Email:
[email protected]
Login
Register
English
Deutsch
Español
Français
Português
Home
Add new document
Sign In
Create An Account
On determining excitation energies from the poles of green functions
HOME
On determining excitation energies from the poles of green functions
On determining excitation energies from the poles of green functions
Volume 1, numlzn" 5 PHYSICS ON DETERMINING THE POLES LETTERS EXCITATION OF GREEN D. T E R I ~ R 1 Jmm 1969. ENERGIES FROM FUNCTIONS and W. ...
Download PDF
273KB Sizes
0 Downloads
34 Views
Report
Recommend Documents
Excitation functions of hadronic observablesfrom SIS to RHIC energies
Simple poles of operator-valued functions
Excitation energies of Li2-molecule
Calculation of mean excitation energies
Green energies and the environment
Orthogonal polynomial approach to estimation of poles of rational functions from data on open curves
Excitation Energies of Molecules from Ensemble Density Functional Theory
Determining Transfer Functions from Measured Data
The He5 states at high excitation energies
Structural excitation energies in selenium
Structural excitation energies in selenium
A comment on the abstraction of mean excitation energies from experimental reduced stopping powers
PDF Reader
Full Text
Volume 1, numlzn" 5
PHYSICS
ON
DETERMINING THE POLES
LETTERS
EXCITATION OF GREEN
D. T E R I ~ R
1 Jmm 1969.
ENERGIES
FROM
FUNCTIONS
and W. E. P A R R Y
The Clarer~n Laboratory, O~ord Rec~ ~ ' ~ d 27 April 1962 F r o m (I), (2), (4), and (5) one finds R is commonly stated that the poles of the r, ~urler transform of the single-particle Green f,/m,1 tion determine the energies of the low-lying .~zc'tations of a system 1-4)] Recently Bolsterli ~) h~ts drawn attention to the fact that the single-p~o~,dc.1~. -1 <
= . . . = <<:; ~+>> = . . . tremely simple, soluble model to shew that unde,~ c~rtaln circumstances it m a y even easily led to = <(~+~; ~a+>>= . . . -- 0 . wrong conclusions, especially in a perturbation Consider now the HRmiltonian theory approach *. Consider a system described by the (generalis~ ~I) H' = (c - ~) (I - 28) 0+O + (, - ~) 4Wi---'U) (s + ~+) Hamiltonian 3) =
(~ -
~) ~+,~,
(~')
where ~ and ~+ satisfy the fermion commutation relations, ~=~+~+-0,
~+~+~+=I
,
(2)
and where ~ is an adjustable parameter. Consider now the retarded Green functions <
>defined by t h e relation
<
= - i ([A(t), B(t')] +> ,
t> t ' ;
,
t< t~ ,
w h e r e [ , ] + i s an a n t i c o m m u t a t o r , w h e r e the single pointed b r a c k e t s i n d i c a t e an e n s e m b l e a v e r a g e (~ = 1 t ~ ,
(..> = T r e ' 0 H . .
/ Tr e - 0 H ,
(4)
which for z e r o t e m p e r a t u r e (~ -- ~) r e d u c e s to a g r o u n d - s t a t e a v e r a g e , and w h e r e t h e A(t) a n d / 3 ( t ' ) a r e ( g e n e r a l i s e d ) H e i s e n b e r g o p e r a t o r s . T h e Four i e r t r a n s f o r m <(A; B>>E (=- ((A; B)>: we d r o p the indox E in the followin~,) of ((A(t): Btt')~ s a t i s f i e s the equation of m o t i o n 2 ,'4") 1 E <
> = ~-~-<[A, B] +> + <<[A,HI .; B>> ,
(7)
w h e r e S and 0+ s a t i s f y t h e f e r m i o n c o m m u t a t i o n r e l a t i o n s . To find t h e e x c i t a t i o n s p e c t r u m , one would consider <(0; 0+>>. One can again use (5) to evaluate this Green function as w e shall do presently. One can, however, also evaluate it through a suitable canonical transformation. If one applies the canonical transformation
0 = (I - 5) a - 5a+ +jS(l - 5) (~R+ - ~+~) ,
i3) =0
+ (~ - ~ ) ~ ,
(5)
where [ , ] _ is the commutator. * After this note was written we received a preprint of a paper by R. Balian, L.H. Nosanow and N. R. Werthamer who have aJ~o found spurious poles.
