On Convolution Operators in Spaces of Entire Functions of a Given Type and Order

On Convolution Operators in Spaces of Entire Functions of a Given Type and Order

COMPLEX ANALYSIS, FUNCTIONAL ANALYSIS AND APPROXIMATION THEORY. J. Mujica (Editor) 0 Elsevier Science Publishers B.V. (North-Holland), 1986 ON CONVOL...

1MB Sizes 1 Downloads 51 Views

COMPLEX ANALYSIS, FUNCTIONAL ANALYSIS AND APPROXIMATION THEORY. J. Mujica (Editor) 0 Elsevier Science Publishers B.V. (North-Holland), 1986

ON CONVOLUTION OPERATORS IN SPACES OF ENTIRE FUNCTIONS OF A GIVEN TYPE AND ORDER

M&io C. Matos Instituto de Matemhtica Universidade Estadual de Campinas 13.100 -Campinas, SP Brazil

1. INTRODUCTION In a previous article [lo] we introduced the spaces of entire and functions of order (respectively, nuclear order) k E [ I , + .I type (respectively, nuclear type) strictly less than A E (O,+ - 1 in normed spaces. The corresponding spaces for which the type is allowed to be equal to A were introduced for k E [ I,+ m ] and A E [ O , + w ) . All these spaces carry natural locallyconvex topologies and they are the infinite dimensional analogues of the spaces considered by Martineau in [ 8 ].We studied the Fourier-Bore1 transformations in these spaces andwewere able to identify algebraicaly and topologically the strong duals of these spaces with other spaces of the same kind. In this article we are qoingto study existence and approximation theorems for convolution operators in the cited above spaces of nuclear entire functions. These results generalize to normed spaces theorems obtained by Malqrange 1 7 1 , Fhrempreis [ 4 ] and Martineau [ 8 I They contain as special cases results of Gupta [ 5 1 , Matos [ 9 ] and Colombeau-Matos [ 3 1. See Matos-Nachbin [ 111 and Colombeau-Matos [ 3 I for references on similar results for locally convex spaces.

.

As usual there are three essential points to be studied

one intends to work in the solution of convolution

equations:

when the

Fourier-Bore1 transformation, the division theorems and the existence and approximation results. Since the first subject was studied in [ l o ] , we summarize the Corresponding results in Section 2 . In the third Section we get the correspondence between the topological duals of the spaces under consideration and the set of convolution operators. The division theorems are established in Section 4 andthe last Section is dedicated to prove the existence and approximation results.

130

MATOS

2. SPACES OF ENTIRE FUNCTIONS AND FOURIER-BOREL TRANSFORMATIONS We keep the notations fixed by Nachbin I 1 2 1 and Gupta [ 51, [ 6 I. Hence, if E is a complex normed space, X(El is the vector space of all entire functions in E, P ( ' E l is the Banach space of all continuous j-homogeneous polynomials in E under the natural norm 1 1 - /I and P N ( j E l is the Banach space of all continuous j-homogeneous p l y nomials of nuclear type in E l under the nuclear norm 1 1 . I I N . Now we describe the spaces with which we are going to this article. (a)

all

f

E

If p > 0 we denote by X l E l such that

deal

in

8 ( E I the complex Banach space of P

m

normed by 11 * 11 . The complex Banach space of all P a " f ( 0 ) belongs to P N l n E I for each n E W and

f

E

X(EI such that

m

under the norm I1 * I1 N , p

,

is denoted by

B N , p ( E l . If

A E to,+ ml

we

consider the complex vector spaces

equipped with the corresponding locally convex inductive limit topologies. We consider the projective limit topologies in the complex vector spaces

It is natural to consider the complex vector spaces

131

CONVOLUTION OPERATORS

with the locally convex inductive limit topologies, and

with the projective limit topologies. If p > 0 and k > 1 ( E l ) the Banach space of all (b)

Bk

N, P

k we denote by B ( E l P f E 3 C l E l such that

(respectively,

Il
(3)

under the norm I1 * I1 (respectively, II * II N , k , p ) k, P the complex vector spaces

.

are equipped with the locally convex inductive limit topologies. For A in [ a,+ -1 the complex vector spaces

ExpH, 0 , A

(El =

n

o>A

Bk

N,p

(El

are endowed with the projective limit topologies. In order plify the notations we also write

to

sim-

MATOS

132

E x p ko ( E ) = E x p k (E), 030 W e note t h a t

f

is i n

is i n

f

E

For A

w

in

[ 0,+

v e c t o r s p a c e of a l l

A E

(O,+

i

m ]

i f and o n l y i f

(El

. When

Ezpk

O,A

EX^^,^,^ * (E)

m)

w e d e n o t e by (0))

A-l

X,(B

such t h a t

Zim II ( j ~ ~ - l i ? f ( o ) l l l ”

j

N,A

k

E [ 1,+

-I

and

( E ) i f and o n l y i f

i f and only i f

d^j~(01

and

f E XlB

-

Expk

X ( E ) is i n

X ( E ) belongs t o

j E

(El.

and

E W

k E [ 1, + m l and

P ~ ( J E I for

(c)

j

w e have: f

[O,+ml

W e a l s o have:

is i n

for

0,o

k E x p A I E l i f and o n l y i f

f E X ( E ) belongs t o

PN?E)

H e r e w e consider A

N,

E JC(E) is i n

It is also true that

Zjf(0)

E x p kN J 0 ( E ) = E x p

m

5

A-l

(0))

t h e complex

A,

endowed w i t h t h e l o c a l l y convex t o p o l o g y g e n e r a t e d by t h e f a m i l y seminorms

( P , , ) ~ , ~ , where

W e recall t h a t P.

As u s u a l

0-l

B,(OI

= +

d e n o t e s t h e open b a l l of c e n t e r 0 and r a d i u s and B (0) = E . W e d e n o t e by 3 C N b ( B A - , ( O ) I 0-1

t h e complex v e c t o r s p a c e of a l l P ~ ( J E )and

of

m

f E 3ClB

A-1

(0))

such t h a t

Zjf(0)

E

133

CONVOLUTION OPERATORS

of

endowed with t h e l o c a l l y convex topology generated by t h e family simenorms (pa ) N , P P'A

,

where

m

E X ~ ~ , ~ (and E )

Exp

spaces, respectively. I n order t o simplify

the

W e a l s o adopt t h e n o t a t i o n s

m

N , O,A

( E l f o r the above

notations

we

also

write:

For

to,+

A E

m

]

we denote by e i t h e r

(respectively, e i t h e r

X N b ( B A - l ( 0 )I

2.1.

or

I)

EX^^,^ ( E l ) m

m

ExpA(El

or

t h e l o c a l l y con-

m

m

Expo, (2) ( r e s p e c t i v e l y , E x p

vex i n d u c t i v e l i m i t of t h e spaces for

X b ( B -I ( 0 A

N, 0,P

(El)

i n ( 0 , A ) . W e a l s o set

p

DEFINITION.

k ExpA ( E l

The elements of

(respectively,

k EX^^,^ (El)

k (respectively, nuclear order k ) and t y p e ( r e s p e c t i v e l y , n u c l e a r t y p e ) s t r i c t l y l e s s t h a n A , when a r e c a l l e d e n t i r e f u n c t i o n s of o r d e r

.

i s i n (0,+ m J When k = I i t i s u s u a l not to I" and when A i s m w e r e p l a c e the phrase " s t r i c t l y and A E [ O,+ml the l e s s t h a n A " by " f i n i t e type". For k E [ I , + m ] k elements of Expo, A ( E l ( r e s p e c t i v e l y , ( E l ) are c a l l e d e n t i r e Ex:PN, 0 , A k E [ 1,

and A

f m ]

w r i t e "of o r d e r

f u n c t i o n s of o r d e r ( r e s p e c t i v e l y , n u c l e a r o r d e r )

k

and

type

(re-

spectively, nucleap t y p e ) l e s s t h a n o r equal t o A . W e now l i s t t h e main r e s u l t s w e a r e going t o need i n

this

ar-

t i c l e . As w e wrote i n t h e i n t r o d u c t i o n t h e p r o o f s of t h e s e f a c t s a r e i n [lo]. 2.2.

PROPOSITION.

and

Expk

N, A

(1) I f

A E

lo,+-]

k k E [ l , f mt h)e,n ExpA(B)

( E l a r e DF-spaces.

and k ( E l a r e Frgchet spaces. E x P ~ JO , A (2)

and

I f

A E [O,+ml

E [

I,+m],

then

Z X k~ ~ , ~ ( E Iand

134

2.3.

MATOS

I n a l l s p a c e s i n t r o d u c e d above t h e T a y l o r series a t

REMARK.

of e a c h of i t s e l e m e n t s corresponding space. 2.4.

(a)

PROPOSITION.

For

(b)

k

E

belongs t o

E x p j ( E l and If

(d)

beZongs t o 2.5.

1

PROPOSITION. 9 E

9

E

a ]

and

A E [O,+ml

and

< A.

