Available online at www.sciencedirect.com
Applied Mathematics and Computation 199 (2008) 385–391 www.elsevier.com/locate/amc
On improved delay-dependent stability criterion of certain neutral differential equations O.M. Kwon
a,*
, Ju H. Park
b
a
b
School of Electrical and Computer Engineering, Chungbuk National University, 410 SungBong–Ro Heungduk-gu, Cheongju 361-763, Republic of Korea Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of Korea
Abstract In this letter, the problem for an asymptotic stability of the following neutral differential equation: d ½xðtÞ þ pxðt sÞ ¼ axðtÞ þ b tanh xðt rÞ dt is considered. Based on the Lyapunov method, a stability criterion, which is delay-dependent on both s and r, is derived in terms of linear matrix inequality (LMI). Two numerical examples are included to show the effectiveness of the proposed method. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Neutral equation; Asymptotic stability; Lyapunov method; LMI
1. Introduction Consider the neural differential equations of the form d ½xðtÞ þ pxðt sÞ ¼ axðtÞ þ b tanh xðt rÞ; dt
t P 0;
ð1Þ
where a, s and r are positive real scalars, b and p are real numbers, and jpj < 1. It is assumed that the delays s . With each solution of Eq. (1), the initial condition is defined and r are bounded as 0 6 s 6 s and 0 6 r 6 r as: xðsÞ ¼ /ðsÞ;
*
s 2 ½d; 0;
g; where d ¼ maxfs; r
/ðsÞ 2 Cð½d; 0; RÞ:
Corresponding author. E-mail addresses:
[email protected] (O.M. Kwon),
[email protected] (J.H. Park).
0096-3003/$ - see front matter Ó 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2007.09.031
386
O.M. Kwon, J.H. Park / Applied Mathematics and Computation 199 (2008) 385–391
Recently, for the study of the dynamic characteristics of neutral networks of Hopfield type, various types including the delay differential equations Eq. (1) have attracted the attention of many researchers (for example, see [1–3] and references cited therein). More recently, delay-dependent asymptotic stability for Eq. (1), which gives a less conservative result than delay-independent one when the size of delay is small, have been studied in [4,5]. In this letter, we propose a new stability criterion for asymptotic stability of Eq. (1). The proposed criterion is delay-dependent on both s and r. In order to derive a less conservative results, a new integral inequality is introduced and two zero equations are utilized in deriving the stability criterion for Eq. (1). Unlike the methods in [4,5], we do not use the model transformation technique, which leads an additional dynamics. The proposed stability criterion is represented in terms of an LMI which can be solved efficiently by various convex optimization algorithms. Two numerical examples are given to show the effectiveness of the proposed method. Throughout the letter, w represents the elements below the main diagonal of a symmetric matrix. The notation X > Y, where X and Y are matrices of same dimensions, means that the matrix X Y is positive definite. Cð½0 1Þ; Rn Þ denotes the Banach space of continuous vector functions from [0 1) to Rn . 2. Main results Let us consider the following zero equation with a scalar b: Z t bxðtÞ bxðt sÞ b x_ ðsÞds ¼ 0:
ð2Þ
ts
With the above equation, we can represent the system (1) as, Z t x_ ðsÞds þ b tanh xðt rÞ px_ ðt sÞ: x_ ðtÞ ¼ ða þ bÞxðtÞ bxðt sÞ b
ð3Þ
ts
Note that b will be chosen to guarantee the asymptotic stability of the system (3). Before deriving the main result, we need the following facts and lemma. Fact 1 (Schur Complement). Given constant symmetric matrices R1, R2, R3 where R1 ¼ RT1 and 0 < R2 ¼ RT2 , then R1 þ RT3 R1 2 R3 < 0 if and only if "
#
R1
RT3
R3
R2
< 0;
or
R2
R3
RT3
R1
< 0:
Fact 2. For any real vectors a, b, and any matrix Q > 0 with appropriate dimension, the following inequality 2aT b 6 aT Qa þ bT Q1 b is always satisfied. To derive a less conservative stability criterion, let us introduce a new integral inequality which will be used to derive the upper bound of Lyapunov function. Lemma 1. For any scalars l > 0, and fi (i = 1, . . . ,8), the following inequality holds:
l
Z
t
x_ 2 ðsÞds 6 fT ðtÞ Fe fðtÞ þ l1sfT ðtÞF T F fðtÞ;
ð4Þ
ts
where
" T
T
T
f ðtÞ ¼ x ðtÞx ðt sÞ
Z
t
ts
T
T
T
T
x_ ðsÞds x_ ðtÞ x_ ðt sÞðtanh xðtÞÞ ðtanh xðt rÞÞ
T
Z
t
tr
T # tanh xðsÞds ;
ð5Þ
O.M. Kwon, J.H. Park / Applied Mathematics and Computation 199 (2008) 385–391
F ¼ ½ f1 f2 2 0 0 6H 0 6 6 6H H 6 6H H 6 Fe ¼ 6 6H H 6 6H H 6 6 4H H H
f3
f4
f5
f6
ð6Þ
f8 ;
f7
3
f1 f2
0 0
0 0
0 0
0 0
2f 3
f4
f5
f6
f7
H H
0 0 H 0
0 0
0 0
H H
H H H H
0 H
0 0
0 0 7 7 7 f8 7 7 0 7 7 7: 0 7 7 0 7 7 7 0 5
H H
H H
H
H
0
Proof. By utilizing Fact 2, we have Z t Z t Z t 2 1 l fT ðtÞF T F fðtÞds x_ ðsÞds 6 2 x_ ðsÞF fðtÞds þ l ts ts ts 2 3 0 607 6 7 6 7 617 6 7 607 6 7 T 6 2f ðtÞ6 7F fðtÞ þ l1sfT ðtÞF T F fðtÞ ¼ fT ðtÞ Fe fðtÞ þ l1sfT ðtÞF T F fðtÞ: 607 6 7 607 6 7 6 7 405 0 This completes the proof.