(8)
H' reduces to H of (1). Using (8) w e can express <
>in terms of <<:L;~+>>, <
>, <
>, . . . , and we get then, using (6),
<
>=
[
_~)9. + ~+~ E + , -
,
;]"
(g)
W e note here the occurrence of two excitation energies: s - ~ and - s + ~. W e m u s t now discuss the physical nature of the quantity ~. The term ~a+R occurs in the generalised Hamiltonian (1) as a consequence of the lact that the temperaturedependent Green Junctions used in statistical manybody problems involve averages over grand ensembles. In that case ~ is the chemical potential. It is oRen convenient to reckon all energies from the c h e m i c a l p o t e n t i a l a s z e r o , a n d c - ~ - the pole o c c u r r i n g in the firs't of e q u a t i o n s (6) - i s t h e n , i n d e e d , the e x c i t a t i o n e n e r g y . In f a c t , the p o l e s of the Green f u n c t i o n s give u s e ~ e r g y differences, a s is weU-known. If, f o r a m o m e n t , we put = 0, we get f r o m (9) the e x c i t a t i o n e n e r g i e s , and
145
Volume 1, number 5 .
.
.
.
.
.
PHYSICS
'
.
- ~, c o r r e s p o n d i n g c o r r e c t l y to t~he two p o s s i b l e d i f f e r e n c e s between 0 a r ~ ¢. If, h o w e v e r , we i n t r o d u c e p, we do n o t g e t ¢ - ~ and - ¢ - ~, a s s h o u l d follow f ~ ) m a s h i f t of the origin. O u r f i r s t c o n c l u s i o n i s thus t h a t a l t h o u g h the t e m p e r a t u r e d e p e n d e n t Green f u n c t i o n s involving a v e r a g e s o v e r grand ensembles are the most suitable ones for s t a t i s t i c a l p u r p o s e s , we s h o u l d u s e c ~ m n t c a l e n s e m b l e a v e r a g e s , t h a t i s , a v e r a g e s (4) with H e q u a l to t h e t r u e Hamiltoni~m H " , H" = H + ~
= H + pa+a = ~a+a ,
(10)
if we w i s h to d e t e r m i n e t h e e n e r g y s p e c t r t t m of a system. If t h e a and a + a r e t h e r e a l p a r t i c l e a n n i h i l a t i o n and c r e a t i o n o p e r a t o r s f o r o u r s y s t e m , ~ i s t h e c h e m i c a l potential. T h e o c c u r r e n c e of t h e p o l e s at - ~ a n d - ¢ + ~ i s t h e n h a r d l y s u r p r i s i n g , but ff one ~ r t s f r o m t h e H a m i l t o n i a n (7) it is i m p o s s i b l e to f i n d t h e value c~ ~, a s t h i s Hamlltonian would be w r i t t e n in the f o r m H ' = A e+e + s(~ + e+) + C .
(79
If, on the other hand, the ~ and ~+ are the r e a l p a r t i t l e o p e r ~ ' o r s , we would w r i t e H' in the f o r m a " = ( , ' - ~ ' ) S+~ + s ( S + ~+) + c ,
by p'(1 - 2e) -1 w h e r e 6 i s not known a prio.~. L e t u s now e v a l u a t e ~\$, ~' " ¢+)) u s i n g the equation of m o t i o n (5), and let u s p u t ~ = 0 to s i m p l i f y t h e d 2 s c u s s i o n , F r o m (5) we have the follovdng e q u a tions ~ ( i - 2~)]
J5(1
=~i+
~ .
5) <
-
.
S+S
e*}>
,
(lla).
[~ + ~(i - ,',,'~)] <
> --, EBB + -
~+8;
,~g(i-z-~ <<~B+- s+~; B+>), (,~lb)
{~+}>
2~ ~
:
[<
>- <(~+; s+>>] , ( l l c )
f r o m which we get = _~,.rvl
..
- - ~
+ ....
-- .
.
.
.
.
.
.a.
L' . . . . .
,L%.