Il9II 9

E

the function

E’,

II9II 5

ExpIV,O , A (El i f

(1) The v e c t o r s u b s p a c e g e n e r a t e d by a l l f u n c t i o n s E’ i s dense i n

(2)

The i ’ e c t o r s u b s p a c e g e n e r a t e d by a l l f u n c t i o n s II9lII < A ,

k E (l,+m] k E

( l , + m ]

i s dense i n

and

A E

A

and

( O , + m ] ;

E [O,+m);

5

119 I1

A,

i s dense i n

exp(pl, with

A E (O,+ 531.

E ~ p i , ~ f Ef o ) r

The v e c t o r s u b s p a c e g e n e r a t e d by a l l f u n c t i o n s and

ExpN, I O,A ( A ) f o r

A

E

exppgl, with

to,+-).

2 . 6 . DEFINITION. f a ) I f T i s i n o n e of t h e t o p o l o g i c a l duals of k E x p N J A ( E l ( f o r k E ( l , + m ] and A E ( O , + m ] ) , ExP~O , ,A (El

i n (I,+

m ]

f i n e d by (b) (O,+

and

ml ) its

f o r every

(c)

A E [ 0,+

m

I ) , i t s F o u r i e r - B o r e l t r a n s f o r m FT

FTf9l = T ( e x p ( 9 ) ) f o r every If

T

1 ErcpN(E),

(for

k

i s de-

9 E E’.

i s i n t h e t o p o l o g i c a l d u a l of

E ~ p k , ~ ( E l(for

A E

Fourier-BoreI transform F T i s d e f i n e d by F T f 9 ) = T ( e x p ( q l )

9 E E’ If

exp(9l

A.

E x p ~ , (~E l, ~f o r

(3)

function

9 E E’, t h e f u n c t i o n e x p ( 9 )

(b)

E’

the

ExpN, O,AfE)

E x pkN J A f E If o r

and

9 E E’

the

E’,

(a)

E B’

E

= I,

k

and

(O,+m]

and

k

E ~ p i , ~ f E i) f

E x p o J A( E l and

exp(9l with

9

k = I , A E (O,+

For

E

k EX^^,^ (El.

and

A E [ 0,+ *l

Expk0 , A ( E l and

e z p ( 9 l beZongs t o

(c)

Exp;(E)

1,

(I,+

A

k E (I,fm],

For

exp ( 9 ) b e l o n g s t o

function

0

i n t h e t o p o l o g y of t h e

f

converges t o

f

with

119 11 < A.

T i s i n t h e t o p o l o g i c a l d u a l of

ExpN,O,A ( E l (for A E [O,+m))

135

CONVOLUTION OPERATORS

i t s Fourier-Bore1

transform

i s d e f i n e d by

FT m

v

for a l l

( 7 ) converges a b s o l u t e l y .

such t h a t

E E'

Here

is

Tj

B T j E P ( j E ' 1 i s given by

BT.(p) 3 = T . ( p 3 ) f o r a l l 9 E E'. A s Gupta proved i n [ 5 1 w e have IIBT.ll=llT.II. 3 3 3 I t can be e a s i l y proved t h a t f o r each T t h e r e i s p T > A such t h a t

t h e r e s t r i c t i o n of

to

T

( 7 ) Converges a b s o l u t e l y f o r

= T ( e x p ( p o ) ) because T

FTIPI

t o p o l o g i c a l d u a l of 2.7.

NOTATIONS.

and

A-'

- 0

k'

€or

k

h i + ml

2.8.

= +

E

m

pT

Expfl,

9

respectively. and

(l,+ml.

k'

Since

11

E',

E

ip

11

<

In

pT.

case

this

can be c o n s i d e r e d a s an element of

the

(E).

As u s u a l w e s e t , f o r If

+ (k')-'

as b e i n g such t h a t ( k l - '

set

and

P,(jE)

k

E

A = 0

(I,+

ml

= 1 . For

and

A =

+

w e consider k ' k = 1

and

A

m,

= + m

(1, +ml

E

k =

-1

+

we

m

= 1 respectively. W e define

l i m A ( k ) = l i m h ( k ) = 1, we set

k+ 1

k + +m

X ( 1 ) = 1 and

= 1.

THEOREM.

The Fourier-Bore1

t r a n s f o r m a t i o n i s a t o p o l o g i c a Z iso-

morphism between:

H e r e t h e index

R means t h a t t h e d u a l c a r r i e s t h e s t r o n g

topo-

l o g y d e f i n e d by t h e s p a c e .

3. CONVOLUTION OPERATORS Before w e g i v e t h e c o n c e p t of c o n v o l u t i o n o p e r a t o r w e prove

a

few p r e l i m i n a r y r e s u l t s which w i l l be h e l p f u l f o r t h e development of t h e theory.

136

MATOS

3.1. PROPOSITION. (1) If and A

in

PROOF.

(O,+m]

I , then

First we consider

a E E

and

f E Expk (E) (uith N,A J n f ( . ) a E Expk ( E l and fl,

k

E [

1,+

k E

A

In any case

m).

n=O

for every x in [11]1 . Hence

E , with the series being convergent in

n=O

for every

n E IiV.

then €or every

for

n E nV.

E

If

0

there is

We may write

C(E)

L

0

such that

p(jE)

(see

137

CONVOLUTION OPERATORS

there is

d(E)

2

such t h a t

0

f o r every

n E lN.

From (11) and ( 1 2 ) w e g e t

f o r every

n E lN.

I t follows t h a t

f o r every

E

> 0. Therefore, i f

Thus i f w e have A E (O,+m]I,

space ( f o r

f E Expk

N, A

and i f

A E [ 0,+

(El,

f E Exp

then

N , 03.4

$f(-)a

( E ) then

is i n

djj.(.)a

E Z ~ ; , ~ ( E I (for

is i n the

k =

+

a.

T h i s theorem was

proved

and X N b ( B and Matos [ 9 ] A-:(O)) s p e c t i v e l y . Hence t h i s i s a l r e a d y proved f o r t h e s p a c e s

with

A E [ 0,+

f o r t h e spaces

m).

same

a)).

Now w e c o n s i d e r t h e case Gupta [ 5 I

( 9 ) h o l d s , w e have

O n t h e o t h e r hand

by

XNb(EI

re-

EX^^,^,^ ( E )

MATOS

138

It follows that the result is true for

m

E x p N J A f E ) with

A E (O,+w].

We still have to prove the convergence of the series in the topology of the spaces in the case k € [ I , + m ) . In order to show this result we consider first f E B k ( E l for some p i 0. Then P

This tends to zero when v m for p o > p and E > 0 such that ( p + €)(I + E) < p o . (we used here (11) and (12) with L = p ) . N o w convergence follows from this fact and the way the topologies aredefined. -+

3 . 2 . REMARK. A s we wrote above 3.1.(2) was proved by Gupta when = + and A = 0; by Matos when k = + m and A E ( O , + - ) . C0l-u and Matos proved 3.1. (1) in [ 3 ] when k = I and A = + -.

k

3 . 3 . DEFINITION. A c o n v o z u t i o n o p e r a t o r in ~ r (pE / (for ~ k E t 1,+-1 k N, A and A in (0,+ w I ) 1 respectively, E x p N , O , A f E ) (for k E [ I,+ m ] and A E [O,+w)

I is a continuous linear mapping 0 from this space into

itself such that

for every a in E and f in the space. We denote the set of all convolution operators in ~ x (p E ) ~ (respectively, ~ x p O ~, A (, E l ) by A: N,A k

(respectively, A , , , )

. We

also use the notations A: = Ak d Ak 030

=At.

CONVOLUTION OPERATORS

3.4. REMARK.

139

The above definition states that the convolution opera-

tor commutes with all directional derivatives, thus it commutes with the directional derivatives of all orders. For the spaces in which -a f belongs E ) it is pos-

the translation operators

are well defined (i.e.,

T

to the space, where T - f ( x ) = fllc + a ) for all x in sible to show that we may replace condition (13) by condition

for every a in E . This means that in these cases commutativitywith the directional derivatives is equivalent to commutativity with translations. 3.5.

PROPOSITION. (1) F O P k E k t h e n T f is in E x p N ( E ) and -a

i f

f

E

k ExpN(EI and

a

E

m

i n t h e s e n s e of t h e t o p o l o g y o f t h i s s p a c e

in t h e s e n s e o f t h e t o p o L o g y o f

E x pkN J O ( E l .

The case 3 . 5 . ( 2 ) , with k = + For some k E [ I, + m) we suppose that

PROOF.

(14)

We know that

and

m3

was proved by Gupta in [ 5 1.

