On generalization of different type inequalities for harmonically quasi-convex functions via fractional integrals

On generalization of different type inequalities for harmonically quasi-convex functions via fractional integrals

Applied Mathematics and Computation 275 (2016) 287–298 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

309KB Sizes 3 Downloads 27 Views

Applied Mathematics and Computation 275 (2016) 287–298

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

On generalization of different type inequalities for harmonically quasi-convex functions via fractional integrals ˙ Imdat I˙ scan ¸ Department of Mathematics, Faculty of Sciences and Arts, Giresun University, Giresun, Turkey

a r t i c l e

i n f o

a b s t r a c t

MSC: 26A33 26A51 26D15

In this paper, a new general identity for fractional integrals have been defined. By using of this identity, new estimates on generalization of Hadamard, Ostrowski and Simpson like type inequalities for harmonically quasi-convex functions via the Riemann–Liouville fractional integral have been obtained.

Keywords: Hermite–Hadamard inequality Riemann–Liouville fractional integral Ostrowski inequality Simpson inequalityHarmonically quasi-convex function

© 2015 Elsevier Inc. All rights reserved.

1. Introduction In this section we will present definitions and some results used in this paper. A function f : I ⊆ R → R is said to be a convex function if

f (tx + (1 − t )y ) ≤ t f (x ) + (1 − t ) f (y ) holds for all x, y ∈ I and t ∈ [0, 1]. The notion of quasi-convex functions generalizes the notion of convex functions. More precisely, a function f : [a, b]→ R is said quasi-convex on [a, b] if

f (α x + (1 − α )y ) ≤ sup { f (x ), f (y )}, for any x, y ∈ [a, b] and α ∈ [0, 1]. Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex (see [3]). Following inequalities are well known in the literature as Hermite–Hadamard’s inequality, Ostrowski’s inequality and Simpson’s inequality, respectively. Theorem 1. Let f : I ⊆ R → R be a convex function defined on the interval I of real numbers and a, b ∈ I with a < b. The following double inequality holds

 f

a+b 2

 ≤

1 b−a

b a

f (x )dx ≤

f (a ) + f (b ) . 2

E-mail address: [email protected], [email protected] http://dx.doi.org/10.1016/j.amc.2015.11.074 0096-3003/© 2015 Elsevier Inc. All rights reserved.

(1.1)

I.˙ I˙ scan ¸ / Applied Mathematics and Computation 275 (2016) 287–298

288

Theorem 2. Let f : I ⊆ R → R be a mapping differentiable in I°, the interior of I, and let a, b ∈ I° with a < b. If |f (x)| ≤ M for all x ∈ [a, b], then the following inequality holds

    b   1 M (x − a )2 + (b − x )2    f (x ) − b − a f (t )dt  ≤ b − a 2   a

for all x ∈ [a, b]. Theorem 3. Let f : [a, b]→ R be a four times continuously differentiable mapping on (a, b) and  f (4 ) ∞ = supx ∈ (a, b)| f (4 ) (x )| < ∞. Then the following inequality holds:

     b    1 1  a+b  1 f (a ) + f (b )   f ( 4 )  ( b − a )4 . + 2f − f (x )dx ≤ 3 ∞ 2 2 b−a   2880 a

In [4], Iscan defined harmonically convex functions and gave some Hermite–Hadamard type inequalities for this class of functions. Definition 1. Let I ⊂ R\{0} be a real interval. A function f : I → R is said to be harmonically convex, if



f

xy tx + (1 − t )y



≤ t f (y ) + (1 − t ) f (x )

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (2.1) is reversed, then f is said to be harmonically concave. In [16], Zhang et al. defined the harmonically quasi-convex function and supplied several properties of this kind of functions. Definition 2. A function f: I⊆(0, ∞) → [0, ∞) is said to be harmonically quasi-convex, if



f

xy tx + (1 − t )y



≤ sup { f (x ), f (y )}

for all x, y ∈ I and t ∈ [0, 1]. We would like to point out that any harmonically convex function on I ⊆ (0, ∞ ) is a harmonically quasi-convex function, but not conversely. For example, the function



f (x ) =

1, x ∈ (0, 1]; (x − 2 )2 ,x ∈ [1, 4].

is harmonically quasi-convex on (0, 4], but it is not harmonically convex on (0, 4]. For some results concerning harmonically convex and harmonically quasi-convex functions we refer the reader to papers [4,6–8,10–13,16] and references therein. Let us recall the following special functions: (1) The beta function:

β (x, y ) =

(x )(y ) = (x + y )



1 0

t x−1 (1 − t )y−1 dt, x, y > 0,

(2) The hypergeometric function: 2 F1

(a, b; c; z ) =

1 β (b, c − b)



1 0

t b−1 (1 − t )c−b−1 (1 − zt )−a dt, c > b > 0, |z| < 1

(see [9]). We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used throughout this paper. Definition 3. Let f ∈ L[a, b]. The Riemann–Liouville integrals Jaα+ f and Jbα− f of order α > 0 with a ≥ 0 are defined by α f (x ) = Ja+

1

(α )

x a

(x − t )α−1 f (t )dt, x > a

I.˙ I˙ scan ¸ / Applied Mathematics and Computation 275 (2016) 287–298

289

and

α f (x ) = Jb−

b

1

(α )

(t − x )α−1 f (t )dt, x < b

x

respectively, where  (α ) is the gamma function defined by (α ) =

∞ 0

e−t t α −1 dt and Ja0+ f (x ) = Jb0− f (x ) = f (x ).

