bðyÞ aðlÞ

bðrÞ

aðt;sÞmðt;sÞds dtþ

Rx Ry l

r

bðt;sÞmðt;sÞds dt

0

 aðaðlÞ; bðrÞÞðpðaðlÞ; bðrÞÞa0 ðlÞb0 ðrÞ þ bðl; rÞpðl; rÞÞdl dr;

x P 0; y P 0:

ð2:30Þ

Theorem 2.6. Let m; a; b; p 2 CðRþ  Rþ ; Rþ Þa; b 2 C 1 ðRþ ; Rþ Þ with m,p are nondecreasing. suppose a; b are nondecreasing and aðxÞ P x; bðyÞ P y for x P 0; y P 0 let x 2 CðRþ ; Rþ Þ be a nondecreasing function such that xðtÞ > 0 for t > 0 if u 2 CðRþ  Rþ ; Rþ Þ satisfies

uðx; yÞ P pðx; yÞ þ mðx; yÞ

Z

aðxÞ

Z

0

bðyÞ

aðt; sÞxðuðt; sÞÞds dt þ

Z

0

x

Z

0

y

 bðx; yÞxðuðt; sÞÞds dt ;

ð2:24Þ

0

x P 0; y P 0, then

 Z uðx; yÞ P G1 Gðpðx; yÞÞ þ mðx; yÞ

aðxÞ 0

Z

bðyÞ

aðt; sÞds dt þ

Z

0

x

Z

0



y

bðt; sÞds dt

;

ð2:25Þ

0

x P 0; y P 0; Ru Ru where GðuÞ ¼ 1 xdtðtÞ ; u P 0 where GðuÞ ¼ 1 xdtðtÞ ; u P 0 and x1 ; y1 are chosen so that

 Z Gðpðx; yÞÞ þ mðx; yÞ

aðxÞ

Z

0

bðyÞ

aðt; sÞds dt þ

Z

0

0

x

Z

y

bðt; sÞds dt



2 DomðG1 Þ

0

for all x 2 ½0; x1 ; y 2 ½0; y1 : 3. Some applications In this section we will indicate some applications for our results to obtain the bounds on the solution of some integral equations with time delay. To study the boundedness, uniqueness and continuous of the solution of the initial boundary value problem for retarded Volterra equations In this section we present applications of the inequality (2.1) given in Theorem 2.1 to study the boundness, uniqueness, and continuous dependence of the solution of the initial boundary value problem for retarded Volterra equations of the form

uðx; yÞ ¼ pðx; yÞ þ

Z

x

0

Z

y

f ðx; y; t; s; uðaðxÞ; bðyÞÞ; uðx; yÞÞds dt;

ð3:1Þ

0

where f is continuous, p is continuous on D; a; b 2 C 1 ðRþ ; Rþ Þ, where D ¼ ðRþ  Rþ Þ, and aðxÞ 6 x; bðyÞ 6 y; a0 ðxÞ > 0; b0 ðyÞ > 0 for x P 0; y P 0: First we give the bound on the solution of the problem (3.1). Theorem 3.1. Suppose that

jf ðx; y; t; s; w; vÞj 6 aðx; y; t; sÞjwj þ bðx; y; t; sÞjvj;

ð3:2Þ

where a; b are as in Theorem 2.1. Let

M1 ¼ max x2Rþ

1

a0 ðxÞ

;

M 2 ¼ max y2Rþ

1 ; b0 ðyÞ

ðx; y; t; sÞ ¼ aðx; y; a1 ðtÞ; b1 ðsÞÞ: a

ð3:3Þ ð3:4Þ

615

H. Zhang, F. Meng / Applied Mathematics and Computation 203 (2008) 608–616

If x(t) is any solution of (3.1), then

R juðx; yÞj 6 jpðx; yÞj þ e 

o ol

Z

R bðyÞ

aðxÞ 0

0

ðx;y;t;sÞds dtþ M1 M2 a

Rx Ry 0

0

bðx;y;t;sÞds dt

 

Z

x



R R aðlÞ bðyÞ

e

0

0

0

Z

aðlÞ

0

Rx Ry

ðl;y;t;sÞds dtþ M1 M2 a

0

0

bðl;y;t;sÞds dt



!

bðyÞ

ðl; y; t; sÞpðt; sÞds dt þ bðl; y; t; sÞpðt; sÞds dt dl: M1 M2 a

ð3:5Þ

0

Proof. Using (3.2)–(3.4) in (3.1) and making the change of variables, we have

juðx; yÞj 6 jpðx; yÞj þ

Z

Z

x

0

6 jpðx; yÞj þ

Z

y

½aðx; y; t; sÞjuðaðtÞ; bðsÞÞj þ bðx; y; t; sÞjuðt; sÞjds dt

0

Z

aðxÞ

0

aðyÞ

ðx; y; t; sÞjuðt; sÞjds dt þ M1 M2 a

0

Z

x

0

Z

y

bðx; y; t; sÞjuðt; sÞjds dt:

ð3:6Þ

0

Now a suitable application of the inequality in (2.1) given in Theorem 2.1 to (3.6) yields (3.5). The right hand of (3.5) gives us the bound on the solution xðtÞ of (3.1) in terms of the known functions. Thus, if the right hand of (3.5) is bounded, then we assert that the solution of (3.1) is bounded on D. The next result deals with the uniqueness of the solution of the problem (3.1). h Theorem 3.2. Suppose that the function f in (3.1) satisfies the condition

 v Þj 6 aðx; y; t; sÞjw  wj  þ bðx; y; t; sÞjv  v j: jf ðx; y; t; s; w; vÞ  f ðx; y; t; s; w;