MATOS

140

W e have

S i n c e w e assumed (14), f o r e v e r y

E

> 0

there is

e(E)

1.

such

0

that

€or every

for each

n

E

and

> 0,

j

in

Since

W.

there is

d(El

for a l l j E W . I f w e consider t h e n , by ( 1 7 ) and (181, w e g e t

Since t h i s holds f o r

-

l i m (L)''~II n + m ke

(19)

Hence i f get

~

E > 0

2

0

E

such t h a t

> 0

such t h a t

2 ~ 1 111 I L ~

iEJ

< I,

arbitrarily s m a l l we get

in!)-'d^n(T-uf)i~)~~i'n

< 2L < +

k f E E x p N I E ) w e h a v e (14) f o r some k - E ~E x pf N I E ) . On t h e o t h e r h a n d , i f

L > 0

m.

a n d , by (191, w e

f E Expk (El N> 0

we

have

141

CONVOLUTION OPERATORS

(14) with

L

= 0 and, by (19), ~

- E ~E z pfk

N, 0

(E).

Now in order to prove the convergence results we consider f E f E gk ( E l for some L > 0. If p = 2 ( L + 1 ) we conN, L sider

k E x p N ( E I with

where we have used (17) and (18). Hence if E > 0 is 2 ( L + E ) < 2 f L + 1 ) and ~ E ( L+ E ) IIaII < I, we get

such

that

Therefore

.

Thus we have 3 . 5 . (1) f

The same type of reasoning shows that if k is in B,,,(EI for every L > 0) then

for every r = ( r - 212-’ 3 . 6 . REMARK.

f E Expk

N,

0

(E)

(hence

It is enough to consider in the above reasoning and p = 2 f L f 1 ) = P. Thus 3 . 5 . ( 2 ) is proved.

> 0.

L

If we use Proposition 3.5 it is not difficult to show

142

MATOS

t h a t under t h e h y p o t h e s i s of 3 . 5

i n t h e s e n s e of t h e t o p o l o g y of t h e s p a c e under c o n s i d e r a t i o n .

3.1.

(a) I f k E [ I,+ and k ExpN(EI i n t o i t s e Z f then 0

THEOREM.

ping from

0 i s a c o n t i n u o u s l i n e a r mapis a c o n v o l u t i o n o p e r a t o r i f ,

and onZy i f ,

f o r a22

a in E

(b)

If

in

and f

k E [ l.+ml

E ~ p i , ~ ( E i ln t o i t s e l f , t h e n

k

ExpN(E)

and

(I

i s a c o n t i n u o u s Z i n e a r mapping from

0 is a c o n v o Z u t i o n o p e r a t o r if, and only

if,

PROOF.

for a l l

0 i s a convolution o p e r a t o r , then

I n any c a s e , i f

n E W

and

a E E . On t h e o t h e r hand

i n t h e s e n s e of t h e t o p o l o g y of t h e s p a c e . Hence m

I f w e suppose t h a t 3.6

0 i s such t h a t

O l r a f ) = r a l 0 f 1 it f o l l o w s

from

CONVOLUTION OPERATORS

Hence 0 is a convolution operator. 3.8. DEFINITION.

k E [I,+

If

T E [ E x pkN ( E l ] I

m),

f

and

E B X p kN ( E )

the c o n v o l u t i o n p r o d u c t of T and f is defined by

for every x in If

E. T E [ E X ~ ~ , ~ ( E ) and ]

k E [I,+mI,

f

E

Expk

N, 0

(El

the con-

volution product of P and f is a l s o defined by ( 2 0 ) . We are going to show that T+ defines a convolution operator and that all the convolution operators are of the form T * when we k k consider the spaces E x p N ( E l , for k E I , + a), and E X P ~ , ~ ( E ) for k E [I,+

a].

3.9. PROPOSITION. If k E [ Z , + m ] C > 0 and p > 0 such t h a t

and

are

ITrf)l 5 IY(f)l

5 c

for every

f

such t h a t

P ( x l = Axn

denoted by

Expk

N, 0

,-.

m T(A. I

T E [Expk (El] I N, 0

llfllfl,k,p

(for

k E [I,+ -)I

P;j,p(fl

(for

k = + ml

( E l . Hence, f o r e v e r y for

x E E,

belongs t o

,

t h e n there

P E P N l n E l w i t h A E d:Ns(nEl

the polynomial

PN(n-mEl

f o r every

rn 5 n

and

A

I I T I A . ~ ) I5 I ~c p-m(e)m'k IIPII~ (if k E [I,+ a l l ,

PROOF.

First we suppose that

P

E

P ( n E l and

f

A E d:

fS

InEl.

If P

is

144

MATOS

for every y

in E so that

We also have: (a) For

k E [ I,+

Hence: (a) For

(b) For

k =

+

(b) For

k =

+

f o r every P ( n E l in

f

k E [I,+

m

P E PfinE).

The result now follows from the

density

of

P,(nEl.

3.10. PROPOSITION. If k E [ I , + m) a n d p 0 t h e r e is C f p ) 2 0 s u c h t h a t

I E

E x p kN ( E ) I

'

then for every

145

CONVOLUTION OPERATORS

f o r every

f E E x pkN ( E ) . Hence, f o r e v e r y

such t h a t

P

= A

+

the polynomial

T(A*

I

P E PNlnE) w i t h

AE

zNs?E!

f o r every

E PN(n-mE)

m

5

n

and

PROOF.

It is an easy exercise once we know the proof of 3.9.

3.11. THEOREM.

k E t I,+-=], k (El and T* E A,,

(a) If

then T *f E Expk

N, 0

.

T E [ Expk (El] N, 0

k I f k E [ I,+ ” 1 , T E [EzpN(E)l T + f i s i n E X k~ ~ I Eand I T * E A~

(b)

and

f

E

and f E ExpN,O(El, k

k EzpN(E),

N ’

where

C and

p

are as in 3.9. If

k

E [ Z,+mJ

and

0 < p’ < p

then

146

MATOS

Thus

and for

n > ke

If follows that

for every

0 < p'

A l s o , if

if

0 < p' < p

pl

*fE

k ErpNJ0(E).

< p.

Thus

> 0

is arbitrary, we have

and

p'

T

< pl.

Hence

is continuous in

ip*

k

ExpN dE). >

The case k = + m is done in the same way with simpler calculations since we do not have to work with multiplicative factors of the form (-

with

ke

n = O,l,

...

(b) We work as in part (a) but we use 3.10 instead of 3.9. We get: for every p > 0 there is C l p ) 0 such that IIPnIIN

where

Pn

5 C l p ) p n n ! IIfll

is as in the proof of ( a ) . It follows that

if p is chosen so that II f I1

also get

N , k , p 2-I

N, k , PZ-'

< +

a.

Hence

T

*f

E

ExpN(E).We k

147

CONVOLUTION OPERATORS

whenever

p

p < pl

i s chosen such t h a t

i m p l i e s t h e c o n t i n u i t y of

T*

in

I n any c a s e it i s c l e a r t h a t

and

11 f \I

T*

<

i m.

This

N , k , p2-I

k Expfl(EI.

i s l i n e a r and t h a t it commutes

with translations. 3.12.

for

DEFINITION. (1) F o r

f in

k

For

(2)

and

ExpN,,iE)

k E [I,+

m)

k

E [ I,+

0

E

A,"

-1 we define

.

we d e f i n e

y k : A k I--* (ExpN(E)I k

'

by

for

f in

k ExpN(E) and

0

E Ak.

k THEOREM. T h e mappings y o , f o r k E [ 2 , + m), a r e l i n e a r bijections. 3.13.

E [ l , + m l ,

and

k

Y ,

for

W e c o n s i d e r t h e mappings:

PROOF.

g i v e n by with

k

k

r k (TI (f) = E [ l , + ml.

W e have

T

*f

for every

k

T E (EqNiE)ir and

f

k i n EqN(E).

148

MATOS

= O(T-xf(ol

for all

x

E, f

E

E

k E X ~ ~ , ~ ( and EI

the identity mapping in k

for all

f

E

Expk

N, 0

(Ofl(X1

ro

Therefore

= (T * f ) ( O !

= ((ro(Tl)(fI)(Ol (El and

T

identity mapping in (Expk

= Tlfl

(Eli I . Thus y," o r: is the N, 0 k Therefore ro is the inverse of

(Ezpk

E

(EII I .

N, 0 k y o . It is also easy to show that k

the linear bijection inverse of the linear bijection For (a) k

3.14. REMARK. k E [ I,+

k

-I,

I,

T

j = 1,2

* T 2 = y ok ( O l o 0,)

ia)

Tl

(b)

T I * T 2 = y (0, o o2l

k

I'k

.

y

E [ l,+m],

T . E (ExpN(EII 3

is

o yo

A,k- On the other hand: k

k

yo(ro(Tll(fl

.