In the case of α = 1, the fractional integral reduces to the classical integral. In recent years, many authors have studied errors estimations for Hermite–Hadamard’s, Ostrowski’s and Simpson’s inequalities; for new results and generalizations see [1,2,5–8,14,15]. In this paper, new identity for fractional integrals have been defined. By using of this identity, we obtained a generalization of Hadamard’s, Ostrowski’s and Simpson’s type inequalities for harmonically quasi-convex functions via the Riemann–Liouville fractional integral.

2. Main results Let f : I ⊆ (0, ∞ ) → R be a differentiable function on I°, the interior of I, throughout this section we will take

   α 

 b − x α 

x−a α x−a α b−x S f (x, λ, α , a, b) = (1 − λ ) + f (x ) + λ f (a ) + f (b ) ax bx ax bx

α  α −(α + 1 ) J1/x+ ( f ◦ g)(1/a ) + J1/x− ( f ◦ g)(1/b) where a, b ∈ I with a < b, x ∈ [a, b] , λ ∈ [0, 1], g(u ) = 1/u, α > 0 and  is Euler’s gamma function. In order to prove our main results we need the following identity. Lemma 1. Let f : I ⊆ (0, ∞ ) → R be a differentiable function on I° and a, b ∈ I with a < b. If f ∈ L[a, b] then for all x ∈ [a, b] , λ ∈ [0, 1] and α > 0 we have:

S f (x, λ, α , a, b) =

(x − a )α+1 (ax )α−1

1 0





α +1 1

tα − λ  ax (b − x ) f dt − At (a, x ) (bx )α−1 At2 (a, x )

0

tα − λ  f At2 (b, x )





bx dt, At (b, x )

where At (u, x ) = tu + (1 − t )x. Proof. By integration by parts and twice changing the variable, for x = a, we can state that

ax(x − a )

 0

1





tα − λ  ax f dt 2 A ( At (a, x ) t a, x )

ax

(t α − λ )df At (a, x ) 0 ax 1  1 ax

 = (t α − λ ) f αt α−1 f dt  − At (a, x ) 0 At (a, x ) 0 ax α 1/a 1

α−1 1 −u = (1 − λ ) f (x ) + λ f (a ) − α f ( )du 

=

1

x−a

= (1 − λ ) f (x ) + λ f (a ) −

ax α x−a

a

u

1/x

α (α + 1 )J1/x+ ( f ◦ g)(1/a )

(2.2)

I.˙ I˙ scan ¸ / Applied Mathematics and Computation 275 (2016) 287–298

290

and similarly for x = b we get

bx(x − b)  =

0

1



1 0

tα − λ  f At2 (a, x )



(t α − λ )df







bx dt At (b, x )

bx At (b, x )



1  1    bx α −1 f  − α t dt  At (b, x ) 0 0 α  1/x 

1 α −1 1 bx = (1 − λ ) f (x ) + λ f (b ) − α u− f ( )du

= (t α − λ ) f

bx At (b, x )

 = (1 − λ ) f (x ) + λ f (b ) −

b−x

bx b−x



1/b

b

u

α (α + 1 )J1/x− ( f ◦ g)(1/b)

(2.3)

b−x α α Multiplying both sides of (2.2) and (2.3) by ( x−a ax ) and ( bx ) , respectively, and adding the resulting identities we obtain the desired result. For x = a and for x = b, the identities

S f (a, λ, α , a, b) = −

S f (b, λ, α , a, b) =

(b − a )α+1 (ba )α−1

(b − a )α+1 (ab)α−1

1 0

1 0

tα − λ  f At2 (b, a )

tα − λ  f At2 (a, b)







ab dt, At (b, a )



ab dt At (a, b)

can be proved respectively easily by performing an integration by parts in the integrals from the right-hand side and changing the variable.  Theorem 4. Let f: I ⊆ (0, ∞ ) → R be a differentiable function on I° such that f ∈ L[a, b], where a, b ∈ I° with a < b. If |f |q is harmonically quasi-convex on [a, b] for some fixed q ≥ 1, then for x ∈ [a, b], λ ∈ [0, 1] and α > 0 the following inequality holds



