Applied Mathematical Modelling 34 (2010) 4089–4105
Contents lists available at ScienceDirect
Applied Mathematical Modelling journal homepage: www.elsevier.com/locate/apm
On error estimates of the penalty method for the viscoelastic flow problem I: Time discretization q Kun Wang a, Yinnian He b,a,*, Xinlong Feng b a b
Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, PR China College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, PR China
a r t i c l e
i n f o
a b s t r a c t
Article history: Received 30 November 2008 Received in revised form 8 April 2010 Accepted 22 April 2010 Available online 29 April 2010
In this paper, we investigate the two-dimensional viscoelastic fluid motion problem arising in the Oldroyd model. By applying the dual method, the Helmholtz decomposition and some other techniques, we deduce the long-time optimal error estimates for its penalty method. Furthermore, the global optimal error bounds in the L2 and H1-norms for the time semi-discrete of the penalty system are derived under the backward Euler implicit scheme, which improves the best estimate available. Ó 2010 Elsevier Inc. All rights reserved.
Keywords: Viscoelastic flow problem Oldroyd model Penalty method Time discretization Global error estimates
1. Introduction The viscoelastic Oldroyd fluid motion problem is governed by the rheological relation (see [1–3])
k0 r þ k1
@r @f ¼ g0 f þ g1 ; @t @t
k1 rðx; 0Þ ¼ g1 fðx; 0Þ:
Here r is the stress tensor, k0, k1, g0, g1 are positive constants and f is the strain tensor with components fij ¼ 12 i; j ¼ 1; . . . ; n, where u = u(x, t) = (u1(x, t), . . . , un(x, t)) is the velocity of the fluid motion and n = 2 or 3. The Cauchy form of the above rheological relation is the following initial-boundary value problem (see [4]):
@u mDu @t
Z
@ui @xj
@u þ @xj ; i
t
bðt sÞDuds þ ðu rÞu þ rp ¼ f ;
div u ¼ 0ðx; tÞ 2 X Rþ ;
ð1Þ
0
uðx; tÞj@ X ¼ 0 t 2 Rþ ;
uðx; 0Þ ¼ u0 ðxÞ x 2 X;
ð2Þ
where
bðtÞ ¼ qedt ;
m¼
g1 k1
;
q¼
g0 k1 k0 g1 2
k1
;
d¼
k0 ; k1
q Supported by the National Natural Science Foundation of China(Nos. 10971166, 10901131), the National Basic Research Program (No. 2005CB321703), the China Scholarship Council (No. 2009628086) and the Natural Science Foundation of Xinjiang Province (No. 2010211B04). * Corresponding author. Address: Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, PR China. Tel./fax: +86 29 82665242. E-mail addresses:
[email protected] (K. Wang),
[email protected] (Y. He),
[email protected] (X. Feng).
0307-904X/$ - see front matter Ó 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.apm.2010.04.008
4090
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
q P 0 is the viscoelastic coefficient, 1/d is the relaxation time, X is an open bounded domain in Rn with smooth boundary oX, p = p(x, t) is the pressure of the fluid, f = f(x, t) is the prescribed external force and u0 = u0(x) is the initial velocity. If
g0k1 = k0g1, the model reduces to Newton’s model of incompressible viscous fluid which is widely known as the Navier– Stokes equations. The system (1) and (2) is based on a structural model for polymeric fluids, suspensions or biological fluids. It was derived under the assumptions that the material can be regarded as a single stationary macroscopic element with small stress and strain rates. For further details of the physical background and its mathematical modeling, the reader is referred to [1–3,5,6]. Eqs. (1) and (2) have been widely investigated. In [7–10], the authors dealt with the existence, uniqueness and continuous dependence of the solution upon the data. Its asymptotic behavior was also analyzed in [11,12]. Moreover, there are lots of works devoted to the numerical approximations of the problem (1) and (2). For the spatial discretization, Akhmatov and Oskolkov [13] considered the difference schemes, Cannon et al. [10] analyzed a modified nonlinear Galerkin method, He et al. [14] and Pani and Yuan [15] investigated the conforming finite element method. For the time discretization, by using the semigroup theory, Pani et al. considered a linearized backward Euler scheme in [16]. Recently, Wang et al. [17] extended the analysis to a fully discrete finite element method. Besides, the linearized viscoelastic Oldroyd flow problem is also considered in [18]. In this article, we consider the problem (1) and (2) in R2 . In the above equations, the velocity u and the pressure p are coupled together by the incompressibility condition ‘‘divu = 0”, which makes the system difficult to solve by using the numerical methods. In order to overcome this difficulty, the penalty method is popular used (see [19–24], and the references therein). The penalty method for the viscoelastic fluid motion problem (1) and (2) is as follows:
@ue mDue @t
Z 0
t
e m
divue þ pe ¼ 0ðx; tÞ 2 X Rþ ;
bðt sÞDue ds þ ðue rÞue þ rpe ¼ f ; ue ðx; tÞj@ X ¼ 0t 2 Rþ :
ue ðx; 0Þ ¼ u0 ðxÞx 2 X;
ð3Þ ð4Þ
The penalty method firstly was introduced by Courant (see [25]). In the 70’s of last century, Temam extended it to the Navier–Stokes equations in [24]. Then, lots of works appeared on this subject (see [20,23], and the references therein). Shen derived the optimal error estimates for its penalty system in [23] as follows:
s1=2 ðtn Þkuðtn Þ ue ðtn ÞkL2 þ sðtn Þkuðtn Þ ue ðtn ÞkH1 6 ce;
ð5Þ
for tn 2 [0, T] with T being a finite time, where s(tn) = min{1, tn}, c is a general positive constant and u(tn), ue(tn) are the solutions of the Navier–Stokes equations and its penalty system, respectively. Recently, this idea is applied to the finite element method by He [20]. For the viscoelastic flow problem, the literatures are relatively limited. In [21,22], Kotsiolis and Oskolkov proved the existence, uniqueness of the solution of the problem (3) and (4) and lime?0(ue(t), pe(t)) = (u(t), p(t)). They also gave the following error estimate in [22] for all tn P 0:
kuðt n Þ ue ðt n ÞkL2 þ
Z
tn
0
kuðtÞ ue ðtÞk2H1 dt
1=2
6c
pffiffiffi
e:
ð6Þ
Compared with the estimate (5) for the unsteady Navier–Stokes equations, (6) is not optimal. Furthermore, when considering the discrete problem for (3) and (4), the estimate (6) is misleading. For example, if the backward Euler scheme (see (107) in Section 5) is applied to (3) and (4), the estimate (6) would lead to n
kuðt n Þ ue kL2 þ Dt
n X
!1=2 kuðt m Þ
2 um e kH 1
6 cðDt þ
pffiffiffi
eÞ
ð7Þ
m¼0
for all tn P 0, where 0 < Dt < 1 is the time step size, tn = nDt and une is a penalty approximation of u at the time tn. (7) suggests the choice e = Dt2, which would result in a very ill-conditioned system when we make further spatial discretization (see [23]). The main focus of this paper is to apply the techniques in [23] to the viscoelastic fluid motion equations and derive the optimal error estimates for the penalty system. Moreover, we extend the analysis to the long time behavior and prove that the error estimates are valid uniform in time. If = m + q/d and f1(x) = limt?1f(x, t) satisfy the following condition:
2Nm1 1 kf1 k1 < 1; where N ¼
sup u;v ;w2X;u;v ;w–0
jbðu;v ;wÞj ; kf1 k1 kukkv kkwk
ð8Þ ¼ sup
v 2X;v –0
jðf1 ;v Þj ;X kv k
¼
ðH10 ð
2
XÞÞ with the norm kuk ¼ krukL2 , and the trilinear form