E A:

0

=

= (T-xlOfli(oI

(EIl', 2 = 1 , 2 ;

fExpk

E

j

is the

N, 0

(b)

we define: (Ell I ,

E

(Expk

E

k (ExpN(Ell I ,

N, 0

where 0. = T * j = I , 2. With these definitions 3 j ' tion products in (Expk (Ell ' and in (ExpNIE)) k ' N, 0 clear that yok and yk preserve these products I y ok i ) l l * iyo021 k and y k (0, o 0 2 1 = (y k O , l * l y k (I2).

we have the convolurespectively. It is since y ok( O 1 o 0 2 1 = Accordingly these

convolution products are associative and they have a unit element 6 given by 6 ( f l = fro). Thus (Ezpk (Ell' and (ExpN(EI)' k are algebras N, 0

with unit element. The Fourier-Bore1 transformations is an isomorphism between (a)

I E ~ ~ : , ~ ( E ) I ' and

EX~~'(E'I

for

k

E

[I,+-]

(b)

(ExpN k (Ell

~xp!'(~'i

for

k

E

[I,+

and

since it is easy to show that

FfT1

*

algebra

m/

T21 = (Ftll(FT21.

-

3.15. REMARK. It is not difficult to prove that the following inclusions are continuous f o r k E [ I,+ m I and 0 < A < B < +

CONVOLUTION OPERATORS

149

and

3.16.

DEFINITION.

T E (Expk ( E ) ) ' N, A

The f u n c t i o n a l

( w i t h A E (O,+m]

k in [I,+ i s s a i d t o b e of t y p e z e r o i f it i s a l s o i n k k' (ExpN(E)I' ( i . e . , FT E Expo(E')). The f u n c t i o n a l T E (Exp (E))' N , O,B ( w i t h B E [ 0 , + m l and k E [ 1,+ m ] ) i s c a l l e d t o b e of t y p e z e r o i f

and

a)])

it i s a l s o i n

(EX~;(EII'

( i . e . , FT

EXP~'(E~)).

E

Now w e are g o i n g t o show t h a t f o r f u n c t i o n a l s l i k e

those

con-

i t makes s e n s e t o d e f i n e t h e i r c o n v o l u t i o n p r o d u c t s

s i d e r e d i n 3.16.

w i t h f u n c t i o n s of t h e s p a c e where t h e y a r e d e f i n e d o b t a i n i n g f u n c t i o n s i n t h e same s p a c e .

k T E (ExpN(El)' i s i n (Expk

By Remark 3.15 e v e r y may c o n s i d e r

T

*P

Ezpk

E

N, 0

3.11(a)).

If

3 . 1 7 . PROPOSITION.

for e v e r y such t h a t

C(p,c)

PROOF.

Since

p > 0,

and

E

>

E

(El f o r e v e r y P i n

-i,

k E (I,+

D ( E ) are independent o f

Exp!'(E')

and

P =

q

n

n

with

$'(FTl(Ol(ql

C(p,~l

E

(E))'

PNinEI,

and w e

n E iiV

(see

k T E (ExpN(E)l',then

P E PN(E) and

0, E c p, t h e r e are

F i r s t we c o n d i e r

FT

N, 0

0

and

D(E)

2

0

iN. 9 E

E'.

= Tlq')

W e have

f o r every

9 E E' we

MATOS

150

h. a v e

But w e know t h a t (see Gupta

Thus, f o r e v e r y

for

j

E W ,

E

j

f o r every

E

and

B ~ E )2 0

Hence t h e r e i s

for a l l

there is

> 0

9 E E'

W.

[ 61)

k

a f ~ 2 ) 0

such t h a t

1. Now w e o b s e r v e t h a t

such t h a t

Now if w e u s e ( 2 3 )

( 2 2 ) i n (21) w e g e t :

k . Hence w e c a n w r i t e

n

iT. F r o m t h i s f a c t it follows t h a t t h e i n e q u a l i t y o f 3 . 1 7 i s t r u e f o r P E P f n E l a n d , by t h e d e n s i t y of P InE) in P,CnEl,

f o r every

n

in

f

it i s a l s o t r u e for

P

E

P~PE).

f

CONVOLUTION OPERATORS

3.18. PROPOSITION.

I f

for every

4

D(E)

2

PROOF.

0

E

> 0,

P E PNlnE)

> 0, p >

independent o f

n

T

E

1

(ExP~(E)J' t h e n

and some c o n s t a n t s

E

C(p,~l

W.

E

P =

As in 3.17 w e have f o r 9 *P =

and

151

n

2

j=0

90n,

9 E E'

( ? ) T ( Q n - ' ) 9*

.

j

J

Hence

But, as it w a s remarked in the proof of 3.17, w e know

Thus for e v e r y

f o r all

9 E E'

> 0

E

and

Hence w e may write

t h e r e is

j E lN.

a(€) 1. 0

that

s u c h that

Thus using (25) i n (24) we get

0 and

MATOS

152

IIT * P l l n r , p

5 C ( p , ~ l D l e l n! ( p -

E ) - ~ .

Now t h i s i m p l i e s o u r r e s u l t f o r P E P ( n E l a n d , by t h e f we get the r e s u l t for P E PNlnEl. P i n E ) i n P,lnEl,

density

of

f

3.19. E

PROPOSITION.

> 0,

p >

p >

0,

If

P E P N f n E l and

T

there are constants

E

IEzp,(EI)',

E

C l p , ~ )2 0

t h e n f o r every and

D(E)

2

0

such t h a t

C l p , ~ ) and

n E W.

A s i n t h e l a s t two p r o p o s i t i o n s it is enough t o p r o v e there-

PROOF. sult for

Since

D ( E ) a r e i n d e p e n d e n t of

P = p

n

with

9 E E'.

I n t h i s case w e have

F T E E z p i ( E ' ) w e have

and

For e v e r y

for a l l

E

0 , there is

CIIE) 0 such t h a t

j E W . Now from ( 2 7 ) and ( 2 6 ) w e g e t

Thus w e may w r i t e m

'N,P

(2'

.*PI 5

as w e wanted t o p r o v e .

C f p , ~ l D ( c 1l

1 I l~ n l p -

E ) - ~

153

CONVOLUTION OPERATORS

3.20.

k E [I,

For

THEOREM.

E Z ~ ~ , ~ o ( rE i) n

ExPN, 0, B

we d e f i n e

+m],

( E l , with

T E ( E x p kN ( E ) ) ' and A

E

(O,+m]

and

either

f

in

B E [O,+ml,

i f

T * f E Expk

(El

m

T *f =

then ue get

T

*ff

2 T*(ln!l-lc?nf(O!l n=O

Expk ( E l i n t h e f i r s t c a s e and N, A

N,O,B

i n t h e second c a s e . Moreover T * d e f i n e s a c o n v o Z u t i o n o p e r a t o r k IEI respectively. E x P N , A ( E ) and ExPN, 0, B

(a)

PROOF.

p

Hence i f every r

k

(I,+

E

m).

From 3.17 w e h a v e

i s a c o n t i n u o u s seminorm i n

i n (0,Al

Thus f o r e v e r y

there is

p < 0

in

a(rl 2 0

we consider

E

Expk ( E l w e know t h a t N, A such t h a t

for

r

and

> 0

such t h a t

p +

E

<

we get p(T

*f! 5 a ( P , E ) I I T * f l l N , k , p + E

T h e r e f o r e t h e mapping

to itself.

f N T

<

*f

a l p + E)C'(P,EJD(E)

IIfII

i s c o n t i n u o u s from

N,k,P

-

E ~ p i , ~ ( E iln -

154

if

MATOS

E

i s such t h a t

> 0

Hence

T

*f

n

E

B

P'B E

for a l l

f E Exp

-.

E

> B

N, k , p = ExpN, 0, B

p - E > B

such t h a t

> 0

p

we get

(El.

w e choose

p > B

and w e g e t

( E l . Therefore

N,O,B

If w e g i v e

T*

i s a continuous operator i n

ExPN, 0 , B ( E l . I n a n y of t h e above cases t h e mapping f b d l f ( * l x i s c o n t i n u o u s f o r any x E E. S i n c e d l ( ? * P ) ( * l x = T * ( d 1 P I * I x ) for 1 a l l P E P N ( n B l , n E IN ( s e e 3.111, w e g e t d l ( T * f ) ( * l x = T * ( d f ( . l x l f o r every

f

Ezpk

E

N, A

( E l i n t h e f i r s t case and f o r every

i n t h e second c a s e .

< C(P,EJD(E) if f

is i n

B1

N , P-E

II f I I N , p - E

<

f E Exp (El N,O,B

+

m

k = 1

( E l . Now t h e p r o o f of t h e r e s u l t f o r

fol-

lows t h e l i n e of r e a s o n i n g of t h e p r o o f o f p a r t ( a ) a b o v e . ic)

If

f

k = +

m

Thus

From 3 . 1 9 w e g e t

( E I w e have

'"PN,O,B

be s u c h t h a t

a.

p

-

E

> B.

f

E

JCNb(B - l ( 0 1 ) . I f B

Therefore

p

B

let

E

> 0

155

CONVOLUTION OPERATORS m

T *f =

Z

n=O

If

f E Exp

> 0

E

m

m

N, A

(El there is

is such that

p

- 1 -n d f(O)

EX^^,^,^ ( E l

converges in the topology of operator in this space. If

T*(n!)

p <

+ 2~ < A

A

and

is a continuous

T*

co

f

such that

Exp N , 0, P ( E ) .