α +1       1/q 1/q a S f (x, λ, α , a, b) ≤ C 1−1/q (α , λ ) × (x − a )  f  (x )q ,  f  (a )q sup C , λ , q, α 1 2 x (ax )α−1 x2    

q  q 1/q 1/q  x (b − x )α+1 + sup  f  (x ) ,  f  (b) C3 α , λ, q, , α −1 2 b (bx ) b where

2αλ1+ α + 1 − λ, α+1 1

C1 (α , λ ) =







a 1 a a α , λ, q, = − λ.2 F1 2q; 1; 2, 1 − .2 F1 2q; α + 1; α + 2, 1 − x α+1 x x 



 a 1 a 1 .2 F1 2q; α + 1; α + 2, λ1/α 1 − +2λ1+ α . 2 F1 2q; 1; 2, λ1/α 1 − − , x α+1 x

C2







x 1 x x α , λ, q, .2 F1 2q; 1; α + 2, 1 − = − λ.2 F1 2q; 1; 2, 1 − b α+1 b b 



 x 1 x 1 .2 F1 2q; 1; α + 2, λ1/α 1 − +2λ1+ α . 2 F1 2q; 1; 2, λ1/α 1 − − . b α+1 b

C3

(2.4)

I.˙ I˙ scan ¸ / Applied Mathematics and Computation 275 (2016) 287–298

291

Proof. Since |f |q is harmonically quasi-convex on [a, b], from Lemma 1, property of the modulus and using the power-mean inequality we have

   1 

 α +1 1 α    ax bx |t − λ|   (b − x )α+1 |t α − λ|    dt S f (x, λ, α , a, b) ≤ (x − a ) f  f A (a, x ) dt + 2 α −1 2   A ( b, x ) (ax )α−1 ( bx ) At (a, x ) At (b, x ) t t ≤

(x − a )α+1 (ax )α−1



0

1

1− 1q  |t α − λ|dt

0

(b − x )α+1 + (bx )α−1



1 0

1

1− 1q  |t α − λ|dt

0



q ax |t α − λ|    f  dt  At (a, x ) At2q (a, x )

1 0

 1q

0

  q  1q  bx |t α − λ|    dt f 2q   A ( b, x ) t At (b, x )

⎧ ⎨

 1 1/q   q   q 1/q  |t α − λ| (x − a )α+1      ≤ sup f (x ) , f (a ) dt (α , λ ) ⎩ (ax )α−1 At2q (a, x ) 0  1 1/q ⎫ ⎬   α +1  α 1/q      |t − λ| (b − x )  f  (x )q ,  f  (b)q + sup dt (bx )α−1 ⎭ At2q (b, x ) C11−1/q

(2.5)

0

where by simple computation we obtain

C1 (α , λ ) =

1

|t α − λ|dt

0

2αλ1+ α + 1 − λ, α+1 1

=

1 0

 1



a a |t α − λ| .2 F1 2q; α + 1; α + 2, 1 − dt = x−2q − λ.2 F1 2q; 1; 2, 1 − 2q α+1 x x At (a, x ) 



 a 1 a 1 .2 F1 2q; α + 1; α + 2, λ1/α 1 − +2λ1+ α . 2 F1 2q; 1; 2, λ1/α 1 − − , x α+1 x

(2.6)

(2.7)

and

1 0

 1



x x |t α − λ| .2 F1 2q; 1; α + 2, 1 − dt = b−2q − λ.2 F1 2q; 1; 2, 1 − 2q α+1 b b At (b, x ) 



 x 1 x 1 .2 F1 2q; 1; α + 2, λ1/α 1 − +2λ1+ α . 2 F1 2q; 1; 2, λ1/α 1 − − , b α+1 b

Hence, if we use (2.6)–(2.8) in (2.5 ), we obtain the desired result. This completes the proof.  Corollary 1. Under the assumptions of Theorem 4 with q = 1, the inequality (2.4) reduced to the following inequality



α +1          f (x ),  f (a ) C2 α , λ, 1, a S f (x, λ, α , a, b) ≤ (x − a ) sup x (ax )α−1 x2 

α +1   1/q  x (b − x ) + sup  f  (x ),  f  (b) C3 α , λ, 1, , b (bx )α−1 b2

(2.8)

I.˙ I˙ scan ¸ / Applied Mathematics and Computation 275 (2016) 287–298

292

Corollary 2. Under the assumptions of Theorem 4 with α = 1, the inequality (2.4) reduced to the following inequality



     b     ab b ( x − a ) f ( a ) + a ( b − x ) f ( b ) f u ( )  S f (x, λ, α , a, b) = (1 − λ ) f (x ) + λ − du  x (b − a ) b−a u2   a   2 1− 1q  

   1/q 1/q a ab 2λ − 2λ + 1 ( x − a )2  f  (x )q ,  f  (a )q ≤ sup C 1, λ , q, 2 b−a 2 x x2   