ð3:7Þ

Let a; b be as defined in Theorem 2.1, M1 ; M 2 be as defined in (3.3). Then the problem (3.1) has at most one solution on D.  ðx; yÞ be two solution of (3.1), then we have Proof. Let uðx; yÞ; u

 ðx; yÞ ¼ uðx; yÞ  u

Z

Z

x

0

y

 ðaðtÞ; bðsÞÞ; u  ðt; sÞÞds dt; ½f ðx; y; t; s; uðaðtÞ; bðsÞÞ; uðt; sÞÞ  f ðx; y; t; s; u

0

using (3.3), (3.4), and (3.7) we have

 ðx; yÞj 6 juðx; yÞ  u

Z

Z

x

0

Z

y

 ðaðtÞ; bðsÞÞjds dt þ aðx; y; t; sÞjuðaðtÞ; bðsÞÞ  u 0

aðxÞ

Z

bðyÞ

ðx; y; t; sÞjuðt; sÞ  u  ðt; sÞjds dt þ M1 M2 a

6 0

0

Z

Z

Z

x

0

Z

x

0

y

 ðt; sÞjds bðx; y; t; sÞjuðt; sÞ  u

0 y

 ðt; sÞjds dt: bðx; y; t; sÞjuðt; sÞ  u

ð3:8Þ

0

 ðx; yÞj 6 0; so we have uðx; yÞ ¼ u  ðx; yÞ; i.e., there is at most Now a suitable application of the Corollary 2.1 we have juðx; yÞ  u one solution of the problem (3.1). The following theorem deals with the continuous dependence of the solution on the equation and given initial boundary conditions. Consider the problem (3.1) and the problem

ðx; yÞ þ vðx; yÞ ¼ p

Z

x

Z

0

y

f ðx; y; t; s; vðaðtÞ; bðsÞÞ; vðt; sÞÞds dt;

ð3:9Þ

0

 is continuous on D. h where p Theorem 3.3. Suppose that the function f satisfies the condition (3.7) in Theorem 3.2 and further assume that

ðx; yÞj < e; jpðx; yÞ  p

ð3:10Þ

 be as in Theorem 3.1.Then the solution of (3.1) depends continuously where e > 0 is an arbitrary small constant, and let M 1 ; M 2 ; a on the initial value boundary data. Proof. From (3.1) and (3.9), using (3.7) and (3.10), and making the change of variables, we have

ðx; yÞj þ juðx; yÞ  vðx; yÞj 6 jpðx; yÞ  p þ

Z

aðxÞ

t

jf ðx; y; t; s; uðaðtÞ; bðsÞÞ; uðt; sÞÞ  f ðx; y; t; s; vðaðtÞ; bðsÞÞ; vðt; sÞÞjds < e

0

Z

0

Z

bðyÞ

ðx; y; t; sÞjuðt; sÞ  vðt; sÞjds dt þ M1 M2 a

0

Z

x

0

Z

y

bðx; y; t; sÞjuðt; sÞ  vðt; sÞjds dt:

ð3:11Þ

0

Now a suitable application of the Corollary 2.1 to (3.11) yields

juðx; yÞ  vðx; yÞj 6 ee

R aðxÞ R bðyÞ 0

0

Rx Ry

ðx;y;t;sÞ ds dtþ M1 M 2 a

0

0

bðx;y;t;sÞds dt

;

x P 0; y P 0:

ð3:12Þ

616

H. Zhang, F. Meng / Applied Mathematics and Computation 203 (2008) 608–616

If

 Z lim lim

x!1

y!1

aðxÞ

0

Z 0

bðyÞ

ðx; y; t; sÞds dt þ a

Z 0

x

Z



y

bðx; y; t; sÞds dt

< 1:

ð3:13Þ

0

So the solution to such an initial boundary value problem depends continuously on the initial boundary values, if e ! 0 then juðx; yÞ  vðx; yÞj ! 0: Our result is proved. h Acknowledgements The authors thank the referees very much for their valuable suggestions on this paper. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

Y.G. Sun, On retarded integral inequalities and their applications, J. Math. Anal. Appl. 301 (2005) 265–275. A. Morro, A Gronwall-like inequality and its applications to continuum thermodynamics, Boll, Un. Mat. Ital. B 6 (1982) 553–562. B.G. Pachpatte, On a certain retarded integral inequality and its applications, J. Inequal. Pure Appl. Math. 5 (2004) (article 19). Run Xu, Yuan Gong Sun, On retarded integral inequalities in two independent variables and their applications, Appl. Math. Comput. 182 (2006) 1260– 1266. O. Lipovan, Integral inequalities for retarded Volterra equations, J. Math. Anal. Appl. 322 (2006) 349–358. O. Lipovan, A retarded Gronwall-like inequality and its applications, J. Math. Anal. Appl. 252 (2000) 389–401. Fanewi Meng, Wei Nian, Li On some new integral inequalities and their applications, Appl. Math. Comput. 148 (2004) 381–392. O. Lipovan, A retarded integral inequality and its applications, J. Math. Anal. Appl. 285 (2003) 436–443. T.H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equation, Ann. Math. 20 (1919) 292–296. B.G. Pachpatte, Explicit bounds on a certain integral inequalities, J. Math. Anal. Appl. 267 (2002) 48–61. B.G. Pachpatte, On a certain retarded integral inequality and applications, J. Inequal. Pure Appl. Math. 3 (2004) (article 18). B.G. Pachpatte, On some new nonlinear retarded integral inequalities, J. Inequal. Pure Appl. Math. 5 (2004) (article 80). Hongxia Zhang, Fanwei Meng, Integral inequalities in two independent variables for retarded Volterra equations, Appl. Math.Comput. 199 (2008) 90– 98.