E

we get

m

( E ) , hence

Thus we can say that

T

*f

E

Exp

N, A

(El.

As we have done in part (a) it is not difficult to prove that T * is E x p N J A ( E l , thus completing the proof

a convolution operator in

of

3.20. 3.21.

DEFINITION.

0

If

k

for

E

E [

say that 0 is of t y p e z e r o if F ( y Ck , * O ) = O f ( 0 ) for all f in E X kP ~ , ~ , ~ ( E ) . If

k 0 E AB

k

of t y p e z e r o if f

k E [ I,+

for

F(yBO) E

-1

and

-

1,+

m ]

and

we

A E

ExpO k ' (El) where

E

B E to,+

mi

(YE,AL')(f)

we say that 0 is

k' k E x p O ( E l ) where ( y B i ) ) ( f ) = a f ( 0 )

all

for

E X k~ ~ , ~ ( E ) .

in

3.22.

THEOREM.

k E [

If

and

l , + m ]

B

to,+ m l

E

then

k YE

i s

a

l i n e a r b i j e c t i o n b e t w e e n t h e s p a c e of t h e c o n v o l u t i o n opmators of type zero i n

Expk

N, B

( E I and t h e s p a c e of E X ~ ; ; ~ ( E ) .If

of t y p e z e r o i n

the continuous l i n e a r functionals

k E [ I,+

m

]

and

A E [ 0, +

m/

then

is a l i n e a r b i j e c t i o n b e t w e e n t h e s p a c e of t h e convolution opera-

'0, A

EX^^,^,^ ( E l

tors o f type zero i n

f u n c t i o n a l s of t y p e z e r o in

PROOF.

(1) We define

type zero and

f

y kB ( rkB ( T ) )If)

E

Erpk

and t h e s p a c e o f c o n t i n u o u s l i n e a r

E x pkN JO , A ( E I .

k r B ( T ) ( f I = T *f

N, B

for

of

( E l . Then

= ( r kB ( T ) ) i f )

(O)

= IT

*

f ) (0)

03

=

T E (Expk (E)) N, B

Z ( T * ( n ! ) - l d n f ( 0 ) l( O l = n=O

m

n=O

T ( ( r ~ ! ) - ~ ; ~ f (= f lT) (i f ) .

156

MATOS

Hence

k k y B o r g = identity mapping in the subspace of ( B x p k

N, B

(El)

of

the functionals of type zero. On the other hand

m

c

=

n=O

(n!)-Idn(Of)(o)(x) = o f ( x ) .

k

Hence r i o y B = identity mapping in the subspace of tors of type zero. (2)

We define

type zero and f in

= T

r i , a I T l (f)

ExPN, 0,A

*f

for

T

E

A:

of opera-

( E x p N , 03'4 ( E l l

( E l . Then we prove that

r O,A k

is

inverse of by using a similar argument to that used proof of part (1). 3.23. REMARK. (a) Since for

k = +

all of type zero, we have that ( E X ~ ~ ( E1 ) ) and A ~ . (b) (Exp

N , O,A

If, for (El)

with

k

y

E [ l , + m ] ,

Tg

A

is a linear

E [U,fmJ,

bijection

we have

of type zero, we may define

are between

TI, T2

TI

the

in the

the elements of ( E x p ; ( E ) ) '

m

of

*

T2

E E

( ~ x p k (E))I in the following way: if f E ~ x p ~ (E) , ~we, set ~ pn N , O,A n = Z (j!)-'c?jf(O) for n = I, 2,. Since wealso have T.E Expk ( E l ) ' , j=O d N,O

.. .

j = I, 2, we may consider

TI * F a

E

( E Xk ~ ~ , ~ I ('.E )Thus we set:

I57

CONVOLUTION OPERATORS

Thus

F(Tl

T I * T 2 is well defined and it is easy to show that

= F(Tl)

-

F(T21.

Hence if

we have

F(T1) * F(T21

S E

F(SI

(Exp

N , O,A

= F(T1 *T21

(Ell

is such that

* T2)

F(S)

=

and, by 2.8, S = T I * T 2 .

(c) As in part (b) if, for k f [ l , + m ] , B E f O , + m l we have and T 2 in ( E x p k ( E l l with T Z of type zero, we define N, B ( E l , and we get T l * T 2 P l ( T Z * f l for every f E E x p k T I * T 2 ( f ) by N, B f (Ezpk (El)' such that F ( T 1 * T 2 ) = ( F P 1 1 ( F T 2 ) . If S E ( E x p k ( E l ) ' N, B N, B

Tl

is such that 4.

FS = ( F T l ) ( F T 2 ) , then

S = T1 * T 2 *

THE D I V I S I O N THEOREMS

Before we study the division results we need the following Characterization of the entire functions of order k and type less than or equal to A .

4.1. P R O P O S I T I O N . If k f [ I , + "), A f [ 0,+ m l a n d f 6 J C ( E l t h e n f is i n E x p k ( E l if, and o n l y if, f o r e v e r y B > A t h e r e is C(B), 0 0, A such t h a t

for e v e r y

x

i n E.

PROOF. (a) First we suppose that

For

B > A

for every

we condider

n E 2l.

for every z

in

f E E ~ p ! , ~ l E l .Thus

D E (A,BI and we get

Now we consider

8 . From (28) and (29) we get

C(Dl

2

0

such that

158

MATOS

z

for a l l

n

for all

z i n E and

E

z

f o r every

Lli a n d

in

E

From Lemma 4 . 2 b e l l o w w e g e t

E E.

I t f o l l o w s from ( 3 0 ) and

n E 1N.

and

n

Iflz)leep(-fBllzllI kI

E

5

W. m

z

(31) t h a t

Hence Ifn!I-'d^"f(Olz

I

ezpf-fBllzll) k l

n=O

z

f o r every

i n E with

ClBl = C ( D I

-B

*

Now w e suppose t h a t f o r every

(b)

-I

(B-D) B > A

. there i s

CIB)

?-

0

such t h a t

for a l l

z

f o r every

in

n

E.

E

W

By ( 3 3 ) and t h e C a u c h y ' s i n e q u a l i t i e s w e g e t

and

p > 0 . T h e r e f o r e , from ( 3 4 ) and Lemma

4.2,

we get

Hence

for all

B > A.

Thus t h e above l i m i t i s less t h a n o r e q u a l t o A

and

159

CONVOLUTION OPERATORS

the proof is complete. 4.2.

LEMMA.

T h e minimum of t h e f u n c t i o n

i s attained f o r

p

= (T)k-'A-'

N p-nexplAp)k

p

and i t s v a l u e i s (n-'ekA

for

)

The proof of this lemma follows the usual tecnique f o r cases.

is in

I f k E [ I , + w!, A E ( O , + m ] k E x p A ( E l i f and o n l y i f t h e r e i s p A

B > p

it i s possible t o find

4.3.

COROLLARY.

If(r)I

for a l l

in

x

2

C(BI

0

and

f E X(E),

such t h a t

i s entire i n

5 C ( B ) e x p ( B IIxII)

F

and

G(OI

@,

f o r every 4.5.

with order

A > 0

and k

B

and For

in

z E 8

m),

if

< D exp ( B I z

[Glzl A'

> A

satisfying

k E [l,+m),

[ 0,+

( s e e Martinem

t such t h a t

and

t. T h e n f o r e v e r y

COROLLARY.

A

every

k

be en i r e functions i n

G

# 0

k IF(zlI 5 Cexp(Alz1) , z E

then f

E.

4.4. THEOREM [ l ] . L e t

f o r every

for

these

satisfying

We recall the following result of Avanissian [ 11 [ S l for a proof of this result).

F /G

p>O

k nk-'.

and

B'

1.~1 2

I Ik > B

K.

f E E X ~ ; , ~ ( E and )

f / g

is e n t i r e i n E ,

and t y p e l e s s t h a n o r e q u a l t o

t h e r e i s K '0

g

E

Expk

0, B

(El

t h e n i t i s of

160

MATOS

PROOF.

for a l l

We have

z E E,

A'

> A

and

B'

> B.

W e consider

and

B'

> B.

It is also true that

zo

E

such t h a t

E

g ( z o l # 0. N o w w e d e f i n e

for a l l

5

E 6,

A'

> A

From Theorem 4 . 4 it f o l l o w s t h a t t h e r e i s A',

(5)

2

GZ(0)

#

0 , depending only

0.

on

such t h a t

A, B', B

I(FZ/GZ)

K

I 5

I-[(l+X)/Al

lGz(o)

2 exp([ (A'II

-

((- l

+

x ) ) ~+

+ h ) 2 - 111 k - l

x

((1

+ XIB'Ik

I5 I

g(0l

for a l l

z E E,

f o r every

z

in

j/z

-

z

/I

2

K

and

X >

E l w e g e t h of o r d e r

0 . Hence, i f

k

h(z)=~f/g~(z-zo)

and t y p e less t h a n o r e q u a l

to i n f ( ( ~ ( 1+ A ) / ~

i(

B ( I + A/) k

(1( +A A )2 - l))k-l*

X > O Since

f/g

i s of t h e same o r d e r and t y p e a s

4.6.