b(u, v, w) is defined in Section 2, we have the following error estimates for all tn P 0:
s1=2 ðtn Þkuðtn Þ ue ðtn ÞkL2 þ sðtn Þkuðtn Þ ue ðtn ÞkH1 6 ce; s1=2 ðtn Þkuðtn Þ une kL2 þ sðtn Þkuðtn Þ une kH1 6 cðDt þ eÞ
ð9Þ ð10Þ
for sufficiently small e and Dt, which substantially improves the previous results (6) and (7). In particular, if e = 0, our error estimate based on the backward Euler scheme in H1-norm is sðtn Þkuðt n Þ un kH1 6 cDt. However, the best error estimate available, to our knowledge, is (see [16])
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
1 : kuðt n Þ un kH1 6 cDt t n1=2 þ log Dt
4091
ð11Þ
The remainder of the paper is organized as follows. In the next section, we introduce some notations and preliminary results for the viscoelastic flow problem (1) and (2). We provide error estimates for the linearized penalty system in Section 3 and for the nonlinear penalty system in Section 4. In Section 5, we analyze the backward Euler time discretization scheme for the nonlinear penalty system. Finally, conclusions are given in Section 6. 2. Preliminaries Firstly, we introduce the mathematical setting for the problem (1) and (2). Let X be an open bounded domain in R2 with boundary oX 2 C2 and satisfy the additional condition stated in (A1) below. We introduce the following Hilbert spaces:
X ¼ ðH10 ðXÞÞ2 ;
Y ¼ ðL2 ðXÞÞ2 ;
M ¼ L20 ðXÞ ¼
Z q 2 L2 ðXÞ; qdx ¼ 0 X
and the Laplace operator
Au ¼ Du 8u 2 DðAÞ ¼ ðH2 ðXÞÞ2 \ X: We denote by kki the usual norm of the Sobolev space Hi(X) or (Hi(X))2 for i = 1, 2, and by (, ) and jj the inner product and norm on L2(X) or (L2(X))2 (see [26] for more details). The spaces H10 ðXÞ and X are equipped with their usual scalar product and norm
ððu; v ÞÞ ¼ ðru; rv Þ;
kuk ¼ ððu; uÞÞ1=2 :
The frequently used Hilbert spaces V and H are defined by
V ¼ fv 2 X; div
v ¼ 0g;
H ¼ fv 2 Y; div
v ¼ 0; v nj@X ¼ 0g:
Let Ae u ¼ Du 1e rdivu and the Stokes operator be determined by A ¼ PD with DðAÞ ¼ ðH2 ðXÞÞ2 \ V, where P denotes the L2-orthogonal projection of Y onto H. The power of Aa ; Aae and Aa ða 2 RÞ are well defined. It follows that e 1=2 u; A e 1=2 v Þ 8u 2 DðAÞ; v 2 X, where A e ¼ A or Ae, and ðAu; v Þ ¼ ðA1=2 u; A1=2 v Þ 8u 2 DðAÞ; v 2 V. In particular, there e v Þ ¼ ðA ð Au; holds
1 1=2 1=2 1=2 A1=2 e u; Ae v ¼ A u; A v þ ðdiv u; div v Þ 8u;
e
v 2 X:
ð12Þ
As mentioned above, we need the additional assumption on X: (A1) Assume that X is regular in the sense that a unique solution (v, q) 2 (X, M) of the Stokes problem
mDv þ rq ¼ g; div
v ¼ 0 in X; v j@X ¼ 0
for any prescribed g 2 Y exists and satisfies
kv k2 þ kqk1 6 cjgj; where c > 0 is a positive constant depending on X and m. In the following, c is a general positive constant independent of e and Dt, which may stand for different values at different occurrences. It is valid that (see [26,27])
jAv j2 6 kv k22 6 cjAv j2 k1 jv j2 6 kv k2
8v 2 X;
8v 2 ðH2 ðXÞÞ2 \ V; k1 kv k2 6 kv k22 ;
ð13Þ kv k22 6 cjAv j 8v 2 DðAÞ;
where k1 is the minimal eigenvalue of the Laplace operator D. Furthermore, we make the following assumption about the prescribed data for the problem (1) and (2): (A2) The initial velocity u0 2 V and the body force f(x, t) satisfy f(x, t), ft(x, t) 2 L1(R+;Y) with
ku0 k2 þ supðjf ðx; tÞj2 þ jft ðx; tÞj2 Þ 6 c: tP0
We define the continuous bilinear forms a(, ) on X X and d(, ) on X M, respectively, by
aðu; v Þ ¼ mððu; v ÞÞ 8u;
v 2 X;
dðv ; qÞ ¼ ðq; div v Þ 8v 2 X; q 2 M:
ð14Þ
4092
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
With
1 Bðu; v Þ ¼ ðu rÞv þ ðdivuÞv ; 2 the trilinear form b(, , ) on X X X is determined by
1 1 1 bðu; v ; wÞ ¼ ðBðu; v Þ; wÞ ¼ ððu rÞv þ ðdivuÞv ; wÞ ¼ ððu rÞv ; wÞ ððu rÞw; v Þ 8u; v ; w 2 X: 2 2 2 It follows that (see [23,28–30])
bðu; v ; wÞ ¼ bðu; w; v Þ 8 u; v ; w 2 X;
ð15Þ
jbðu; v ; wÞj 6 cðkukkv k1=2 jAv j1=2 jwj þ juj1=2 jAuj1=2 kv kjwjÞ 8 u; v ; w 2 X;
ð16Þ
jbðu; v ; wÞj 6 Nkukkv kkwk 8 u; v ; w 2 X;
ð17Þ
jbðu; v ; wÞj 6 cjuj1=2 kuk1=2 ðkv kjwj1=2 kwk1=2 þ kwkjv j1=2 kv k1=2 Þ 8 u; v ; w 2 X:
ð18Þ
With above notations, the variational formulation of the problem (1) and (2) is defined as follows: Find (u, p) 2 (X, M) for all t P 0, such that for all (v, q) 2 (X, M):
ðut ; v Þ þ aðu; v Þ þ Jðt; u; v Þ þ bðu; u; v Þ dðv ; pÞ þ dðu; qÞ ¼ ðf ; v Þ
ð19Þ
and the variational formulation of the penalty system (3) and (4) reads as: find (ue, pe) 2 (X, M) for all t P 0 such that for all (v, q) 2 (X, M):
e m
ð20Þ
ðuet ; v Þ þ aðue ; v Þ þ Jðt; ue ; v Þ þ bðue ; ue ; v Þ ðrdivue ; v Þ ¼ ðf ; v Þ
ð21Þ
ðuet ; v Þ þ aðue ; v Þ þ Jðt; ue ; v Þ þ bðue ; ue ; v Þ dðv ; pe Þ þ dðue ; qÞ þ ðpe ; qÞ ¼ ðf ; v Þ; or find ue 2 X for all t P 0, such that for all
v 2 X: m e
with u(0) = ue(0) = u0, where
Z t Z t : Jðt; u; v Þ ¼ q edt eds AuðsÞds; v ¼ q edt eds uðsÞds; v 0
0
Before continuing the numerical analysis below, we need to recall the following results (see [14]). Lemma 2.1. Assume that s > 0 and u 2 L1(0, s; X). It is valid that
Z
s
Jðt; u; e
2d0 t
0
Z 2 Z s 2 Z s t 1 2a0 s ds 2a0 t ds uðtÞÞ dt ¼ qe e uðsÞds þ qa0 e e uðsÞds dt: 2 0 0 0
ð22Þ
Moreover, if u, v 2 L1(0, s; D(A)), it is valid that
Z
s
Jðt; u; e
0
2d0 t
Z
2
Z
2 Z s
t
1 2a0 s
s ds
2a0 t
ds
AuðtÞÞ dt ¼ qe e AuðsÞds þ qa0 e e AuðsÞds dt;
2 0 0 0
ð23Þ
where 0 < d0 < 12 minfd; mk1 g; a0 ¼ d d0 . Lemma 2.2. Assume that s > 0 and u 2 L2(0, s; X). It is valid that
Z
a1 0
s
0
2 Z s Z t 2 Z s ds 2 eds uðsÞds e2a0 t e2d0 t kuðtÞk2 dt: þ e uðsÞds dt 6 a0 0
0
ð24Þ
0
Moreover, if u 2 L2(0, s; D(A)), it is valid that
Z
a1 0
s 0
Z
2
2 Z s Z s
t
eds AuðsÞds
þ e2a0 t
eds AuðsÞds dt 6 a2 e2d0 t jAuðtÞj2 dt: 0
0
0 0
ð25Þ
Lemma 2.3. Assume that s > 0, k P 0, sk/2(t)u 2 L1(0, s; X) and ut 2 L2(0, s; Y). It is valid that
Z
2
0
s
Z
m q 2q sk ðtÞJðt; u; e2d0 t ut ðtÞÞ dt
6 sk ðsÞked0 s uðsÞk2 þ 2 a þdþkþ a0 0 8 m
0
s
e2d0 t kuk2 dt:
ð26Þ
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
4093
Moreover, if sk/2(t)u 2 L1(0, s; D(A)), and ut 2 L2(0, s; Y), it is valid that
Z
2
0
s
Z
m q 2q sk ðtÞJðt; u; e2d0 t Aut ðtÞÞ dt
6 sk ðsÞjed0 s AuðsÞj2 þ 2 a þdþkþ a0 0 8 m
s
e2d0 t jAuj2 dt:
ð27Þ
0
Theorem 2.1. Suppose that assumptions (A1)–(A2) are valid. Then the solution (u, p) of the problem (1) and (2) satisfies the following regularities, for all s P 0,
kuðsÞk2 þ e2d0 s
Z
s
e2d0 t ðjAuj2 þ kpk21 þ jut j2 Þ dt 6 c; Z s sðsÞðjAuðsÞj2 þ jut ðsÞj2 þ kpðsÞk21 Þ þ e2d0 s e2d0 t sðtÞkut k2 dt 6 c; 0 Z s 2 2 2 2d0 s 2d0 t 2 s ðsÞkut ðsÞk þ e e s ðtÞðjAut j þ kpt k21 Þ dt 6 c:
ð28Þ
0
ð29Þ ð30Þ
0
Besides, the Gronwall lemmas will be frequently used too. Lemma 2.4. Gronwall lemma [10,19]Let g, h, y be three locally integrable nonnegative functions on the time interval [t0, 1) that for all t P t0, satisfy
yðtÞ þ GðtÞ 6 C þ
Z
t
hðsÞds þ
t0
Z
t
gðsÞyðsÞds;
t0
where G (t) is a nonnegative function on [0, 1), C P 0 is a constant. Then,
Z t Z t yðtÞ þ GðtÞ 6 C þ hðsÞds exp gðsÞds : t0
ð31Þ
t0
Lemma 2.5. discrete Gronwall lemma [30]Let k, C and am, bm, cm, rm, for integers m P 0, be nonnegative numbers such that
an þ k
n X
bm 6 k
m¼0
n X
r m am þ k
m¼0
n X
8n P 0:
cm þ C
m¼0
Suppose that krm < 1 for all m, and set rm = (1 krm)1, then,
an þ k
n X
n X
bm 6
m¼0
!