h
Here, we define the following matrices for simplicity in matrix expression: R ¼ ðRij Þ; R11 ¼ 2ac þ q1 þ 2a 2am1 þ 2n1 þ h; R12 ¼ a am2 n1 þ n2 ; R13 ¼ a þ f1 am3 n1 þ n3 ; R14 ¼ m1 am4 þ n4 ; R15 ¼ pc pm1 am5 þ n5 ; R16 ¼ am6 þ n6 ; R17 ¼ bc þ bm1 am7 þ n7 ; R18 ¼ h1 am8 þ n8 ; R22 ¼ q1 2n2 ; R23 ¼ f2 n2 n3 ; R24 ¼ m2 n4 ; R25 ¼ pm2 n5 ; R26 ¼ n6 ; R27 ¼ bm2 n7 ; R28 ¼ h2 n8 ; R33 ¼ 2f 3 2n3 ; R34 ¼ f4 m3 n4 ; R35 ¼ f5 pm3 n5 ; R36 ¼ f6 n6 ; R37 ¼ f7 þ bm3 n7 ; R38 ¼ f8 þ h3 n8 ; R44 ¼ q2 þ ls 2m4 ; R45 ¼ pm4 m5 ; R46 ¼ m6 ; R47 ¼ bm5 pm7 ; R48 ¼ h4 pm8 ; R55 ¼ q2 2pm5 ; R56 ¼ pm6 ; R57 ¼ bm5 pm7 ; R58 ¼ h5 pm8 ; R66 ¼ g þ rm h; R67 ¼ bm6 ; R68 ¼ h6 ; R77 ¼ g þ 2bm7 ; R78 ¼ h7 þ bm8 ; R88 ¼ 2h8 ; 3 2 0 0 0 0 0 0 0 h1 6 H 0 0 0 0 0 0 h2 7 7 6 6H H 0 0 0 0 0 h 7 6 3 7 7 6 7 6 e ¼ 6 H H H 0 0 0 0 h4 7; H 6H H H H 0 0 0 h 7 5 7 6 7 6 6 H H H H H 0 0 h6 7 7 6 4 H H H H H H 0 h7 5 H
H
H H
H
H
H
387
2h8
ð7Þ
ð8Þ
388
O.M. Kwon, J.H. Park / Applied Mathematics and Computation 199 (2008) 385–391
H ¼ ½ h1 h2 h3 h4 h5 h6 h7 h8 ; M ¼ ½ m1 m2 m3 m4 m5 m6 m7 m8 ; N ¼ ½ n1 n2 n3 n4 n5 n6 2 2am1 am2 am3 6H 0 0 6 6 6H H 0 6 6H H H 6 N1 ¼ 6 6H H H 6 6H H H 6 6 4H H H H 2 2n1 6H 6 6 6H 6 6H 6 N2 ¼ 6 6H 6 6H 6 6 4H H
n7 n8 ; m1 am4
pm1 am5
am6
bm1 am7
am8
m2
pm2
0
bm2
0
m3 2m4
pm3 pm4 m5
0 m6
bm3 bm4 m7
H H
2pm5 H
pm6 0
bm5 pm7 bm6
H
2bm7
H
H
H H H n1 þ n2 n1 þ n3 2n2 n2 n3
H
H H
2n3 H
n4 0
n5 0
n6 0
H
H
H
0
0
H H
H H
H H
H H
0 H
H H 3 n7 n8 n7 n8 7 7 7 n7 n8 7 7 0 0 7 7 7: 0 0 7 7 0 0 7 7 7 0 0 5
H
H
H
H
H
H
n4 n4
n5 n5
n6 n6
3
7 7 7 7 0 7 m8 7 7 7; pm8 7 7 7 0 7 7 bm8 5 0
ð9Þ
0
Then, we have the following theorem for asymptotic stability of Eq. (1). > 0, every solution x(t) of Eq. (1) satisfies x(t) ! 0 as t ! 1, if there exist Theorem 1. For given s > 0, and r positive scalars c, qi(i = 1, 2), g, l, m, h and constant scalars a, fi, hi, mi, ni(i = 1, . . . ,8) such that the following LMI holds 2
R 6 4H H
sF T sl H
3 H T r 7 0 5 < 0;
ð10Þ
rm
Proof. For positive scalars c, q1, q2, g, l, and m, let us consider the following Lyapunov function defined by V ¼V1þV2þV3
ð11Þ
where V 1 ¼ cx2 ðtÞ; Z t Z t Z t V 2 ¼ q1 x2 ðsÞds þ q2 tanh2 xðsÞds; x_ 2 ðsÞds þ g ts ts tr Z t Z t Z t Z t 2 V3 ¼l tanh2 xðuÞduds: x_ ðuÞduds þ m ts
s
tr
s
First, the time derivative of V1 along the solution of Eq. (3) is give by Z t V_ 1 ¼ 2cxðtÞ ða þ bÞxðtÞ bxðt sÞ b x_ ðsÞds þ b tanh xðt rÞ px_ ðt sÞ :