REMARK.

h.

The method o f t h e proof of 4 . 5 is e s s e n t i a l l y t h e same

used by Malgrange i n

7

1 f o r t h e proof of t h i s theorem f o r

E =

an

161

CONVOLUTION OPERATORS

and k = 1. When Ehrempreis [ 4 ] .

n

and k < + m, The case B = 0 and E = @

this result was proved by E = 5' is due to Polya (see

, page 191; [13]). Another division theorem we need is the lowing

[ 2 ]

4.6. THEOREM.

Let

f

and

b e holornorphic f u n c t i o n s i n

g

B ( 0 1 C @ r e s p e c t i v e l y w i t h 0 < A < B and B i s holornorphic i n B A 1 O ) and 0 < r < A then

and i n f/g

for every

E

> 0

s u c h that

r +

E

BA(U)

g(0) #

0.

fol-

c

0

If

< A.

If T ( r ; h ) denotes the Nevanlinna characteristic function of the meromorphic function h we have the following inequalities

PROOF.

(i)

5 Tlr;hll + Tfr;hz)

T(r;hlh2)

(ii) If

h ( 0 ) # 0,

(iii) T ( r ; f l

w

then

T(r;h) = T(r;h-')

5 log+M(r;f) 5 ~ R + r -T ( r R;f)

if f is holomorphic in a neighborhood of number

s u p { If(zll;

If in (iii) R

+ loglh(0ll

IzI

= r)

and

is replaced by Z + E

(iv) l o g M f r ; f l 5 7 T ( r + Now we apply (iv) to

f/g

r +

B R ( 0 ) and

M ( r ; f ) is

= maxlO,tog(xll.

Zog'x E

we get

E;f).

to get

Applying ( i ) and (ii) it follows that

If we use the first part of (iii) we get

the

162

MATOS

Now the result follows if we exponentiate both sides and we use the inequality e x p ( l o g + x ) 5 I + x for x 2 0. COROLLARY.

4.7.

g ( 0 l # 0 . If

f/g

then

sup

I(f/gl(x)I

m

m

( E l , g E E X ~ ~ , ~ (wEi t )h B > A 2 0 and 0, B i s k o l o m o r p h i c i n B -1(0) C E and + 00 r > B, B

Let

5

f

E

Ig(0)

Exp

I (2+EJ/-E(l

+

sup

If

(5)

I I (Z+EJ/E

II x II =r-'+E

II x I1 =r-1 '

(1 +

sup

lgixl

1)

(2+EJ/E

I1 3: II =r-l+c for e v e r y E > 0 i n ExpOJBtEl.

r

suck t h a t

-1

+

E

< B-'.

f/g

This implies that

is

PROOF. It is enough to consider F x ( z l = flzxl and G x ( z ) = g ( z x l for every x in E and z in 6. If we apply 4.6 we get

/ z

/ z

I=l+E

]=I+€

We recall the following result proved by Gupta in 4.8.

f

PROPOSITION.

and

g

Let

component tion

.

U b e a n o p e n c o n n e c t e d s u b s e t of E and l e t U with g not identically zero. I f , for

be hoZomorphic i n

is d i v i s i b l e b y

of d i m e n s i o n o n e and f o r any c o n n e c t e d g i s n o t i d e n t i c a l l y zero, the r e s t r i c glS' w i t h t h e q u o t i e n t h o l o m o r p h i c i n

i s d i v i s i b Z e by

g

any a f f i n e s u b s p a c e

S',

[51

of

S'

flS'

then f

S

S n U

of

E

where

U.

w i t h t h e quotient kolomorphic i n

Now we will be able to prove the next three division theorems. 4.9.

THEOREM.

T2 # 0

and

If

k E

[l,+m]

TlIPexp91 = 0

and

TlJT2 E

whenever

( E q k

N, 0

(E))' are such t h a t

T2*Fexpq = 0

with

Ip

E

E'

163

CONVOLUTION OPERATORS

P in

and

P I V C n E I , n E iX,

then

q u o t i e n t b e i n g an e l e m e n t of We c o n s i d e r

PROOF. S

"PI +

are e n t i r e f u n c t i o n s . I f

k = 1

and r a d i u s

FTl

if

is a z e r o of o r d e r

to

each

k > I , w e have

FTl(S

holomorphic i n

S. For

p o n e n t of equal t o

g l ( t ) = FTl(Pl

of

d i v i s i b l e by k = 1

p . This gives

j

for

4.10.

-

FT2

are i n

and

Expk'(E'l

k

Tl(P exp9I

n

P E P,(nEl,

E

we m a y w r i t e For

4 . 9 w e have

[I,+ = 0

then

W,

b e i n g a n e l e m e n t of

PROOF.

E

we get

FTI

FTl

= h

*

FT2

t h e r e is

and

FT2

h E X(E'I

E X ~ ~ ( E ' I .

in

S'

with

is

FTl

since

T1,TZ

E

k fExp,(E))

T2 *Pe x p p = 0

FT2

'

FT 1

a r e such t h a t with

p E E',

w i t h t h e quotient

k = +

We r e m a r k t h a t i n t h e e a s e

TIJTz

T2

m

b e l o n g s a l s o to ( e x p , ,

(EI

m,

I

I .

also i n ( E x p k

h E Expk'(E').

(E))'. Hence by fl, 0 Since FTl and F T 2

h E E x p ok ' ( E ' ) , by 4 . 5 .

are of t y p e z e r o w e g e t t h a t FT1

and

because

w e have

being

FT21S' i s a c o n n e c t e d com-

e X ( E ' ) such t h a t

i s d i v i s i b l e by

Exp;'(E'I.

for

H E Expk'(G'I.

whenever

T2 * P e x p p

k > 1

a]

a

d i v i s i b l e by

FTl(S' H

Therefore,

k = 1 . By 4.5 and 4 . 7 ,

B p ( O I , when

If

THEOREM. 0

in

+ tp,).

S ' , where

there is

to is

Thus

with the quotient

FT21S

w e have

S n B p ( O I . By 4.8

H

and F T 2

h E

(p +tp2)=T2(exp(pl+t921) 1

j < p.

f o r each

w i t h t h e q u o t i e n t holomorphic i n

have

2

f o r every

+ top2)) = 0

Tl(pi exp(pl

z e r o of o r d e r a t least p

#

0

j < p:

Hence

T2

and F T 2

FTI

a r e h o l o m o r p h i c . I n any case

FT2

g 2 ( t ) = PT

of

p

k > I , then

If

9'. Hence

t h e r e i s a n open b a l l o f c e n t e r and

T , ( i p i e x p (pl + t o p 2 ) ) = 0

we g e t

a f f i n e s u b s p a c e S of

t p 2 ; t E U!}.

where

with the

FT2

E ~ ~ ~ ' ( E ' I .

a one-dimensional

i s of t h e f o r m

p > 0

is divisible by

FTl

For

k

= 1, w e

m

E x p O ( E ' I a n d , e x a c t l y a s i n t h e p r o o f of 4.9

such t h a t

FTl

= h

*

FT2.

By 4 . 7 it f o l l o w s

that

164

MATOS

4.11.

k

(1) For

THEOREM.

E [ l,+m]

and

f E x p k ( E l ) ' a r e s u c h t h a t T 2 # 0 i s of N, A = 0 whenever T 2 * P e x p p = 0 w i t h p

FTl

FT2

i s d i v i s i b l e by

For

(2)

k

[

E

l,+ml

the

and

'

k

e l e m e n t s of

with

being

T2 # 0

E

n E JV, t h e n

an

TI

i f

T1,T2

T 1(P e x p p )

P E PN(nEI,

E l ,

lo,+ ml

B E

if

m)

t y p e z e r o and

quotient

such t h a t

(EX~,,~,~(E)I

A E (O,+

e l e m e n t of

and

i s of t y p e

T 2 are

zero

Tl(P e x p p ) = 0 w h e n e v e r T 2 * P e x p 9 = 0 w i t h Ip E E l , P n E W , t h e n FT1 is d i v i s i b l e b y F T 2 w i t h t h e q u o t i e n t

and

E P,(nE),

being

an

W e remark t h a t w e may w r i t e T 2 * P e x p p b e c a u s e i n a n y case i s a n e l e m e n t of I E X ~ ~ , ~ ( E1 . ) I

T2

w e also have t h a t

and

PROOF.

(1) F o r

k > 1

by 4 . 9

there is

h E E x : p k ' ( E ' ) such t h a t

i s of t y p e we get

0

and 0,

(A ( k ) A ) - '

k = I , w e have

If

E

FTl = h

*

(Expk

(E))'

N, 0 FT2. Since

(E'I

by 4.5.