cm þ C exp k
m¼0
n X
!
rm r m
8n P 0:
ð32Þ
m¼0
Finally, for the operator Aeu associated with the penalty method, we recall the following lemma given in [19,23]. Lemma 2.6. There exists a positive constant c0 > 0 depending only on X and such that if ec0 6 1, we have
jA1=2 uj 6 c0 jA1=2 e uj 8u 2 X;
ð33Þ
jAuj 6 c0 jAe uj 8u 2 DðAÞ:
ð34Þ
3. Error estimates for the linearized problem As an intermediate step, in this section, we will investigate the linearized viscoelastic flow problem:
@u mDu @t
Z
t
bðt sÞDuds þ rp ¼ f ;
div u ¼ 0ðx; tÞ 2 X Rþ ;
ð35Þ
0
uðx; 0Þ ¼ u0 ðxÞ x 2 X;
uðx; tÞj@ X ¼ 0 t 2 Rþ :
ð36Þ
The penalty method of (35) and (36) is as follows:
@ue mDue @t
Z
t 0
bðt sÞDue ds þ rpe ¼ f ;
ue ðx; 0Þ ¼ u0 ðxÞ x 2 X;
e m
div ue þ pe ¼ 0ðx; tÞ 2 X Rþ ;
ue ðx; tÞj@X ¼ 0 t 2 Rþ :
ð37Þ ð38Þ
Similarly, the variational formulation of the problem (35) and (36) is defined as follows: find (u, p) 2 (X, M) for all t P 0, such that for all (v, q) 2 (X, M):
4094
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
ðut ; v Þ þ aðu; v Þ þ Jðt; u; v Þ dðv ; pÞ þ dðu; qÞ ¼ ðf ; v Þ
ð39Þ
and the variational formulation of the penalty system (37) and (38) reads as: find (ue, pe) 2 (X, M) for all t P 0 such that for all (v, q) 2 (X, M):
e m
ðuet ; v Þ þ aðue ; v Þ þ Jðt; ue ; v Þ dðv ; pe Þ þ dðue ; qÞ þ ðpe ; qÞ ¼ ðf ; v Þ;
v 2 X: m ðuet ; v Þ þ aðue ; v Þ þ Jðt; ue ; v Þ ðrdivue ; v Þ ¼ ðf ; v Þ e
ð40Þ
or find ue 2 X for all t P 0, such that for all
ð41Þ
with u(0) = ue(0) = u0. Setting e = u ue, l = p pe, it follows that e(0) = 0. Next, we estimate e and l, which will be used as intermediate results for analyzing the nonlinear problem in Section 4. To get the optimal error estimate for ju uej, we begin with the parabolic duality argument (see [23]). For any s > 0 and g ¼ e2d0 t e 2 L2 ð0; s; L2 ðXÞ2 Þ, we consider the problem: Find (U(t), W(t)) 2 (X, M) such that for 0 < t < s,
ðv ; Ut Þ aðv ; UÞ dðv ; WÞ þ dðU; qÞ Jðt; v ; UÞ ¼ ðv ; e2d0 t eÞ
ð42Þ
for all (v, q) 2 (X, M) with U(s) = 0. Theorem 2.1 implies that u is sufficiently smooth so that (U, W) is correctly defined for all 0 < t 6 s. Thus (42) is a wellposed problem and has a unique solution (U, W), with
U 2 Cð0; s; VÞ \ L2 ðr; s; H2 ðXÞ2 \ VÞ \ H1 ðr; s; L2 ðXÞ2 Þ; W 2 L2 ðr; s; H1 ðXÞ \ MÞ 8r 2 ð0; sÞ: Lemma 3.1. Let (U, W) be the solution of the problem (42) with the body force function g ¼ e2d0 t e ¼ e2d0 t ðu ue Þ, then, for any s P 0, it is valid that
sup e2d0 t kUðtÞk21 þ
Z
06t6s
s
0
e2d0 t ðkUk22 þ jUt j2 þ kWk21 Þ dt 6 c
Proof. Applying P on (42), setting
m
e2d0 t jA1=2 Uj2 P
2
jðe; UÞj 6
m 4
mk1 2
Z
s
e2d0 t jej2 dt:
ð43Þ
0
v ¼ e2d t U and considering that 0
e2d0 t jUj2 P d0 e2d0 t jUj2 ;
e2d0 t jA1=2 Uj2 þ ce2d0 t jej2 ;
we have
d 2d0 t 2 m 2d0 t 1=2 2 e jUj þ e jA Uj þ 2Jðt; e2d0 t U; UÞ 6 ce2d0 t jej2 : dt 2
Integrating the above inequality with respect to the time t from r P 0 to s, using Lemma 2.1, we obtain
sup e2d0 r jUðrÞj2 þ 06r6s
Taking
Z
s
e2d0 t jA1=2 Uj2 dt 6 c
Z
0
s
e2d0 t jej2 dt:
ð44Þ
0
v ¼ AU in (42), we get
d jA1=2 Uj2 þ mjAUj2 þ 2jJðt; AU; UÞj 6 ce4d0 t jej2 : dt
ð45Þ
Multiplying (45) by e2d0 t , integrating with respect to the time from r to s and using Lemma 2.1 and (44), we deduce that
sup e2d0 r jA1=2 UðrÞj2 þ
Z
06r6s
s
e2d0 t jAUj2 dt 6 c
0
Applying P on (42), taking
Z
s
e2d0 t jej2 dt:
0
v ¼ e2d t Ut 0
and making the following estimate
Z t
2
1 jJðt; Ut ; UÞj 6 jUt j2 þ ce2dt
eds AUds
; 4 0
it follows:
e2d0 t jUt j2
Z t
2
d 2d0 t 1=2 2 e mjA Uj 6 ce2d0 t jej2 þ 2d0 me2d0 t jA1=2 Uj2 þ ce2ðdþd0 Þt
eds AUds
: dt 0
ð46Þ
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
4095
Integrating the above inequality from r to s and using Lemma 2.2, (44) and (46), there holds
sup e2d0 r kUðrÞk21 þ
Z
06r6s
s
Z
e2d0 t jUt j2 dt 6 c
0
s
e2d0 t jej2 dt:
ð47Þ
0
On the other hand, (42) can be rewritten as
Ut þ mDU þ edt
Z
t
eds DUds þ rW ¼ e2d0 t e:
ð48Þ
0
Therefore, combining (48) with (46) and (47), and using Lemma 2.2, we have
Z
s
e2d0 t jrWj2 dt 6 c
Z
0
s
e2d0 t jej2 dt:
ð49Þ
0
Combining (49) with (46) and (47), we complete the proof.