2 q  q 1/q 1/q  x (b − x ) + sup  f  (x ) ,  f  (b) C3 1, λ, q, , 2

ab b−a

b

b

specially for x = H = 2ab/(a + b), we get

     1− 1q b   ab f (a ) + f (b ) f (u )  b − a 2λ2 − 2λ + 1  − du ≤  (1 − λ ) f (H ) + λ  2 b−a 2 u2   4ab a





× a2C21/q 1, λ, q,

a+b 2b

 sup

 

     1     1  f  (H )q ,  f  (a )q q + H 2C 1/q 1, λ, q, 2a  f  (H )q ,  f  (b)q q (2.9) sup . 3 a+b

Corollary 3. In Theorem 4, (1) If we take x = H = 2ab/(a + b), λ =

1 3,

then we get the following Simpson type inequality for fractional integrals

   α 1

α  α −1 α  [ f (a ) + 4 f (H ) + f (b)] − ab 2 (α + 1 ) J1/H+ ( f ◦ g)(1/a ) + J1/H− ( f ◦ g)(1/b)  6 b−a 1  

q  q 1/q 1/q 1 a b − a 1−1/q α, C1 ≤ a2 sup  f  (H ) ,  f  (a ) C2 α , , q, 4ab 3 3 H    

q  q 1/q 1/q H 1 +H 2 sup  f  (H ) ,  f  (a ) C3 α , , q, , 3

b

specially for α = 1, we get

  b   1 ab f (u )  b − a 5 1− q 1 du ≤  6 [ f ( a ) + 4 f ( H ) + f ( b )] − b − a  u2   4ab 18 a    1

     1 q  q  1q  a+b 2a 1 × a2C21/q 1, , q, sup  f  (H ),  f  (a ) q + H 2C31/q 1, , q, sup  f  (H ) ,  f  (b) . 3

2b

3

a+b

(2) If we take x = H = 2ab/(a + b), λ = 0, then we get the following midpoint type inequality for fractional integrals

   α 

 α −1 (α + 1 J α α   f (H ) − ab 2 f ◦ g 1/a ) + J f ◦ g 1/b ) ) ( )( ( )( 1/H+ 1/H−   b−a   1 1− 1q   q  q  1q b−a a+b ≤ a2C21/q α , 0, q, sup  f  (H ) ,  f  (a ) 4ab α + 1 2b 

    q   q  1q 2a 2 1/q     +H C3 α , 0, q, sup f (H ) , f (b) , a+b

I.˙ I˙ scan ¸ / Applied Mathematics and Computation 275 (2016) 287–298

293

specially for α = 1, we get

    b   1      1 ab a+b f (u )  b − a 1 1− q 2 1/q   f  (H )q ,  f  (a )q q du ≤ a C 1, 0, q, sup  f (H ) − b − a  2 2b u2   4ab 2 a  1

   q  q q  2a +H 2C 1/q 1, 0, q, sup  f  (H ) ,  f  (b) . a+b

3

(3) If we take x = H = 2ab/(a + b), λ = 1, then we get the following trapezoid type inequality for fractional integrals

   α  f (a ) + f (b )

α  ab α −1 α  − 2 (α + 1 ) J1/H+ ( f ◦ g)(1/a ) + J1/H− ( f ◦ g)(1/b)   2 b−a   α 1− 1q  q  q  1q b−a a+b ≤ a2C21/q α , 1, q, sup  f  (H ) ,  f  (a ) 4ab α + 1 2b 

   q  1q  2a q  +H 2C 1/q α , 1, q, sup  f  (H ) ,  f  (b) , a+b

3

specially for α = 1, we get

    b   1      1 ab a+b f (u )  b − a 1 1− q 2 1/q  f (a ) + f (b )  f  (H )q ,  f  (a )q q − du ≤ a C 1, 1, q, sup   2 2 b−a 2b u2   4ab 2 a  1

   q  q q  2a +H 2C31/q 1, 1, q, sup  f  (H ) ,  f  (b) . a+b

Corollary 4. Let the assumptions of Theorem 4 hold. If |f (x)| ≤ M for all x ∈ [a, b] and λ = 0, then we get the following Ostrowski type inequality for fractional from the inequality (2.4) integrals

   α   α  x − a α

 b−x ab α −1 (α + 1 J α α   + f ( x ) − 2 f ◦ g 1/a ) + J f ◦ g 1/b ) ) ( )( ( )( 1/H+ 1/H−   ax bx b−a  



M a x (x − a )α+1 1/q (b − x )α+1 1/q ≤ C2 α , 0, q, + C3 α , 0, q, . 1 α −1 2 α −1 2 x b (bx ) b (α + 1 )1− q (ax ) x

Theorem 5. Let f: I ⊆ (0, ∞ ) → R be a differentiable function on I° such that f ∈ L[a, b], where a, b ∈ I° with a < b. If |f |q is harmonically quasi-convex on [a, b] for some fixed q ≥ 1, then for x ∈ [a, b], λ ∈ [0, 1] and α > 0 the following inequality holds



