Electronic Notes in Discrete Mathematics 29 (2007) 129–133 www.elsevier.com/locate/endm
1
g≥5
g−4
g = 5
g≥5
C C − −→ x− i xi+1 0 ≤ i ≤ k−1
{x0 , . . . , xk−1 } ⊂ C
i
C (x1 x2 y1 y2 )
k y
x
(x0 , . . . , xk−1 ) −−−→ x i+1 xi 0 ≤ i ≤ k−1 {x, y} C {x1 , y1 } {x2 , y2}
G ≤
k k
k
≥
k
k
1
1571-0653/$ – see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.endm.2007.07.022
G k
130
L. Esperet, P. Ochem / Electronic Notes in Discrete Mathematics 29 (2007) 129–133
C
G V (G) = {v1 , . . . , vn } C = {{x1 , y1 }, . . . , {xn , yn }} i, j vi G {xi , yi} {xj , yj }
vj
G
C
G
c x G χc (G) =
C
≤
g≥5
(g − 4)
G
C C
G y
1
1≤q ≤p
(p, q) {0, . . . , p − 1} q ≤ |c(x) − c(y)| ≤ p − q
p | q
(p, q)
χ(G) − 1 < χc (G) ≤ χ(G)
χ(G) = χc (G)
(g −4) G
g≥5
1 χc (G) ≤ 2 + g−3 . 2
G .
C
131
L. Esperet, P. Ochem / Electronic Notes in Discrete Mathematics 29 (2007) 129–133
G (G) =
{
(H), H ⊆ G}
(H) =
G 2g/(g − 2)
g
g
(Gn ) → 2g/(g − 2)
G
Seg
1-String
Planar
μg
2+
4 g−2
(G) | G ∈ F
(Gn )n≥0 n → ∞
(G) <
G
g} .
μg
g
Outerplanar
2+
(G) <
g ≥5
2 + 2/(g − 4).
μg (F ) = sup {
2|E(H)| . |V (H)|
μg
Partial 2-Tree
2 g−2
2+
2
g−1 2
Seg
2+
4 g−4
1-String
2+
4 g−4
μg
μg
g ≥ 5 μg (Circle) = 2
G = (V, E) C = {{x1 , x1 }, . . . , {xn , xn }} C
g
g−2 g−4
g≥5
G
132
L. Esperet, P. Ochem / Electronic Notes in Discrete Mathematics 29 (2007) 129–133
{x, x } {y, y } (xyzz y x )
{y, y } {y, y } Cr
Cb
Gr = G(Cr )
{z, z }
Gb = G(Cb )
Cr − → yx {u, v} A2
− → xy
→ > 0} A1 ∪ A2 , ρ(− xy) t
− → xy
{x, y} A1 {x, y}
− → − → − → ux xv vy
− → yu
t=
→ − →∈ {ρ(− xy), xy
→ ρ(− xy)
− → xy
t g−4
g
Qg,0 = Cg Qg,t
g=5
μg (Circle) ≥ lim
t→∞
Q5,0
g
(Qg,t ) = 2
Q5,1
g ≥ 5 Qg,t+1
g−2 g−4
(Qg,t )t≥0
133
L. Esperet, P. Ochem / Electronic Notes in Discrete Mathematics 29 (2007) 129–133
2
G g−2 g−4
g ≥ 5
(G) ≤
G
G
C
R(C) R(C)
•
C R(C) C
•
R(C) G
ω Ω(ω
ω)
2
ω+6