h
Lemma 3.2. Under the assumptions of (A1) and (A2), it is valid, for any s P 0, that
jeðsÞj2 þ e2d0 s
Z
s
e2d0 t kek2 dt þ ee2d0 s
0
e2d0 s
Z
s
Z
s
e2d0 t jlj2 dt 6 ce;
ð50Þ
0
e2d0 t jej2 dt 6 ce2 :
ð51Þ
0
Proof. Subtracting (40) from (39), we obtain
e m
e m
ðet ; v Þ þ aðe; v Þ þ Jðt; e; v Þ dðv ; lÞ þ dðe; qÞ þ ðl; qÞ ¼ ðp; qÞ:
ð52Þ
Taking ðv ; qÞ ¼ e2d0 t ðe; lÞ in (52), using Cauchy inequality and noting the fact that
1 mk mkek2 P 1 jej2 P d0 jej2 ; 2 2 we deduce that
1 d 2d0 t 2 m e 2e ðe jej Þ þ e2d0 t kek2 þ Jðt; e; e2d0 t eÞ þ e2d0 t jlj2 6 e2d0 t jpj2 : 2 dt 2 2m m
ð53Þ
Integrating (53) with respect to the time from 0 to s and using Lemma 2.1, we get
e2d0 s jeðsÞj2 þ m
Z
s
e2d0 t kek2 dt þ e
0
Z
s
e2d0 t jlj2 dt 6 ce
0
Z
s
e2d0 t jpj2 dt:
0
Multiplying the above inequality by e2d0 s and applying (28), we arrive at
jeðsÞj2 þ e2d0 s
Z
s
e2d0 t kek2 dt þ ee2d0 s
Z
s
e2d0 t jlj2 dt 6 ce;
ð54Þ
e2d0 t jej2 ¼ ðUt ; eÞ aðe; UÞ dðe; WÞ þ dðU; lÞ Jðt; e; UÞ:
ð55Þ
0
0
which yields (50). Setting (v, q) = (e, l) in (42), it follows that:
Taking (v, q) = (U, W) in (52), then adding it to (55), we obtain
e2d0 t jej2 ¼
d e ðU; eÞ ðW; pe Þ: dt m
ð56Þ
Integrating (56) from 0 to s and using (14), we have
Z 0
s
Z s 1=2 Z s 1=2 e2d0 t jej2 dt 6 ce e2d0 t kWk21 dt e2d0 t jpe j2 dt : 0
0
Applying Lemma 3.1 to the above inequality, then multiplying it by ed0 s , using the triangle inequality, (28) and (50), we deduce that
e2d0 s
Z 0
s
e2d0 t jej2 dt 6 ce2 :
4096
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
Combining the above inequality with (54), we complete the proof. h Theorem 3.1. Suppose (A1) and (A2) are valid, e ? 0 such that ec0 6 1, where c0 is a positive constant. Then, for any s P 0, we have
sðsÞjeðsÞj2 þ e2d0 s
Z
s
e2d0 t sðtÞkek2 dt þ ee2d0 s
0
s2 ðsÞkeðsÞk2 þ e2d0 s
Z
s
e2d0 t sðtÞjlj2 dt 6 ce2 ;
ð57Þ
0
Z
s
e2d0 t s2 ðtÞjlj2 dt 6 ce2 :
ð58Þ
0
Proof. Let us consider the Helmholtz decomposition (see [29])
H10 ¼ V V ? ; where V\ = {(D)1rq:q 2 L2(X)} and u(t) 2 V\, such that divu(t) = p(t) with
v = (D)1rq
iff Du = rq and vjoX = 0. Thus, for p(t) 2 M, there exists a unique
kuðtÞk 6 cjpðtÞj 8t P 0:
ð59Þ
Moreover, if pt(t) 2 M, there holds divut(t) = pt(t) with
kut ðtÞk 6 cjpt ðtÞj 8t P 0: Taking ðv ; qÞ ¼ e
2d0 t
ð60Þ
sðtÞðe; lÞ in (52), we have
1 d 2d0 t e e ðe sðtÞjej2 Þ þ me2d0 t sðtÞkek2 þ e2d0 t sðtÞjlj2 þ Jðt; e; e2d0 t sðtÞeÞ 6 ce2d0 t jej2 þ e2d0 t sðtÞðp; lÞ 2 dt m m
e m
e m
¼ ce2d0 t jej2 þ e2d0 t sðtÞðdiv u; lÞ ¼ ce2d0 t jej2 e2d0 t sðtÞðrl; uÞ:
ð61Þ
Since
rl ¼ mDe þ q
Z
t
edðtsÞ Deds et ;
ð62Þ
0
we arrive at
1 d 2d0 t e ðe sðtÞjej2 Þ þ me2d0 t sðtÞkek2 þ e2d0 t sðtÞjlj2 þ Jðt; e; e2d0 t sðtÞeÞ 2 dt m Z t edðtsÞ eds; Au 6 ce2d0 t jej2 þ ee2d0 t sðtÞðet ; uÞ þ mee2d0 t ððe; uÞÞ þ ee2d0 t sðtÞ q 0
d 2d0 t ¼ ce jej þ e e sðtÞðe; uÞ ee2d0 t sðtÞðe; ut Þ ee2d0 t ðe; uÞ 2d0 esðtÞðe; uÞ þ mee2d0 t sðtÞððe; uÞÞ dt Z t 2d0 t edðtsÞ eds; Au : þ ee sðtÞ q 2d0 t
2
ð63Þ
0
Applying (14), (59) and (60) and Theorem 2.1, we obtain
1 2 1 jej þ ce2 juj2 6 jej2 þ ce2 jpj2 ; 4 4 1 2 1 2 jesðtÞðe; uÞj 6 jej þ ce sðtÞjuj2 6 jej2 þ ce2 sðtÞjpj2 ; 4 4 1 2 1 2 2 2 jesðtÞðe; ut Þj 6 jej þ ce s ðtÞjut j 6 jej2 þ ce2 s2 ðtÞjpt j2 ; 4 4 1 1 2 2 mesðtÞjððe; uÞÞj 6 msðtÞkek þ cme sðtÞkuk2 6 msðtÞkek2 þ ce2 sðtÞjpj2 ; 2 2
Z t
2
Z t
dt d s 2dt d s ee sðtÞ
q e eds; Au
6 ce
e eds
þ e2 sðtÞkA1=2 uk2 0 0
Z t
2
6 ce2dt
eds eds
þ ce2 sðtÞkpk21 : jceðe; uÞj 6
0
Integrating (63) from 0 to s, using the above estimates, Lemmas 2.1, 2.2, 3.2, (28), (30) and multiplying by e2d0 s , we get
sðsÞjeðsÞj2 þ e2d0 s
Z 0
s
e m
e2d0 t sðtÞðkek2 þ jlj2 Þ dt 6 ce2 þ ce2d0 s
Z 0
s
e2d0 t jej2 dt þ ce2 e2d0 s
Z 0
t
e2d0 t s2 ðtÞjpt j2 ds 6 ce2 :
ð64Þ
4097
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
Differentiating the terms dðe; qÞ þ me ðl; qÞ me ðp; qÞ with respect to the time t in (52) and taking ðv ; qÞ ¼ e2d0 t s2 ðtÞðet ; lÞ, we have
e2d0 t s2 ðtÞjet j2 þ
1 d 2d0 t 2 e e s ðtÞðmkek2 þ jlj2 Þ þ Jðt; e; e2d0 t s2 ðtÞet Þ 2 dt m
e m
e m
6 ce2d0 t sðtÞkek2 þ ce2d0 t sðtÞ jlj2 þ e2d0 t s2 ðtÞðpt ; lÞ:
ð65Þ
Considering (14) and (62), it is valid that
Z
e 2 e e e s ðtÞðpt ; lÞ ¼ s2 ðtÞðdivut ; lÞ ¼ s2 ðtÞðut ; rlÞ ¼ s2 ðtÞ ðet ; ut Þ þ ððe; ut ÞÞ þ q m m m m
0
t
edðtsÞ eds; Aut
2
Z t
1 6 s2 ðtÞjet j2 þ s2 ðtÞkek2 þ ce2 s2 ðtÞkut k2 þ ce2 s2 ðtÞkA1=2 ut k2 þ ce2dt
eds eds
2 0
Z t
2
1 6 s2 ðtÞjet j2 þ s2 ðtÞkek2 þ ce2 s2 ðtÞkpt k21 þ ce2dt
eds eds
: 2 0 Integrating (65) from 0 to s and using the above inequality and Lemmas 2.2, 2.3, 3.2, (30) and (64), we get
e s2 ðsÞkeðsÞk2 þ s2 ðsÞjlðsÞj2 þ e2d0 s m
Z
s
e2d0 t s2 ðtÞjet j2 dt 6 ce2 ;
ð66Þ
0
by a final multiplication of e2d0 s . Finally, due to (62), there holds
jlj2 6 ckrlk21 6 c
mkDek21 þ ket k21 þ kq
Z 0
t
edðtsÞ Dedsk21
Z t 6 c kek2 þ jet j2 þ qe2dt k eds edsk2 :
ð67Þ
0
Therefore, using Lemmas 2.2, 3.2, (64) and (66), we have
e2d0 s
Z
s
e2d0 t s2 ðtÞjlj2 dt 6 ce2 :
0
Combining (64), (66) with the above inequality, we complete the proof.