 α +1    q  q 1/q S f (x, λ, α , a, b) ≤ C2 α , λ, 1, a (x − a ) sup  f  (x ) ,  f  (a ) α −1 2 x (ax ) x

 α +1     1/q x (b − x ) q  f  (x ) ,  f  (b)q +C3 α , λ, 1, sup b (bx )α −1 b2

(2.10)

where C2 and C3 are defined as in Theorem 4. Proof. Since |f |q is harmonically quasi-convex on [a, b], from Lemma 1,using property of the modulus and the power-mean inequality we have

 1 1− 1q  1  1q  

 α q   (x − a )α+1  |t α − λ| ax |t − λ|    S f (x, λ, α , a, b) ≤ dt  f A (a, x )  dt (ax )α−1 At2 (a, x ) At2 (a, x ) t +

(b − x )α+1 (bx )α−1

≤ C2





α , λ, 1,

0

1 0

|t α − λ| dt At2 (b, x )



1− 1q 

0



a (x − a )α +1 sup x (ax )α −1 x2

which completes the proof. 

0

  q  1q 1 α   bx |t − λ|    dt f 2  At (b, x )  At (b, x )



 α +1     1/q    1/q x (b − x )  f  (x )q ,  f  (a )q  f  (x )q ,  f  (b)q + C3 α , λ, 1, sup b (bx )α −1 b2

I.˙ I˙ scan ¸ / Applied Mathematics and Computation 275 (2016) 287–298

294

Corollary 5. Under the assumptions of Theorem 5 with q = 1, the inequality (2.10) reduced to the following inequality



α +1       S f (x, λ, α , a, b) ≤ C2 α , λ, 1, a (x − a ) sup  f  (x ),  f  (a ) x (ax )α −1 x2

α +1     x (b − x ) +C3 α , λ, 1, sup  f  (x ),  f  (b) α −1 2 b (bx ) b

Corollary 6. Under the assumptions of Theorem 5 with α = 1, the inequality (2.10) reduced to the following inequality



     b     ab b ( x − a ) f ( a ) + a ( b − x ) f ( b ) f u ( )  S f (x, λ, α , a, b) = (1 − λ ) f (x ) + λ − du 2 x (b − a ) b−a u   a    

q  q 1/q a ab ( x − a )2 ≤ sup  f  (x ) ,  f  (a ) C2 1, λ, 1, 2 b−a x x   

2 1/q q  q  x (b − x ) + sup  f  (x ) ,  f  (b) C3 1, λ, 1, , 2

ab b−a

b

b

specially for x = H = 2ab/(a + b), we get

    b   ab f (a ) + f (b ) f (u )  b − a  1 − λ f H + λ − du ( ) ( )   ≤ 4ab 2 b−a u2   a    q  q  1q a+b sup  f  (H ) ,  f  (a ) × a2C2 1, λ, 1, 2b 

 q  q  1q 2a + H 2C3 1, λ, 1, sup  f  (H ) ,  f  (b) . a+b

(2.11)

Corollary 7. In Theorem 5, (1) If we take x = H = 2ab/(a + b), λ =

1 3,

then we get the following Simpson type inequality for fractional integrals

   α 1

α  α −1 α  [ f (a ) + 4 f (H ) + f (b)] − ab 2 (α + 1 ) J1/H+ ( f ◦ g)(1/a ) + J1/H− ( f ◦ g)(1/b)  6 b−a  

q  q 1/q 1 a b−a 2 ≤ a sup  f  (H ) ,  f  (a ) C2 α , , 1, 4ab

3



 q   q 1/q 1 x 2      +H sup f (H ) , f (b) C3 α , , 1, ,

x



3

b

specially for α = 1, we get

    b    q  q  1q ab a+b 1 f (u )  b − a 1 2 × a C2 1, , 1, du ≤ sup  f  (H ) ,  f  (a )  6 [ f ( a ) + 4 f ( H ) + f ( b )] − b − a 2 3 2b u   4ab a  1

  q  q  1q 2a +H 2C3 1, , 1, sup  f  (H ) ,  f  (b) . 3

a+b

(2) If we take x = H = 2ab/(a + b), λ = 0, then we get the following midpoint type inequality for fractional integrals

   α 

 α −1 (α + 1 J α α   f (H ) − ab 2 f ◦ g 1/a ) + J f ◦ g 1/b ) ) ( )( ( )( 1/H+ 1/H−   b−a   1  q  q  q b−a 2 a+b ≤ a C2 α , 0, 1, sup  f  (H ) ,  f  (a ) 4ab 2b 

  q  q  1q 2a +H 2C3 α , 0, 1, sup  f  (H ) ,  f  (b) , a+b

specially for α = 1, we get

    b   1      1 ab a+b f (u )  b − a 1 1− q 2 1/q   f  (H )q ,  f  (a )q q du ≤ a C 1, 0, q, sup  f (H ) − b − a  2 2b u2   4ab 2 a

I.˙ I˙ scan ¸ / Applied Mathematics and Computation 275 (2016) 287–298



+H 2C31/q 1, 0, q,

2a a+b

 sup

     f  (H )q ,  f  (b)q

 1  q

295

.