FT1,FT2

E

Exp

co

= Xb(BA(OII. B y r e a -

(El)

0,A-1

s o n i n g as w e h a v e d o n e i n t h e p r o o f of 4.9 w e u s e 4.8 t o p r o v e there is

h E X ( B A ( 0 ) l such t h a t

we use 4 . 1 t o prove t h a t

FT2

i s of t y p e less t h a n o r e q u a l t o ( X l k I A l - ' ,

FT1

h E ~ X p k '

TlJT2

h

E

FT1 = FT2

Xb(BA(OII

*

= Exp

h. Since

that

FT2 E M b ( E r )

m ( E l ) .

O,A

( E x p k ( E l ) '. By N, 0 4 . 9 t h e r e i s h E E x p k r ( B ' I s u c h t h a t FTl = h FT2 S i n c e FT2 i s of t y p e 0 and FT1 i s of t y p e s t r i c t l y less t h a n (A(k1Bl-I w e h a v e h o f t y p e s t r i c t l y less t h a t I A ( k l B l - ' by 4.5.

For

(2)

If

is

C >

Xb(EII

k > 1

k = 1 w e have

B

such t h a t

since

T2

f i r s t part we get

w e a l s o have t h a t

T1,T2

-

E

.

( E ' I = X b I T ) . Hence t h e r e B-1 F T l J F T 2E X b ( B c ( 0 ) ) ( i n f a c t w e have FT2 E

F T I JFT2 E Exp

i s of t y p e z e r o ) . Hence, a s i n h E Xb(BC(OII

such t h a t

FTl

t h e proof 1

h

FT2.

of t h e

165

CONVOLUTION OPERATORS

5. EXISTENCE AND APPROXIMATION THEOREMS FOR CONVOLUTION EQUATIONS Now w e a r e r e a d y t o u s e t h e p r e v i o u s r e s u l t s i n o r d e r t o

prove

theorems a b o u t t h e approximation and e x i s t e n c e of s o l u t i o n s of

con-

volution equations. k 5.1. THEOREM. (1) If k E [ i, + m l and 0 E A. t h e n t h e vector subs p a c e o f Expk ( E l g e n e r a t e d by t h e e x p o n e n t i a l p o l y n o m i a l s o l u t i o n s N,O of t h e homogeneous e q u a t i o n

E = Cpexplp;

0

( i . e . , generated by

0

n

P E P ~ ( ~ E lp ) ,E E ' ,

E jiv,

( ~ e x p p l= 01

is d e n s e i n t h e c l o s e d s u b s p a c e o f a l l s o l u t i o n s o f t h e

homogeneous

equation ( f . e . , dense i n

and

(2) If k E [ I,+ = ] E x pkN ( E l g e n e r a t e d by

of

0

E

Ak

then the vector

subspace

i s dense i n

0

t h e r e s u l t f o l l o w s from

PROOF.

(1) If

0 #

By 3.13 t h e r e is

0.

E

0

(Erpk (El I N, 0 i s such t h a t X l d : = 0,

T

E

'

2.3.

such t h a t

Now w e assume 0 = T*. Now, i f

(E))' t h e n by 4.9 t h e r e i s h E N, 0 k E x p k ' ( E ' I such t h a t FX = h FT. But h = FS f o r some S E (ExpNJO(El)' by 2 . 8 . S i n c e FX = FS - F T = F(S * T ) by 3.14, w e have X = S * T . I t follows t h a t X * f = S * ( T * f ) = 0 f o r f E K. Hence X t f l = (X*f)(O) = 0 f o r f E K. Thus by t h e Hahn-Banach Theorem E is d e n s e i n K .

X

E

(Ex:pk

(2)

If

k #

If m,

0

0

t h e r e s u l t f o l l o w s from 2.3. N m we assume 0 # 0. T E ( E x pkN ( E ) ) ' such t h a t 0 = T*. If k = + m ,

by 3.13 w e g e t

s i n c e e v e r y element of

m

(Exp ( E l l '

N

3.22 t h a t t h e r e i s a n element

if

X E

k f E x p m f E ) l ' i s such t h a t

E x p i ? E ' l such t h a t

T

E

i s o f t y p e z e r o , it follows from ( E ~ p 1 f E ) l ' such t h a t 0 = T*.Now

X l E = 0, t h e n by 4 . 1 0 t h e r e i s

FX = h * F T . By 2 . 8

there is

S

h

E

i n ( E x pkN ( E ) l ' s u c h

166

MATOS

k # +

h = FS. F o r

that

a:

k = +

K . For

dense i n

above i n p a r t (1) w e g e t dense i n 5.2.

K

X = S

from 3.14 w e g e t

03

XIK = 0

i n p a r t (1) w e g e t

* T.

Thus as above

a n d , by t h e Hahn-Banach Theorem, wehave

a, from 3 . 2 3 w e h a v e X = S * T . Thus as X I K = 0 . T h u s , a s u s u a l , w e g e t t h a t L. i s

by t h e Hahn-Banach Theorem.

THEOREM.

(1) If

k

(O,+ m i and

A E

E [ l , + w I ,

t y p e z e r o , t h e n t h e v e c t o r s u b s p a c e of

0

E

Ak

is of

O,A

ExP~O , ,A (El g e n e r a t e d b y

is d e n s e i n

(2)

k

If

t h e n t h e v e c t o r subspace o f E = {Pexpq; P

E

0

B E (O,+ m l and

E [I , +m ],

Ezpk

N, B

P,( n E ) , p

E

k A,

is o f t y p e zero,

( E ) g e n e r a t e d by

E E',

n E LV,

O ( P e x p p ) = 0)

is d e n s e i n = {f

K 0 = 0

(1) I f

PROOF.

By 3.22 t h e r e i s T * . Now i f

X

T

i n (Exp

h

= 01.

t h e r e s u l t f o l l o w s f r o m 2.3. E

(Exp

N , 0,A

N , O,A from 4 . 1 1 t h a t t h e r e i s h

Thus, by 2 . 8 ,

k

E E x ~ ~ , ~ ( E )Of ;

= FS

(E))

in

f o r some

(El)

'

I,

T

i s such t h a t

Exp S

k'

Xld: = 0

it

follows

( E ' ) s u c h t h a t F X = h * FT.

(A ( k )A)-' in

0 # 0.

W e assume

of t y p e z e r o , s u c h t h a t 0 =

(Expk

N , O,A

(E))'.

Now from

3.23

X = S * T and, f o r f i n K , w e g e t X i f ) = S(T * f) = S ( 0 f ) = S ( 0 ) = 0. Hence X l K = 0 and d: i s d e n s e i n K by t h e Hahn-Banach

we get

Theorem.

0 = 0 t h e r e s u l t f o l l o w s f r o m 2.3. W e assume 0 # 0 . By 3.22 t h e r e i s T i n ( E q k ( E l ) ' of t y p e z e r o s u c h t h a t 0 =T*.If (2)

X is

E

If

N, B (Ercpk (E))' i s s u c h t h a t X l d : = 0, w e g e t from 4 . 1 1 t h a t t h e r e N, B h i n Expk ' ( E l ) such t h a t F X = h * FT. NOW, from 2.8, 0, ( A ( k ) E)-'

167

CONVOLUTION OPERATORS

there is

(Expk

S in

N, B f E K

we prove that if

FS = h .

such that

then

X l f l = 0 . Hence

[

if 0

k

(1) F o r

5 . 3 . THEOREM.

(Ell

E

As i n the f i r s t part

i s dense i n

d:

A.k

then i t s

K.

transposed

mapping

i s such t h a t tO(Expk

(a)

N, 0

i s t h e o r t h o g o n a l of

(E))'

k

For

E

i n ( E q fl, k 0( E ) ) ' .

i s c l o s e d OF t h e weaq topology i n ( E q Nk , 0 ( E l ) '

tO(Expk (Ell' N, 0 k d e f i n e d by ExpN, ( E ) . (b)

(2)

kero

[l,+ml,

if

0

E

A

k

,

0 # 0 , then i t s

transposed

mapping :

k k (ExpNfE/I'W (ExpN(EI)'

i s such t h a t k k t O ( E x p f l ( E I l ' i s t h e o r t h o g o n a l of k e r 0 i n ( E ~ p ~ ( EI .l l

(a)

t O ( E x pkN i E ) l ' i s c l o s e d f o r t h e weak t o p o Z o g y k k ExpN(El i n ( E z p N ( E I I ' .

(b)

For

(3)

z e r o and

by

k

E [

m)

and

A

E

to,+

m),

0

i f

0 # 0, t h e n i t s t r a n s p o s e d mapping

(a)

( ~ x p

(b)

1

N , O,A

ExpN,O,A

(4) z e r o and

I,+

Exp

N , O,A

(E) i n

E

defined

A kO , A

is of type

i s such t h a t

( E l ) ' i s t h e o r t h o g o n a l of kerC i n ( E q k

N , 0,A

(Ell

( ~ x p

'

i s closed f o r the

N , O,A

(Ell

by

weak

topology

(El)'.

define

I.