h
4. Error estimates for the nonlinear problem The focus of this section is to deduce the global optimal error estimates for the penalty system of the nonlinear viscoelastic flow problem. Preceding to give the error estimate, we firstly derive some regularity results. Lemma 4.1. Under the assumptions of Theorem 2.1, if there holds
1 kue ðsÞk2 þ jdiv ue ðsÞj2 þ e2d0 s
e
Z
s
e2d0 t ð
0
sðsÞjuet ðsÞj2 þ e2d0 s
Z
s
e2d0 t sðtÞ
0
1
e
1
2Nkf1k1 < 1, then for any s P 0, we have
kdiv ue k2 þ jAue j2 Þ dt 6 c;
e2
jdiv uet j2 þ kuet k2 dt 6 c;
ð69Þ
lim sup kue ðsÞk 6 1 kf1 k1 ;
ð70Þ
s!1
1
s2 ðsÞðkuet ðsÞk2 þ jdiv uet ðsÞj2 Þ þ e2d0 s e
ð68Þ
Z
s
e2d0 t s2 ðtÞðjAuet j2 þ
0
sðsÞjAue ðsÞj2 þ s2 ðsÞjA1=2 uett ðsÞj2 þ e2d0 s
Z
s
1
e2
kdivuet k2 Þ dt 6 c;
e2d0 t ðsðtÞjA1=2 uett j2 þ s2 ðtÞjuett j2 Þ dt 6 c:
ð71Þ
ð72Þ
0
Proof. (68) and (69) have been given in [21]. Next, we derive the remained bounds. Taking
v ¼ e2d t ue in (21) and using (12), we get 0
1 d 2d0 t ðe jue j2 Þ þ me2d0 t kue k2 þ Jðt; ue ; e2d0 t ue Þ 6 e2d0 t ðf ; ue Þ þ d0 e2d0 t jue j2 : 2 dt
ð73Þ
4098
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
Integrating (73) for the time from 0 to s and multiplying by e2d0 s , we derive
Z s Z s jue ðsÞj2 þ 2me2d0 s e2d0 t kue k2 dt þ 2e2d0 s Jðt; ue ; e2d0 t ue Þ dt 0 0 Z s Z s e2d0 t jue j2 dt þ 2e2d0 s e2d0 t ðf ; ue Þ dt þ e2d0 s ju0 j2 : 6 2d0 e2d0 s 0
ð74Þ
0
Letting s ? 1 in (74), using the L’Hospital rule and considering
lim sup 2e2d0 s
Z
s!1
s
Jðt; ue ; e2d0 t ue Þ dt ¼
0
q
lim sup kue ðsÞk2 ;
dd0
s!1
it follows that:
mþ
q d
lim sup kue ðsÞk2 ¼ lim supðf ðsÞ; ue ðsÞÞ 6 kf1 k1 lim sup kue ðsÞk;
s!1
s!1
s!1
which implies (70). Rewrite (21) as
ðuet ; v Þ þ mðAe ue ; v Þ þ Jðt; ue ; v Þ þ bðue ; ue ; v Þ ¼ ðf ; v Þ:
ð75Þ
Differentiating (75) with respect to the time t, we have
ðuett ; v Þ þ mðAe uet ; v Þ þ qðAue ; v Þ þ bðuet ; ue ; v Þ þ bðue ; uet ; v Þ ¼ dJðt; ue ; v Þ þ ðft ; v Þ: Taking
ð76Þ
v = Aeuet in (76), we obtain
1 d 1 ðkuet k2 þ jdivuet j2 Þ þ mjAe uet j2 þ qðAue ; Ae uet Þ ¼ dJðt; ue ; Ae uet Þ bðuet ; ue ; Ae uet Þ bðue ; uet ; Ae uet Þ þ ðft ; Ae uet Þ: 2 dt e ð77Þ Using (16) and Lemma 2.6, there hold
jbðue ; uet ; Ae uet Þj 6 kue kkuet k1=2 jAuet j1=2 jAe uet j 6 kue kkuet k1=2 jAe uet j3=2 6
m
m 8
jAe uet j2 þ ckue k4 kuet k2 ;
jAe uet j2 þ ckue k4 kuet k2 ;
Z t
2
m jdJðt; ue ; Ae uet Þj 6 jAe uet j2 þ ce2dt
eds Aue ds
; 8 0
jbðuet ; ue ; Ae uet Þj 6
jðft ; Ae uet Þj 6
m
16
jqðAue ; Ae uet Þj 6
8
jAe uet j2 þ cjft j2 ;
m 16
jAe uet j2 þ cjAue j2 :
Taking these estimates into (77) and multiplying it by e2d0 t s2 ðtÞ, we get
Z t
2
d 2d0 t 2 1 1 e s ðtÞðkuet k2 þ jdiv uet j2 Þ þ me2d0 t s2 ðtÞjAe uet j2 6 ce2d0 t sðtÞðkuet k2 þ jdiv uet j2 Þ þ ce2a0 t
eds Aue ds
dt e e 0 þ ce2d0 t sðtÞjft j2 þ ce2d0 t jAue j2 þ ce2d0 t sðtÞkue k4 kuet k2 :
ð78Þ
Integrating (78) for the time from 0 to s, using Lemma 2.2, (68) and (69) and noting the fact that (see [19,21])
cðjAuet j2 þ
1
e2
kdivuet k2 Þ 6 jAe uet j2 ;
which is valid in a domain X 2 R2 with boundary oX 2 C2, we derive that
1
Z
s2 ðsÞ kuet ðsÞk2 þ jdivuet ðsÞj2 þ e2d0 s e
s
0
1 e2d0 t s2 ðtÞ jAuet j2 þ 2 kdivuet k2 dt 6 c
ð79Þ
e
by a final multiplication of e2d0 s , which yields (71). Since (75) implies
mAe ue ¼ uet qedt
Z
t
eds Aue ds Bðue ; ue Þ þ f ;
0
applying (15) and the H ölder inequality, it follows
sðtÞm2 jAe ue ðtÞj2 6 sðtÞjuet ðtÞj2 þ ce2a0 t
Z 0
t
e2a0 s ds e2d0 t
Z 0
t
e2d0 s jAue j2 ds þ csðtÞkue ðtÞk2 þ
m2 2
sðtÞjAue ðtÞj2 þ sðtÞjf ðtÞj2 :
4099
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
Combining the above inequality with (68)–(70), we arrive at
sðtÞjAue ðtÞj2 6 c: Taking
v ¼e
ð80Þ
s ðtÞuett in (76), we get
2d0 t 2
1 d 2d0 t 2 2 2d0 t 2 ðe s ðtÞmjA1=2 s ðtÞuett Þ þ bðue ; uet ; e2d0 t s2 ðtÞuett Þ e uet j Þ þ bðuet ; ue ; e 2 dt 2 2d0 t 2 s ðtÞðft ; uett Þ qe2d0 t ðAue ; s2 ðtÞuett Þ þ de2d0 t Jðt; u; s2 ðtÞuett Þ: 6 ce2d0 t sðtÞjA1=2 e uet j þ e
e2d0 t s2 ðtÞjuett j2 þ
ð81Þ
It is valid that
jbðue ; uet ; s2 ðtÞuett Þj 6 cs2 ðtÞjAue jkuet kjuett j 1 6 s2 ðtÞjuett j2 þ cs2 ðtÞjAue j2 kuet k2 ; 8 1 jbðuet ; ue ; s2 ðtÞuett Þj 6 s2 ðtÞjuett j2 þ cs2 ðtÞjAue j2 kuet k2 ; 8 1 2 2 js ðtÞðft ; uett Þj 6 s ðtÞjuett j2 þ cs2 ðtÞjft j2 ; 16 1 2 jqðAue ; s2 ðtÞuett Þj 6 s ðtÞjuett j2 þ cs2 ðtÞjAue j2 ; 16
Z t
2
1 jJðt; u; s2 ðtÞuett Þj 6 s2 ðtÞjuett j2 þ ce2dt
eds Aue ds
: 8 0 Combining these estimates with (81) and using (71), we obtain
e2d0 t s2 ðtÞjuett j2 þ
Z t
2
1 d 2d0 t 2 2 1=2 2 2 2d0 t 2d0 t 2 2d0 t 2a0 t
ds
u j Þ 6 ce s ðtÞjA u j þ ce s ðtÞjf j þ ce jAu j þ e e Au d s ðe s ðtÞmjA1=2 et et t e e : e e
2 dt 0 ð82Þ 2d0 s
Integrating (82) from 0 to s, multiplying by e
e2d0 s
Z
s
and using (12), Theorem 2.1 and (68) and (69), we derive that
e2d0 t s2 ðtÞjuett j2 dt 6 c:
ð83Þ
0
Moreover, thanks to (76), there holds
uett ¼ mAe uet qAue Bðuet ; ue Þ Bðue ; uet Þ þ qdedt
Z
t
eds Aue ds þ ft :
0
Applying (16), (68) and (69) and Lemma 2.2 to the above inequality, we have
s2 ðsÞjA1=2 uett ðsÞj2 þ e2d0 s
Z
s
e2d0 t sðtÞjA1=2 uett j2 dt 6 c;
0
which and (80), (83) yield (72). We complete the proof. h Next, we consider the following intermediate linear equations:
gt mDg q
Z
t
edðtsÞ Dgds þ rw ¼ f Bðu; uÞ;
ð84Þ
0
e m
div g þ w ¼ 0 gð0Þ ¼ u0 ;
ð85Þ
where u is the solution of the viscoelastic fluid motion problem (1) and (2). Setting n = g u, / = w p, and subtracting (1) from (84), we get
nt mDn q
e m
Z 0
t
edðtsÞ Dnds þ r/ ¼ 0;
ð86Þ
e m
ð87Þ
div n þ / ¼ p;
nð0Þ ¼ 0:
Lemma 4.2. Under the assumptions of Theorem 2.1, it is valid for any s P 0 that
e2d0 s
Z 0
s
e2d0 t jnj2 dt þ sðsÞjnðsÞj2 þ s2 ðsÞknðsÞk2 þ e2d0 s
Z
s
e2d0 t s2 ðtÞj/j2 dt 6 ce2 :
ð88Þ
0
Proof. From Section 3, we note that the assumption (A2) for a linear problem can be replaced by the weaker condition f(x, t), s(t)ft(x, t) 2 L2(R+, Y) (or see Lemma 4.1 in [23]). Considering Theorem 2.1 and (16), we have
4100
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
e2d0 s
Z
s
e2d0 t jf Bðu; uÞj2 dt 6 c þ e2d0 s
0
Z
s
e2d0 t jAuj2 kuk2 dt 6 c
0
and
e2d0 s
Z
s
e2d0 t s2 ðtÞj
0
@ ðf Bðu; uÞÞj2 dt 6 c þ 2e2d0 s @t
Z
s
e2d0 t s2 ðtÞkut k2 jAuj2 dt 6 c:
0
Thus, Lemma 4.2 follows from Lemma 3.2 and Theorem 3.1. We complete the proof.