(3) If we take x = H = 2ab/(a + b), λ = 1, then we get the following trapezoid type inequality for fractional integrals

   α  f (a ) + f (b )

α  ab α −1 α  − 2 (α + 1 ) J1/H+ ( f ◦ g)(1/a ) + J1/H− ( f ◦ g)(1/b)   2 b−a    q  q  1q b−a 2 a+b ≤ a C2 α , 1, 1, sup  f  (H ) ,  f  (a ) 4ab 2b 

  q  q  1q 2a +H 2C3 α , 1, 1, sup  f  (H ) ,  f  (b) , a+b

specially for α = 1, we get

    b        1 ab a+b f (u )  b − a 2 1/q  f (a ) + f (b )  f  (H )q ,  f  (a )q q − du ≤ a C 1, 1, 1, sup   2 2 b−a 2b u2   4ab a  1

   q  q q  2a +H 2C 1/q 1, 1, 1, sup  f  (H ) ,  f  (b) . a+b

3

Corollary 8. Let the assumptions of Theorem 5 hold. If |f (x)| ≤ M for all x ∈ [a, b] and λ = 0, then we get the following Ostrowski type inequality for fractional from the inequality (2.10) integrals

   α   α  x − a α

 b−x ab α −1 (α + 1 J α α   + f ( x ) − 2 f ◦ g 1/a ) + J f ◦ g 1/b ) ) ( )( ( )( 1/H+ 1/H−   ax bx b−a  



a x (x − a )α+1 (b − x )α+1 ≤M C2 α , 0, 1, + C3 α , 0, 1, . α −1 2 α −1 2 x b (ax ) x (bx ) b Theorem 6. Let f: I ⊆ (0, ∞ ) → R be a differentiable function on I° such that f ∈ L[a, b], where a, b ∈ I° with a < b. If |f |q is harmonically quasi-convex on [a, b] for some fixed q > 1, then for x ∈ [a, b], λ ∈ [0, 1] and α > 0 the following inequality holds



 α +1       1/q S f (x, λ, α , a, b) ≤ C 1/q (α , λ ) C 1/p α , λ, p, a (x − a )  f  (x )q ,  f  (a )q sup 1 2 x (ax )α −1 x2 

  α +1   q   q 1/q x (b − x )  f (x ) ,  f (b) +C31/p α , λ, p, sup b (bx )α −1 b2

(2.12)

where C1 , C2 and C3 are defined as in Theorem 4. Proof. Since |f |q is harmonically quasi-convex on [a, b], from Lemma 1, using property of the modulus and the Hölder inequality we have

 1  1p  1  1q  

q   (x − a )α+1  |t α − λ| ax   S f (x, λ, α , a, b) ≤ dt |t α − λ| f   dt At (a, x ) (ax )α−1 At2p (a, x ) α +1

(b − x ) + (bx )α−1



0

1 0

|t α − λ| dt At2p (b, x )



 1p 

0

  1  α |t − λ| f  0

bx At (b, x )

q  1q   dt 



     1/q a (x − a )α +1  f  (x )q ,  f  (a )q sup (α , λ ) C21/p α , λ, p, x (ax )α −1 x2 

 α +1  q   q 1/q x (b − x ) 1/p      α , λ, p, +C3 sup f (x ) , f (b) b (bx )α −1 b2 ≤

C11/q

which completes the proof. 

I.˙ I˙ scan ¸ / Applied Mathematics and Computation 275 (2016) 287–298

296

Corollary 9. Under the assumptions of Theorem 6 with α = 1, the inequality (2.12) reduced to the following inequality



     b     f (u )  S f (x, λ, α , a, b) = (1 − λ ) f (x ) + λ b(x − a ) f (a ) + a(b − x ) f (b) − ab du  x (b − a ) b−a u2   a   2  1q  

   1/q 1/p a ab 2λ − 2λ + 1 ( x − a )2  f  (x )q ,  f  (a )q ≤ sup C 1, λ , p, 2 b−a 2 x x2   

2 q  q 1/q 1/p  x (b − x ) + sup  f  (x ) ,  f  (a ) C3 1, λ, p, , 2

ab b−a

b

b

specially for x = H = 2ab/(a + b), we get

     1 b   ab f (a ) + f (b ) f (u )  b − a 2λ2 − 2λ + 1 q  − du ≤  (1 − λ ) f (H ) + λ 2 b−a 2 u2   4ab a





× a2C21/p 1, λ, p,

a+b 2b

 sup

 

     1     1  f  (H )q ,  f  (a )q q + H 2C 1/p 1, λ, p, 2a  f  (H )q ,  f  (b)q q (2.13) sup . 3 a+b