F o r k E [ I , + - ] and B E ( O , + m ) , i f 0 # 0 , t h e n i t s t r a n s p o s e d mapping

0

E A:

i s of i s such t h a t

type

(a)

t O ( E x p kN , B ( E I I

'

i s the orthogonal o f

(b)

tO(Expk

'

is c l o s e d f o r t h e weak t o p o l o g y d e f i n e d b y

N, B

(Ell

kerO i n

( E ~ ~ , ~ ( 1E. ) I

168

MATOS

I n any c a s e t h e r e i s

PROOF.

i n t h e domain of

T

0 =

such t h a t

Now f o r each X i n t h e image of t t 0 w e have X = 0s f o r some S i n t h e domain of Hence X(fl = ( t U S l ( f l = S i O f l = 0 f o r every f i n k e r 0 . Thus t h e image of

T*.

( I t f o l l o w s from 3.13 and 3.22).

(ker 0 ) ' .

i s contained i n

X =

lows t h a t

S

*T

0 ) '

X E (ker

Conversely f o r

fol-

it

( t h i s is proved

f o r some S i n t h e domain of

as i n t h e p r o o f s of 5 . 1 and 5 . 2 ) . Now, f o r f i n t h e domain of 0 w e g e t X t f l = S ( T * f l = S ( 0 f l = C t O S l ( f l , so t h a t X = t 0s. Thus we

(ker0)'

have

C

image of

= IT

( k e r 0)'

O(Expk

N, 0

(1) For

( E l ) = Ezpk

(2)

surjection (3)

N, 0

.

For

k E

[Z,+m]

o

0 #

0

and

E

of t y p e z e r o t h e n

i f

and

0 #

0

0

and

A E lo,+

E Ak ,

m l , if

tu

i s

a

k AO ,A

is

E

m ]

O(Expk

N, B

and

B E (0,+ml,

if

0 # 0, 0

E A,

k

is

( E I ) = Expk (El. N, B

+

(b)

0

then

W e j u s t r e c a l l t h e Dieudonn&Schwartz Theorem: I f are e i t h e r F r g c h e t s p a c e s o r DF-spaces and u : E F is c o n t i n u o u s mapping, t h e n t h e f o l l o w i n g a r e e q u i v a l e n t :

E

and

a

linear

F

= F

: F'

weak t o p o l o g y of

then

0 # 0, 0

PROOF.

u(El

.Ao, k

k 0(Exp N, O,A ( E l l = Exp N , 0, A

k E [1,+

(a)

0)

V f E ker

(El.

k E [ 2,+ml,

For

if

k E [2,+m1,

For

of t y p e z e r o , t h e n

(4)

T(fl = 0

domain o f

E

( k e r o l i s c l o s e d i n t h e weak t o p o l o g y .

w e a l s o have t h a t 5 . 4 . THEOREM.

Further, since

+

E'

E'

i s i n j e c t i v e and

d e f i n e d by

E.

tulF'l

is closed f o r

the

169

CONVOLUTION OPERATORS

Since our spaces are either and since 5.3 holds true we just in each case. Since 0 = T* for and 3.22) , we have t O S = S * T t O ( ( tOS) (f) = Stof! = S ( T * f) =

Frgchet spaces or DF-spaces (by2.2) need to show that is injective some T in the domain of (by3.13 for every S in the domain of

*T)

0 = F(S

in the domain of we have 3.22). Since T # 0, FT # 0 and injection.

S

tOS = 0 for some

NOW, if

(S * T l f l .

= FS

FS = 0. Hence

(by 3.14 and t and 0 is an

FT = 0

*

S

5.5. EXAMPLES. In order to complete this exposition wegive examples of convolution operators of type zero. (1)

We consider

(a)

If

H~

E

( P ~ ( ~ E ) for ) ~ n in

and

k E [I,+

A E [O,+

m)

W.

we define

i* ) Then (b) If k E [ 1,+ m ) and Expk ( E l and x in E. We get N, A

(c) For k = + EXPN O,A (El and x in

m

m

(d) For k = + w know that there is 0 < use

*)

to define

A

E

Om E

Om

E

A,,,

is of type zero.

we use ( * ) of type zero.

O,+m]

AA~

and A E [ O + m) we use ( * ) m E , IIxll < A - ' . We get Om E AO,A and p

f

A E

< A

O m ( f l for x

lo,+ - 1 ,

such that in

if f is in f E

m

E, IIxII < ( p f ) - ' .

for

f in

for f in of type zero. m

E X ~ ; ~ ~ , ~we ~(EI (E). Then we

We get

Urn E A;

of type zero. (2) pose that

We consider

Hn

in (PN(nEIIr for n in

lN

and we sup-

MATOS

170

where f

is in

ExpN, 0 , A ( E l and z is in

E. We have

0 E At,A

of

type zero. (b)

where f

For

k = +

m

and

A

E [

0,+ m i

is in

of type zero.

Other examples may be given by stating convenient conditions wer IIHnII

as n varies in

D.

REFERENCES [

11

V. AVANASSIAN, Fonctions p Z u r i s o u s h a r m o n i q u e s , d i f f z r e n c e s d e u s f o n c t i o n s p l u r i s o u s h a r m o n i q u e s de

type

de

exponentie 2.

C.R. Acad. Sci. Paris, 2 5 2 ( 1 9 6 1 ) , 4 9 9 - 5 0 0 . I21

R. P. BOAS, E n t i r e f u n c t i o n s . Academic Press, New York, 1 9 5 4 .

[ 3 ] J. F. COLOMBEAU and M. C. MATOS, C o n v o l u t i o n e q u a t i o n s i n i n f i n i t e d i m e n s i o n s : B r i e f s u r v e y , new r e s u l t s and proofs. Functional Analysis, Holomorphy and Approximation Theory (J. A. Barroso, ed.) pp. 131-178. Notas de Matemstica,NorthHolland, Amsterdam, 1982. [4 1

L.

EHREMPREIS, A f u n d a m e n t a l p r i n c i p l e for s y s t e m s o f linear d i f f e r e n t i a l e q u a t i o n s w i t h c o n s t a n t s c o e f f i c i e n t s and of i t s applications.

some

Proceedings of the International S y m

posium on Linear Spaces pp. 1 6 1 - 1 7 4 . rusalem, 1 9 6 1 .

Academic Press

Je-

151

c.

r 6 1

C . P . GUPTA, C o n v o l u t i o n s O p e r a t o r s and Holomorphic Mappings on a Banach S p a c e . Siminaire d'Analyse Moderne, 2. Unversitg

P. GUPTA, M a l g r a n g e T h e o r e m for N u c Z e a r l y E n t i r e Funct?'ons of Bounded T y p e o n a Banach S p a c e . Notas de Matemztica, Vol. 37. Instituto de Matemstica Pura e Aplicada, Rio de Janeiro, 1 9 6 8 .

CONVOLUTION OPERATORS

171

de Sherbrooke. Sherbrooke, 1 9 6 9 . [ 7

1 B. MALGRANGE, E x i s t e n c e e t a p p r o x i m a t i o n d e s s o l u t i o n s d e s ;quat i o n s aux d e r i v e e s p a r t i e l l e s e t des e q u a t i o n s des convol u t i o n s . Ann. Inst. Fourier (Grenoble) 6 (1955-56), 271- 355.

[

8 1 A . MARTINEAU, E q u a t i o n s d i f f e r e n t i e Z Z e s d ’ o r d r e i n f i n i . Bull. SoC. Math. France 9 5 ( 1 9 6 7 1 , 1 0 9 - 1 5 4 .

[ 9

1 M. C. MATOS, On Malgrange T h e o r e m for n u c l e c i r k o l o m o r p h i c f u n c t i o n s i n o p e n b a l l s of a Banack s p a c e . Math. 2. 162 (19781, 1 1 3 - 1 2 3 , and correction in Math. Z. 171 ( 1 9 8 0 ) , 2 8 9 - 2 9 0 .

[lo] M. C. MATOS, On t h e F o u r i e r - B o r e 1 t r a n s f o r m a t i o n and s p a c e s o f e n t i r e f u n c t i o n s i n a normed s p a c e . Functional Analysis, Holomorphy and Approximation Theory I1 ( G . I. Zapata, ed.) pp. 1 3 9 - 170. Notas de Matemhtica, North-Holland, Amsterdam, 1984.

ill1 M. C. MATOS and L. NACHBIN, E n t i r e f u n c t i o n s on l o c a l l y c o n v e x s p a c e s and c o n v o l u t i o n o p e r a t o r s . Compositio Y a t h . 44 (1981) , 145 I12

- 181.

1 L. RACHBIN, Topology o n S p a c e s der Mathematik, Vol. 4 7 .

[13

1

G.

o f HoZonior>$iii>:4appings. Ergebnisse

Springer, Berlin, 1 9 6 9 .

POLYA, U n t e r s u c h u n g e n u b e r L u c k e n und SCrgklarita1,cn von Potenzr e i h e n . Math. 2. 29 ( 1 9 2 9 ) , 5 4 9 - 6 4 0 .