h
Letting w = ue g, r = pe w. Subtracting (84) from (3), we have that
wt mDw q
Z
t
edðtsÞ Dwds þ Bðue ; n þ wÞ þ Bðn þ w; uÞ þ rr ¼ 0;
ð89Þ
0
e m
div w þ r ¼ 0;
wð0Þ ¼ 0:
ð90Þ
The variational formulation of (89) reads as: Find (w, r) 2 X M for all t P 0, such that
e m
ðwt ; v Þ þ aðw; v Þ þ Jðt; w; v Þ þ bðue ; n þ w; v Þ þ bðn þ w; u; v Þ dðv ; rÞ þ dðw; qÞ þ ðr; qÞ ¼ 0:
ð91Þ
Theorem 4.1. Suppose (A1) and (A2) are valid, e ? 0 such that ec0 6 1, where c0 is a positive constant. If there holds 2Nkf1k1 < 1, then, for any s P 0, we have
sðsÞjuðsÞ ue ðsÞj2 þ s2 ðsÞkuðsÞ ue ðsÞk2 þ e2d0 s
Z 0
s
e2d0 t s2 ðtÞjp pe j2 dt 6 ce2 :
ð92Þ
Remark 4.1. Under the assumptions of Theorem 4.1, by applying the similar precess as that used in [22,28], the solution ue can be expanded with respect to the penalty parameter e. Proof. Taking ðv ; qÞ ¼ e2d0 t ðw; rÞ in (91), we have
1 d 2d0 t 2 e e jwj þ me2d0 t kwk2 þ e2d0 t bðue ; n þ w; wÞ þ e2d0 t bðn þ w; u; wÞ þ Jðt; w; e2d0 t wÞ þ jrj2 ¼ d0 e2d0 t jwj2 : 2 dt m
ð93Þ
Thanks to (17), it is valid that
jbðn; u; wÞj þ jbðue ; n; wÞj 6 Nðkuk þ kue kÞknkkwk; jbðw; ue ; wÞj 6 Nkue kkwk2 : Combining these estimates with (93) and using Theorem 2.1, we obtain
d 2d0 t 2 e jwj þ 2ðm Nkue kÞe2d0 t kwk2 þ 2Jðt; w; e2d0 t wÞ 6 2d0 e2d0 t jwj2 þ ce2d0 t ð1 þ kue kÞknkkwk: dt
ð94Þ
Integrating the above inequality from 0 to s, multiplying by e2d0 s and using Lemma 4.2, we arrive at
Z
jwðsÞj2 þ e2d0 s 6 2d0 e2d0 s
Z
s
2e2d0 t ðm Nkue kÞkwk2 dt þ 2e2d0 s
0 s
Z
s
Jðt; w; e2d0 t wÞ dt
0
1=2 Z s e2d0 t jwj2 dt þ ce e2d0 s e2d0 t ð1 þ kue k2 Þkwk2 dt :
0
ð95Þ
0
Letting s ? 1 in (95), using the L’Hospital rule and Theorem 2.1, Lemma 4.1, we get
ð N 1 kf1 k1 Þ lim sup kwðsÞk2 6 ce lim sup kwðsÞk: s!1
Because of
2
s!1
Nkf1k1 < 1, there holds
lim sup jwðsÞj2 6 c lim sup kwðsÞk2 6 ce2 :
s!1
ð96Þ
s!1
On the other hand, multiplying (93) by s(t), applying (16) and Lemma 2.6, we obtain
m sðtÞjbðue ; n þ w; wÞj ¼ sðtÞjbðue ; w; n þ wÞj 6 sðtÞjAue jkwkje þ wj 6 sðtÞkwk2 þ csðtÞjAue j2 ðjnj2 þ jwj2 Þ; 4
m
sðtÞjbðn þ w; u; wÞj 6 sðtÞkwk2 þ csðtÞjAuj2 ðjnj2 þ jwj2 Þ: 4
4101
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
Integrating (93) for time from 0 to s, using Theorem 2.1, Lemmas 2.1, 2.4, 4.1, 4.2 and the above inequalities, we have
sðsÞe2d0 s jwðsÞj2 þ
Z
s
e m
e2d0 t sðtÞðkwk2 þ jrj2 Þ dt 6 ce2d0 s e2 þ
0
Z
s
e2d0 t jwj2 dt:
ð97Þ
0
When s 2 (0, T] with T being a finite time, applying Lemma 2.4 to (98) and multiplying by e2d0 s , it is valid that
sðsÞjwðsÞj2 þ e2d0 s
Z
s
e m
e2d0 t sðtÞðkwk2 þ jrj2 Þdt 6 ce2 :
0
ð98Þ
When s ? 1, considering (96) and (97), inequality (98) holds too. Differentiating dðw; qÞ þ me ðr; qÞ in (91) and taking ðv ; qÞ ¼ e2d0 t s2 ðtÞðwt ; rÞ, we obtain
e2d0 t s2 ðtÞjwt j2 þ
1 d 2d0 t 2 e e e s ðtÞðmkwk2 þ jrj2 Þ 6 ce2d0 t sðtÞðkwk2 þ jrj2 Þ e2d0 t s2 ðtÞbðue ; w þ n; wt Þ 2 dt m m e2d0 t s2 ðtÞbðn þ w; u; wt Þ Jðt; w; e2d0 t s2 ðtÞwt Þ:
ð99Þ
Due to (16), it is valid
js2 ðtÞbðue ; w þ n; wt Þj 6 s2 ðtÞjAue jkw þ nkjwt j 1 6 s2 ðtÞjwt j2 þ cs2 ðtÞjAue j2 ðkwk2 þ knk2 Þ; 4 1 2 js ðtÞbðw þ n; u; wt Þj 6 s2 ðtÞjwt j2 þ cs2 ðtÞjAuj2 ðkwk2 þ knk2 Þ: 4 Integrating (99) for the time from 0 to s, using Theorem 2.1 and Lemmas 2.3, 4.1, 4.2 and (98), we obtain that
s2 ðsÞkwðsÞk2 þ e2d0 s
Z
s
e2d0 t s2 ðtÞjwt j2 dt 6 ce2 ;
ð100Þ
0
by a final multiplication by e2d0 s . From (89), there holds
rr ¼ wt þ mDw þ q
Z
t
edðtsÞ Dwds Bðue ; n þ wÞ Bðw þ n; uÞ:
ð101Þ
0
Considering (17), we have
kBðue ; n þ wÞk1 6 ckue kkw þ nk 6 ckue kðkwk þ knkÞ; kBðw þ n; uÞk1 6 ckukkw þ nk 6 ckukðkwk þ knkÞ: Therefore, using (98), (100) and the above equations, we derive
e2d0 s
Z
s
e2d0 t s2 ðtÞjrj2 dt 6 e2d0 s
Z
0
s
0
e2d0 t s2 ðtÞkrrk21 dt 6 ce2 :
Combining (98), (100), (102) with Lemma 4.2 and using the triangle inequality, we complete the proof.
ð102Þ h
5. Time discretization of the penalty method In this section, we will analyze the backward Euler time discretization scheme for the nonlinear penalty system. Let 0 < Dt < 1 denote the time step size and tn = nDt. For the smooth function / defined on [0, 1), set /n = /(tn). For the integral term, we apply the right rectangle rule as (see [16,31])
Mn ð/Þ ¼ Dt
n X
bnj /j
Z
tn
bðt n tÞ/ðtÞdt;
0
j¼1
where bnj = b(tn tj). Let dn be the quadrature error associated with the quadrature rule. For / 2 C1[0, tn], it is defined by
dn ð/Þ :¼
Z
tn
bðt n tÞ/ðtÞ dt M n ð/Þ:
ð103Þ
0
It is valid that
sðtnþ1 Þ 6 sðtn Þ þ Dt; Dt 6 sðtn Þ; t tn 6 sðtÞ 8t 2 ½tn ; tnþ1 and
/ðt nþ1 Þ
1 Dt
Z
t nþ1
tn
/ðtÞdt ¼
1 Dt
Z
tnþ1
tn
ðt t n Þ/t ðtÞdt;
ð104Þ
4102
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
In the case of 0 < tj < 1, s(tj) = tj = jDt. Therefore, using Lemma 4.1, Taylor formula and (104), we get
2
X nþ1 Z tj 2 @ dt 1=2
nþ1 1=2
2
dt nþ1 e A ue dt
A ue ¼ q
e ðt t j1 Þ
d
j¼1 tj1 @t
X nþ1 Z t j 2
1=2 1=2 dðt nþ1 tÞ 6 c
e ðt t j1 Þ dA ue þ A uet dt
j¼1 tj1
Z Z
2
2 nþ1 nþ1 tj tj X X e2a0 ðtnþ1 tÞ
6 c Dt 2 e2d0 t ðsðtj1 Þ þ DtÞ A1=2 ue þ A1=2 uet dt dt e2d0 tnþ1 sðtj Þ t j1 tj1 j¼1 j¼1
nþ1 2a0 t j nþ1 Z t j
2
2 X X e
6 cDt 2 e2a0 tnþ1 e2d0 t sðtÞ A1=2 ue þ A1=2 uet dt e2d0 tnþ1 j t j1 j¼1 j¼1 ! nþ1 nþ1 X X 1 2 2a0 t nþ1 2a0 tj 2 2a0 t nþ1 2a0 t nþ1 2a0 tj 6 c Dt 2 ; 6 c Dt e 6 c Dt e þ 2a0 Dte ðlnðn þ 1Þ þ rÞ þ cDte e j j¼1 j¼1 ð105Þ where r is the Euler constant. Similarly, for jdn + 1(Aue)j, we have nþ1 a0 t j 2 nþ1 Z t j X X
nþ1
e
d ðAue Þ 2 6 cDt2 e2a0 tnþ1 e2d0 tnþ1 e2d0 t s2 ðtÞ jAue j2 þ jAuet j2 dt j tj1 j¼1 j¼1 ! nþ1 X 1 6 cDt2 e2a0 tnþ1 þ a20 Dt2 e2a0 tj 6 cDt 2 : 2 j j¼1
ð106Þ
While in the case of tj P 1, s(tj) = 1, (105) and (106) hold, too. The backward Euler time discretization scheme of (21) is as follows:
nþ1 nþ1 m ue une nþ1 nþ1 ðAue Þ; v þ b unþ1 rdiv unþ1 ; v Þ; ; v þ a unþ1 e ;v þ M e ; ue ; v e ; v ¼ ðf Dt e