Corollary 10. In Theorem 6, (1) If we take x = H = 2ab/(a + b), λ =



1 3,

then we get the following Simpson type inequality for fractional integrals

 

       1/q 1/p a+b 1 S f (x, λ, α , a, b) ≤ b − a C 1−1/q α , 1 a2 sup  f  (H )q ,  f  (a )q , p, C , α 2 4ab 1 3 3 2b    

1/q    2a 1 q q +H 2 sup  f  (H ) ,  f  (a ) C31/p α , , p, ,

ab b−a



3

a+b

specially for α = 1, we get

    b   1    1  ab a+b 1 f (u )  b − a 5 q 1 2 1/p , p, du ≤ × a C 1, sup  f  (H ),  f  (a ) q  6 [ f ( a ) + 4 f ( H ) + f ( b )] − b − a  2 2 4ab 18 3 2b u   a  1

    q   q  1q 2a 2 1/p     +H C 1, , p, sup f (H ) , f (b) . 3

3

a+b

(2) If we take x = H = 2ab/(a + b), λ = 0, then we get the following midpoint type inequality for fractional integrals

   α 

α  α −1 α  f (H ) − ab 2 (α + 1 ) J1/H+ ( f ◦ g)(1/a ) + J1/H− ( f ◦ g)(1/b)   b−a   1 1q  q  q  1q b−a a+b ≤ a2C21/p α , 0, p, sup  f  (H ) ,  f  (a ) 4ab α + 1 2b 

  q  q  1q  2a +H 2C 1/p α , 0, p, sup  f  (H ) ,  f  (b) , 3

a+b

specially for α = 1, we get

    b   1      1 ab a+b f (u )  b − a 1 q 2 1/p   f  (H )q ,  f  (a )q q du ≤ a C 1, 0, p, sup  f (H ) − b − a  2 2b u2   4ab 2 a  1

    q  q q 2a +H 2C 1/p 1, 0, p, sup  f  (H ) ,  f  (b) . 3

a+b

I.˙ I˙ scan ¸ / Applied Mathematics and Computation 275 (2016) 287–298

297

(3) If we take x = H = 2ab/(a + b), λ = 1, then we get the following trapezoid type inequality for fractional integrals

   α  f (a ) + f (b )

α  ab α −1 α  − 2 (α + 1 ) J1/H+ ( f ◦ g)(1/a ) + J1/H− ( f ◦ g)(1/b)   2 b−a   α 1q  q  q  1q b−a a+b 2 1/p ≤ a C2 sup  f  (H ) ,  f  (a ) α , 1, p, 4ab α + 1 2b 

  q  q  1q  2a +H 2C 1/p α , 1, p, sup  f  (H ) ,  f  (b) , a+b

3

specially for α = 1, we get

    b   1  q  q  1q ab a+b f (u )  b − a 1 q 2 1/p  f (a ) + f (b ) − du ≤ a C2 1, 1, p, sup  f  (H ) ,  f  (a )  2 2 b−a 2b u   4ab 2 a 

  q  q  1q 2a +H 2C 1/p 1, 1, p, sup  f  (H ) ,  f  (b) . a+b

3

Corollary 11. Let the assumptions of Theorem 6 hold. If |f (x)| ≤ M for all x ∈ [a, b] and λ = 0, then we get the following Ostrowski type inequality for fractional from the inequality (2.12) integrals

   α   α  x − a α

α  b−x ab α −1 α  + f (x ) − 2 (α + 1 ) J1/x+ ( f ◦ g)(1/a ) + J1/x− ( f ◦ g)(1/b)   ax bx b−a 



 M a x (x − a )α+1 1/p (b − x )α+1 1/p α α ≤ C , 0, p, + C , 0, p, . 1 α −1 2 2 x b (bx )α−1 b2 3 (α + 1 ) q (ax ) x

3. Application to special means Let us recall the following special means of two nonnegative number a, b with b > a: (1) The arithmetic mean

A = A(a, b) :=

a+b . 2

(2) The geometric mean

G = G(a, b) :=

a+b . 2

(3) The harmonic mean

H = H (a, b) :=

2ab . a+b

(4) The n-logarithmic mean

 Ln = Ln (a, b) := Let f (x ) =

xn+1 n+1 ,

bn+1 − an+1 (n + 1 )(b − a )

 1n

, n ∈ R\{−1, 0}.

x > 0, n ≥ 1 and q ≥ 1. Then, the function | f  (x )|q = xnq is harmonically quasi-convex on (0, ∞).