_
E - - - ~ - -
~ .~ .
.
.
.
(12) .
,.~At
s p u r i o u s pole at the orig~n (which we sh~ll not dis-. c u s s h e r e ) , the 3ame a_ equation (8), T h i s i s not s u r p r i s i n g , as o u r H a m f l t o n i a a is suf!.~cienfly s i m ple to lead to a c l o s e d ~et of equations f r o m which we can solve for <
i46
. . . . .
: Ijmm1962
' ,
,,
:
. . . . . . . . . . . . . . . . . . . . .
: . , ,
_
.
have r e c o u r s e to d e c o u p ~ p r o c e d u r e s . The f i r s t o r d e r d e c o u p l i n g would c o r r e s p o n d to w r i t i n g
<(Be+ - ~+~; ~+)) ~ (1 - 2 ~ <(1; S+)) ~ 0 ,
(13)
= <~+e),
a n d we would g e t f r o m (I l a )
((~; ~+~>= 2 ~ [ £
1 - ,(i"
20]
'
(14)
which leads to an incorrect excitation energy equal to ¢ ( 1 - 2 0 . We w~.y a s k i n how f a r t h e d e c o u p l i n g (13) i s j u s t i f i e d . T h e IL~.~ltonian ( 7 ) i s s u c h that we can t r e a t 6 o r ! r a t h e r 6a a s a s m a l l pw--ameter. In t h e l i m i t a s 8a -- 0, we get ~ - a , and H' - / / . We would e x p e c t t h a t t h e d.ecoupling (13) would be exact in t h e l i m i t a s 8~ - O , H we r e t a i n only t e r m s of o r d e r 5½, we can n e g l e c t t h e s e c o n d t e r m on t h e r i g h t - h a n d s i d e of ( l l a ) ,
but i n t h a t c a s e w e m u s t
n e g l e c t t h e t e r m 28¢ in t h e d e n o m i n a t o r in ( 1 4 ) , and w e h a v e o n l y the ( c o r r e c t ) p o l e at e. If we r e tain t e r m s up to o r d e r ~, we m u s t u s e (11c) to write I
((e~ + - ~ + e ;
~+))~~
2¢~
((e; ~+>>,
(1~)
~here we have used (11b). CombinLng ( l l a ) and (15) we g e t
<
> ~
[E-
2¢26 `
¢(1 .- 2 5 ) - - - ~ - - ]
-]
,
or
((~; S+))~ ~ [ E
2 - E e ( 1 - 25) - 2e25] " l , ( ~ 6 )
<<~; ,~+>>
I
E
,
(7")
and then the energies are not displaced by p', but
[_~ -
LETTERS . . . . . .
,,
~
f r o m which, again up to t e r m s of o r d e r 5, we get f o r the e x c i t a t i o n e n e r g y . We get, h o w e v e r , a l s o a s p u r i o u s e x t r a pole at - 26 ¢. We h a v e noticed the o c c u r r e n c e of s p u r i o u s r e s u l t s in s e c o n d - o r d e r p e r t u r b a t i o n t h e o r y a l s o in o t h e r p r o b l e m s , and we hope to d i s c u s s at a l a t e r s t a g e hbe r e s u l t s of s o m e i n v e s t i g a t i o n s of m o r e complicated Hamiltonians. I) V.M. Galltski~ ~nd A. B. Migdal, J. Exptl. Theoret. Phys. (USSR) 34 (1958) 139; translation: Soviet Phys. JETP 7 (1958) 96. 2) D.N. Zubarev° Usp. Fiz. Nauk 71 (1960) 71; translation; Soviet Phys. Uspekhi 3 (1960) 320. 3) V.L. Bonch-Bruevich and S. V. T~-abifKov, "r--heGreen function mothod in statistical mechanics (Ffzmatglz, Moscow, 1961: translation: North-HoPand Publ. Co., Amsterdam, 1962). 4) D.ter Haar, in Fluctuation, relaxation and resonance in magnetic systems (Oliver aad Boyd, Ed~aburgh, 196~, p. 119. M. P~lsterlt, Phy~,. ~cv. Letters 4 (1960) £2.
×
Report "On determining excitation energies from the poles of green functions"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close