ð107Þ
with u0e ¼ u0 and fn+1 = f(tn+1). Lemma 5.1. Under the assumptions of Theorem 2.1, if
2Nm1 1 kf1 k1 < 1;
ð108Þ
then, for any n > 0, it is valid that
sðtn Þjen j2 þ Dte2d0 tn s2 ðtn Þken k2 þ Dte
n X
2
m
2 e2d0 tm sðt m Þ A1=2 e e 6 cDt ;
m¼1 n X 2d0 t n 2d0 t m
e
ð109Þ
s2 ðtm ÞjAe em j2 6 cDt2 ;
ð110Þ
m¼1
where en ¼ ue ðtn Þ une with e0 = 0. Proof. Subtracting (107) from (21) at t = tn+1, we obtain
nþ1 e en nþ1 ; v þ b enþ1 ; ue ; v ¼ Rnþ1 ; v þ m Ae enþ1 ; v þ dnþ1 ðAue Þ; v þ b unþ1 e ;e e ;v ; Dt
ð111Þ
where
Rnþ1 ¼ uet ðtnþ1 Þ e Taking
1 1 ðue ðtnþ1 Þ ue ðt n ÞÞ ¼ Dt Dt
Z
tnþ1
ðt tn Þuett dt:
ð112Þ
tn
v = 2Dts(tn+1)en+1 in (111), we derive that
2
nþ1
sðtnþ1 Þ jenþ1 j2 jen j2 þ jenþ1 en j2 þ 2Dtsðtnþ1 Þm
A1=2
þ 2Dt sðt nþ1 Þðdnþ1 ðAue Þ; enþ1 Þ e e
nþ1 þ 2Dt sðt nþ1 Þb enþ1 ; ue ; enþ1 ¼ 2Dt sðt nþ1 Þ Rnþ1 e ;e
ð113Þ
4103
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
or
2
nþ1
sðtnþ1 Þjenþ1 j2 sðtn Þjen j2 Dtjen j2 þ 2Dtsðtnþ1 Þm
A1=2
þ 2Dtsðtnþ1 Þ dnþ1 ðAue Þ; enþ1 e e
þ 2Dtsðtnþ1 Þb enþ1 ; ue ; enþ1 nþ1 : 6 2Dt sðt nþ1 Þ Rnþ1 e ;e
ð114Þ
Using (18), (105), Lemma 2.6 and Lemma 4.1, it follows that
2Dt sðt nþ1 Þ dnþ1 ðAue Þ; enþ1 ¼ 2Dtsðtnþ1 Þ dnþ1 ðA1=2 ue Þ; A1=2 enþ1
2 2 m Dt
1=2 nþ1
6 sðtnþ1 Þ
A1=2
þ cDt sðt nþ1 Þ dnþ1 A ue
e e 4
2 m Dt nþ1
6 sðtnþ1 Þ
A1=2
þ c Dt 3 ; e e 4
1=2 nþ1 1=2 nþ1
1=2 nþ1 1=2 nþ1 nþ1
Re ; A e Re jA e j 2Dt sðt nþ1 Þ Rnþ1
¼ 2Dt sðt nþ1 Þ A
6 2Dt sðt nþ1 ÞjA e ;e
Z tnþ1
2
mDt csðtnþ1 Þ
nþ1 2 6 sðtnþ1 Þ
A1=2 j þ ðt tn Þ A1=2 uett
e e 2 Dt tn Z tnþ1 Z
2
2 mDt sðtnþ1 Þ tnþ1 nþ1
6 sðtnþ1 Þ
A1=2 e þ c ðt t Þdt sðtn Þ
A1=2 uett
dt
n e 2 sðtn Þ tn tn Z tnþ1
mDt
1=2 nþ1 2
1=2 2 2 sðtnþ1 Þ Ae e þ cDt sðtÞ A uett dt 6 2 tn and
2Dt sðt nþ1 Þ bðenþ1 ; ue ; enþ1 Þ 6 cDtsðtnþ1 Þ jenþ1 jkenþ1 kkue k þ jenþ1 j1=2 kenþ1 k3=2 kue k
2 mDt 2 nþ1
6 sðtnþ1 Þ
A1=2
þ cDtjenþ1 j : e e 4
ð115Þ
ð116Þ
For m 6 M with M being a finite number, taking the above estimate into (114), summing it from 0 to m and using Lemma 4.1, we have
sðtmþ1 Þjemþ1 j2 þ Dt
m X n¼0
2
nþ1
sðtnþ1 Þ
A1=2
6 c Dt 2 þ c Dt e e
m X
jenþ1 j2 :
n¼0
Applying Lemma 2.5 to the above inequality, we have
sðtmþ1 Þjemþ1 j2 6 cDt2 8m 2 ð0; M:
ð117Þ
Furthermore, when n ? 1, there holds s(tn+1) = 1. We estimate the trilinear term in (113) as
nþ1
b e ; ue ; enþ1 6 Nkue kkenþ1 k2 6 N1 kf1 k kenþ1 k2 ; 1
ð118Þ
by using (70). Taking (118) into (113) and considering (72), it follows that
jenþ1 j2 jen j2 þ jenþ1 en j2 þ
Thanks to (108), it follows c: = m 2N
jenþ1 j2 6
m 2N1 kf1 k1 Dtkenþ1 k2 6 cDt3 :
ð119Þ
1
kf1k1 > 0. Using the Poincare inequality, we deduce
n X 1 c Dt 3 1 1 je0 j2 þ cDt 3 jen j2 þ 6 nþ1 mþ1 1 þ k1 cDt 1 þ k1 cDt ð1 þ k1 cDtÞ ð1 þ k 1 cDtÞ m¼0
6 c Dt 3
1 ð1 þ k1 cDtÞðnþ1Þ 6 c Dt 2 k1 cDt
8n 2 ðM; 1Þ;
ð120Þ
which and (117) imply
sðtmþ1 Þjemþ1 j2 6 cDt2 8m > 0: 2d0 t nþ1
Multiplying (114) by e
ð121Þ 2d0 Dt
and noting the fact that c P e
P 1 þ 2d0 Dt, we get
2
nþ1
e2d0 tnþ1 sðt nþ1 Þjenþ1 j2 e2d0 tn sðtn Þjen j2 þ 2Dte2d0 tnþ1 sðt nþ1 Þm A1=2
þ 2Dte2d0 tnþ1 sðtnþ1 Þðdnþ1 ðAue Þ; enþ1 Þ e e nþ1 : þ 2Dte2d0 tnþ1 sðt nþ1 Þb enþ1 ; ue ; enþ1 6 cDte2d0 tn jen j2 þ 2Dte2d0 tnþ1 sðt nþ1 Þ Rnþ1 e ;e
ð122Þ
4104
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
Taking the summation of (122) from 0 to m, using (121), Lemma 4.1 and multiplying by e2d0 tmþ1 , we derive that
Dte2d0 tmþ1
m X n¼0
2 m m X X
nþ1
e2d0 tnþ1 sðtnþ1 Þ A1=2 e2d0 tnþ1 jenþ1 j2 þ cDt3 e2d0 tmþ1 e2d0 tnþ1
6 cDte2d0 tmþ1 e e n¼0
þ cDt 2 e2d0 tmþ1
Z
n¼0
t mþ1
0
2
e2d0 t sðtÞ A1=2 uett dt 6 cDt 2 :
ð123Þ
Combining (121) with (123), we obtain (109). Thus, using Lemma 4.1, (109) and the triangle inequality, it is valid that
2
6 sðt nþ1 Þkenþ1 k2 þ kue ðtnþ1 Þk2 6 cDt þ c 6 2c: sðtnþ1 Þ unþ1 e Taking
ð124Þ
v ¼ 2Dte2d t s2 ðtnþ1 ÞAe enþ1 in (111), we obtain 0 nþ1
2
2
2
1=2 2 1=2 nþ1
e2d0 tnþ1 s2 ðt nþ1 Þ A1=2
Ae en þ Ae ðenþ1 en Þ þ 2Dte2d0 tnþ1 s2 ðt nþ1 Þm Ae enþ1
e e nþ1 þ 2Dte2d0 tnþ1 s2 ðtnþ1 Þ dnþ1 ðAue Þ; Ae enþ1 þ 2Dte2d0 tnþ1 s2 ðt nþ1 Þb unþ1 ; Ae enþ1 e ;e nþ1 þ 2Dte2d0 tnþ1 s2 ðtnþ1 Þb enþ1 ; ue ; Ae enþ1 ¼ 2Dte2d0 tnþ1 s2 ðt nþ1 Þ Rnþ1 : e ; Ae e
ð125Þ
Considering (16), (106), (115), (124), Lemma 2.6 and Lemma 4.1, we have
2Dts2 ðt nþ1 Þ dnþ1 ðAue Þ; Ae enþ1 6 mDt s2 ðt nþ1 Þ Ae enþ1 2 þ cDt3 ;
2Dte2d0 tnþ1 s2 ðt nþ1 Þ Rnþ1 ; Ae enþ1
e 4 Z tnþ1
2 mDt 2d0 tnþ1 2 6 e s ðtnþ1 Þ Ae enþ1 þ cDt2 e2d0 t s2 ðtÞjuett j2 dt; 2 tn nþ1 1=2 nþ1 1=2 nþ1
nþ1 ke k jAe j Ae e
Dts2 ðt nþ1 Þ b unþ1 ; Ae enþ1 þ b enþ1 ; ue ; Ae enþ1 6 cDts2 ðt nþ1 Þ kue k þ unþ1 e ;e e
2
2 mDt 2 nþ1
s ðtnþ1 Þ Ae enþ1 þ cDtsðtnþ1 Þ
A1=2 6
: e e 4 Taking the summation of (125) for n from 0 to m, using the above inequalities and the relation that
2
2
1=2 2
1=2 2
1=2
1=2 2 nþ1
s2 ðtnþ1 Þ
A1=2
s2 ðtn Þ Ae en 2Dt Ae en 6 s2 ðt nþ1 Þ Ae enþ1 Ae en
e e
and making the similar analysis as in (123), we get, after a final multiplication by e2d0 tmþ1 , that
2
mþ1
s2 ðtmþ1 Þ
A1=2
þ Dte2d0 tmþ1 e e
m X n¼0
m
2 X
2
nþ1
e2d0 tnþ1 s2 ðt nþ1 Þ Ae enþ1 6 cDt 2 þ cDte2d0 tmþ1 e2d0 tnþ1 sðtnþ1 Þ A1=2
: e e
ð126Þ
n¼0
Thanks to (12) and (109), we complete the proof. h Theorem 5.1. Suppose that assumptions (A1)-(A2) are valid, e ? 0 such that ec0 6 1, where c0 is a positive constant. (u(tn),p(tn)) and ðune ; pne Þ are the solutions of the problem (1) and (2) and the system (107), respectively. If there holds 2Nm11kf1k1 < 1, then, for any tn P 0, we have
sðtn Þ uðtn Þ une 2 þ s2 ðtn Þ uðtn Þ une 2 6 cðDt2 þ e2 Þ; Dte2d0 tn
n X
2
6 cðDt2 þ e2 Þ: e2d0 tm s2 ðt m Þ pðt m Þ pm e
ð127Þ ð128Þ
m¼1
Proof. (127) follows from Theorem 4.1 and Lemma 5.1. To estimate (128), taking
v ¼ e2d t s2 ðtnþ1 Þðenþ1 en Þ in (111), we have 0 nþ1
2
nþ1
2
e en
1=2 nþ1 2 1=2 n 2 1=2 nþ1 2d0 t nþ1 2 n