Proposition 1. For b > a > 0, n > 1, λ ∈ [0, 1] and q ≥ 1, we have

 1− 1q     b − a 2λ2 − 2λ + 1 (1 − λ )H n+1 + λA an+1 , bn+1 − G2 Ln−1  ≤ n + 1 ( ) n−1



× a2 H nC21/q 1, λ, q,

A b





+ H 2 bnC31/q 1, λ, q,

a A



4G2

2

,

specially for n = 1 we get

 2 1− 1q  

     A a 1/q 1/q 2 2 (1 − λ )H 2 + λA a2 , b2 − G2  ≤ b − a 2λ − 2λ + 1 × a HC 1, λ , q, + H bC 1, λ , q, , 2 3 2 2G

where C2 and C3 are defined as in Theorem 4.

2

b

A

I.˙ I˙ scan ¸ / Applied Mathematics and Computation 275 (2016) 287–298

298

xn+1 n+1 ,

Proof. The assertion follows from inequality (2.9) in Corollary 2, for f (x ) =

x > 0.



Proposition 2. For b > a > 0, n > 1, λ ∈ [0, 1] and q ≥ 1, we have

 

     A a b−a 2 n 2 n (1 − λ )H n+1 + λA an+1 , bn+1 − G2 Ln−1  ≤ n + 1 × a H C 1, λ , 1, + H b C 1, λ , 1, , ( ) 2 3 n−1 2 b

4G

A

specially for n = 1 we get

 

     (1 − λ )H 2 + λA a2 , b2 − G2  ≤ b − a × a2 HC2 1, λ, 1, A + H 2 bC3 1, λ, 1, a , 2 b

2G

A

where C2 and C3 are defined as in Theorem 4. Proof. The assertion follows from inequality (2.11) in Corollary 6, for f (x ) =

xn+1 n+1 ,

x > 0. 

Proposition 3. For b > a > 0, n > 1, λ ∈ [0, 1] and q ≥ 1, we have

 2  1q    n+1 n+1  b − a 2 λ − 2 λ + 1 n+1 2 n−1 (1 − λ )H + λA a , b − G Ln−1  ≤ (n + 1 )



× a2 H nC21/p 1, λ, p,

A b





+ H 2 bnC31/p 1, λ, p,

 a A

4G2

2

,

specially for n = 1 we get

 2  1q  

     A a 1/p 1/p 2 2 (1 − λ )H 2 + λA a2 , b2 − G2  ≤ b − a 2λ − 2λ + 1 × a HC 1, λ , p, + H bC 1, λ , p, , 2 3 2 2G

2

b

A

where C2 and C3 are defined as in Theorem 4. Proof. The assertion follows from inequality (2.13) in Corollary 9, for f (x ) =

xn+1 n+1 ,

x > 0. 

References [1] M.W. Alomari, M. Darus, U.S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl. 59 (2010) 225–232. [2] M. Alomari, S. Hussain, Two inequalities of Simpson type for quasi-convex functions and applications, Appl. Math. E-Notes 11 (2011) 110–117. [3] D.A. Ion, Some estimates on the Hermite–Hadamard inequality through quasi-convex functions, Ann. Univ. Craiova Math. Comput. Sci. Ser. 34 (2007) 82–87. [4] I.˙ I˙ scan, ¸ Hermite–Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat. 43 (6) (2014) 935–942. [5] I.˙ I˙ scan, ¸ On new general integral inequalities for quasi-convex functions and their applications, Palest. J. Math. 4 (1) (2015) 21–29. [6] I.˙ I˙ scan, ¸ Hermite–Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions, J. Math. 2014 (2014) 10. Article ID 346305. [7] I.˙ I˙ scan, ¸ S. Wu, Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput. 238 (2014) 237–244. [8] I.˙ I˙ scan, ¸ S. Numan, Ostrowski type inequalities for harmonically quasi-convex functions, Electron. J. Math. Anal. Appl. 2 (2) (2014) 189–198. [9] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. [10] J. Park, Hermite–Hadamard and Simpson-like type inequalities for differentiable harmonically quasi-convex functions, Int. J. Math. Anal. 8 (33) (2014) 1629–1645. [11] J. Park, Some generalized inequalities for differentiable harmonically quasi-convex functions, Int. J. Math. Anal. 8 (38) (2014) 1893–1906. [12] J. Park, Remarks on the Hermite–Hadamard type inequalities for harmonically quasi-convex functions, Appl. Math. Sci. 8 (105) (2014) 5213–5224. [13] J. Park, Generalized Hermite–Hadamard-like type inequalities for differentiable harmonically quasi-convex functions, Appl. Math. Sci. 8 (105) (2014) 5225– 5238. [14] E. Set, M.E. Ozdemir, M.Z.S. kaya, On new inequalities of Simpson’s type for quasi-convex functions with applications, Tamkang J. Math. 43 (3) (2012) 357–364. [15] M.Z.S. kaya, E. Set, H.Y. z, N. Basak, ¸ Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (9-10) (2013) 2403–2407. [16] T.-Y. Zhang, A.-P. Ji, F. Qi, Integral inequalities of Hermite–Hadamard type for harmonically quasi-convex functions, Proc. Jangjeon Math. Soc. 16 (3) (2013) 399–407.