Dte2d0 tnþ1 s2 ðt nþ1 Þ
þ e s ðt Þ m A e A e þ A ðe e Þ
nþ1 e e e Dt
nþ1 ¼ e2d0 tnþ1 s2 ðtnþ1 Þ Rnþ1 en Þ e2d0 tnþ1 s2 ðtnþ1 Þ dnþ1 ðAue Þ; ðenþ1 en Þ e ; ðe nþ1 nþ1 e2d0 tnþ1 s2 ðtnþ1 Þb unþ1 ;e en e2d0 tnþ1 s2 ðt nþ1 Þb enþ1 ; ue ; enþ1 en : e ;e
ð129Þ
By applying a similar approach as that used in Lemma 5.1, and using (109) and (110), we see that
Dte2d0 tmþ1
nþ1
2
e en
e2d0 tnþ1 s2 ðt nþ1 Þ
6 c Dt 2 : Dt
n¼0
m X
ð130Þ
K. Wang et al. / Applied Mathematical Modelling 34 (2010) 4089–4105
4105
Then using (111), Lemma 5.1 and Theorem 4.1, we can prove
Dte2d0 tmþ1
m X
2
6 cðDt2 þ e2 Þ: e2d0 tnþ1 s2 ðt nþ1 Þ pðtnþ1 Þ pnþ1 e
ð131Þ
n¼0
6. Conclusions In this paper, we deduced the optimal error estimates for the penalty system and its time semi-discrete scheme of the two-dimensional viscoelastic fluid motion problem under some assumptions of the data (u0, f) and the parameters e and Dt. It suggests proper choices of e to solve numerically. All of these results are uniform in time. Obviously, we can easily extend the present analysis to a fully discrete scheme by combining it with the finite element approximation results in [14]. Acknowledgments The authors thank the editor and reviewers for their criticism, valuable comments, and suggestions which helped to improve the results of this paper. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21]
[22] [23] [24] [25] [26] [27] [28] [29] [30] [31]
R. Bird, R. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Fluid Mechanics, vol. 1, John Wiley & Sons, New York, 1987. D. Joseph, Fluid Dynamics of Viscoelastic Liquids, Springer-Verlag, New York, 1990. J. Oldroyd, On the formulation of the rheological equations of state, Proc. Roy. Soc. Lond. Math. Phys. Sci. 200 (1950) 523–541. A. Oskolkov, Initial boundary value problems for the equations of motion of Kelvin–Voigt fluids and Oldroyd fluids, Proc. Steklov Inst. Math. 2 (1989) 137–182. V. Ortov, P. Sobolevskii, On mathematical models of a viscoelastic with a memory, Differ. Inte. Equat. 4 (1991) 103–115. P. Sobolevskii, Stabilization of viscoelastic fluid motion (Oldroyd’s mathematical model), Differ. Inte. Equat. 7 (1994) 1579–1621. G. Araújo, S. Menezes, A. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids, J. Differ. Equat. 2009 (2009) 1–16. Y. Agranovich, P. Sobolevskii, Investigation of viscoelastic fluid mathematical model, RAC. Ukranian SSR. Ser. A 10 (1989) 71–74. Y. Agranovich, P. Sobolevskii, Motion of non-linear viscoelastic fluid, Nonlinear Anal. 32 (1998) 755–760. J. Cannon, R. Ewing, Y. He, Y. Lin, A modified nonlinear Galerkin method for the viscoelastic fluid motion equations, Int. J. Eng. Sci. 37 (1999) 1643– 1662. Y.N. He, Y.P. Lin, S.P. Shen, R. Tait, Convergence to steady state of the viscoelastic fluid motion, Adv. Differ. Equat. 7 (2002) 717–742. P. Sobolevskii, Asymptotic of stable viscoelastic fluid motion (Oldroyd’s mathematical model), Math. Nachr. 177 (1996) 281–305. M. Akhmatov, A. Oskolkov, On convergence difference schemes for the equations of motion of an Oldroyd fluid, J. Soviet. Math. 47 (1989) 2926–2933. Y.N. He, Y.P. Lin, S.P. Shen, W.W. Sun, R. Tait, Finite element approximation for the viscoelastic fluid motion problem, J. Comput. Appl. Math. 155 (2003) 201–222. A. Pani, J. Yuan, Semidiscrete finite element Galerkin approximation to the equations of motion arising in the Oldroyd model, IMA J. Numer. Anal. 25 (2005) 750–782. A. Pani, J.Y. Yuan, P. Damazio, On a linearized backward Euler method for the equations of motion of Oldroyd fluids of order one, SIAM J. Numer. Anal. 44 (2006) 804–825. K. Wang, Y.N. He, Y.Q. Shang, Fully discrete finite element method for the viscoelastic fluid motion equations, Discrete Contin. Dyn. Syst. -Ser. B 13 (2010) 665–684. Y.N. He, Y. Li, Asymptotic behavior of linearized viscoelastic flow problem, Discrete Contin. Dyn. Syst. -Ser. B 10 (2008) 843–856. B. Brefort, J. Ghidaglia, R. Temam, Attractors for the penalized Navier–Stokes equations, SIAM J. Math. Anal. 19 (1988) 1–21. Y.N. He, Optimal error estimate of the penalty finite element method for the time-dependent Navier–Stokes equations, Math. Comp. 74 (2005) 1201– 1216. A. Katsiolis, A. Oskolkov, Initial boundary-value problems for equations of slightly compressible Jeffreys–Oldroyd fluids, Zap. Nauchn. Semin. POMI 208 (1993) 200–218; A. Katsiolis, A. Oskolkov, Initial boundary-value problems for equations of slightly compressible Jeffreys–Oldroyd fluids, J. Math. Sci. 81 (1996) 2578– 2588. A. Oskolkov, The penalty method for equations of viscoelastic media, Zap. Nauchn. Semin. POMI 224 (1995) 267–278; A. Oskolkov, The penalty method for equations of viscoelastic media, J. Math. Sci. 88 (1998) 283–291. J. Shen, On error estimates of the penalty method for unsteady Navier–Stokes equations, SIAM J. Numer. Anal. 32 (1995) 386–403. R. Temam, Une méthode d’approximation des solutions deséquations de Navier–Stokes, Bull. Soc. 98 (1968) 115–152. France. R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull. Am. Math. Soc. 49 (1943) 1–23. R. Adams, Sobolev Spaces, Academic Press, New York, 1975. J. Heywood, R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982) 275–311. R. Temam, Navier–Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, 1984. V. Giraut, P. Raviart, Finite Element Approximation of the Navier–Stokes Equations, Springer-Verlag, Berlin, 1979. J. Heywood, R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem part IV: error analysis for second-order time discretization, SIAM J. Numer. Anal. 27 (1990) 353–384. W. Allegretto, Y.P. Lin, A.H. Zhou, Long-time stability of finite element approximations for parabolic equations with memory, Numer. Methods Part. Differ. Equat. 15 (1999) 333–354.