ð12Þ
ts
Second, differentiating V2 leads to V_ 2 ¼ q1 x2 ðtÞ q1 x2 ðt sÞ þ q2 x_ 2 ðtÞ q2 x_ 2 ðt sÞ þ gtanh2 xðtÞ gtanh2 xðt rÞ:
ð13Þ
O.M. Kwon, J.H. Park / Applied Mathematics and Computation 199 (2008) 385–391
Last, V_ 3 can be obtained as Z t Z 2 2 _V 3 ¼ ls_x2 ðtÞ l x_ ðsÞds þ mr tanh xðtÞ m 6 lsx_ 2 ðtÞ l
ts Z t
r tanh2 xðtÞ m x_ 2 ðsÞds þ m
ts
389
t
tanh2 xðsÞds
tr Z t
tanh2 xðsÞds:
ð14Þ
tr
By utilizing Lemma 1, we have a new upper bound of V_ 3 as e þ m1 r H T H ÞfðtÞ; V_ 3 6 lsx_ 2 ðtÞ þ m r tanh2 xðtÞ þ fT ðtÞð Fe þ l1sF T F þ H
ð15Þ
e , and H are in (9). As a mathematical tool in reducing a where f(t), Fe , and F are defined in Lemma 1 and H conservatism of stability criterion, we consider the following two zero equations, 2fT ðtÞM ½_xðtÞ axðtÞ þ b tanh xðt rÞ px_ ðt sÞ ¼ 0;
ð16Þ
and
T
2f ðtÞN xðtÞ xðt sÞ
Z
t
x_ ðsÞds ¼ 0;
ð17Þ
ts
and N will be chosen later. Eqs. (16) and (17) can be represented as in obtaining an upper bound of V_ where M fT ðtÞðN1 þ N2 ÞfðtÞ ¼ 0;
ð18Þ
where N1 are N2 are in (9). By utilizing the relation tanh2x (t) 6 x2(t), we have 2
hx2 ðtÞ 6 hðtanh xðtÞÞ ;
ð19Þ
where h is a positive constant to be chosen later. From Eqs. (12)–(19), we have the following upper bound of V_ as Z t _V 6 2cxðtÞ ða þ bÞxðtÞ bxðt sÞ b x_ ðsÞds þ b tanh xðt rÞ px_ ðt sÞ þ q1 x2 ðtÞ ts
q1 x ðt sÞ þ q2 x_ ðtÞ q2 x_ ðt sÞ þ gtanh2 xðtÞ gtanh2 xðt rÞ þ lsx_ 2 ðtÞ þ m rtanh2 xðtÞ 2
2
2
e þ m1 r H T H ÞfðtÞ þ fT ðtÞðN1 þ N2 ÞfðtÞ þ hx2 ðtÞ hðtanh xðtÞÞ þ fT ðtÞð Fe þ l1sF T F þ H
2
H T H ÞfðtÞ; ¼ fT ðtÞðX þ l1sF T F þ m1 r
ð20Þ
where 2
ð1; 1Þ ð1; 2Þ
6H 6 6 6H 6 6H 6 X¼6 6H 6 6H 6 6 4H H
3
ð1; 3Þ R14
R15
R16
R17
R18
R22 H
R23 R33
R24 R34
R25 R35
R26 R36
R27 R37
H H
H H
R44 H
R45 R55
R46 R56
R47 R57
H
H
H
H
R66
R67
H H
H H
H H
H H
H H
R77 H
R28 7 7 7 R38 7 7 R48 7 7 7; R58 7 7 R68 7 7 7 R78 5
ð1; 1Þ ¼ 2ac þ q1 þ 2cb 2am1 þ 2n1 þ h; ð1; 2Þ ¼ cb am2 n1 þ n2 ; ð1; 3Þ ¼ cb þ f1 am3 n1 þ n3 ; and Rij is defined in (9).
R88
390
O.M. Kwon, J.H. Park / Applied Mathematics and Computation 199 (2008) 385–391
H T H < 0 is equivalent to the LMI (10). Therefore, if LMI (10) Let a = cb. By Fact 1, X þ l1sF T F þ m1 r _ _ holds, V is negative. This means that V 6 jkxðtÞk2 for sufficiently small j > 0. According to Theorem 9.8.1 in [6], we conclude that if jpj < 1 and the inequality (10) holds, then, system (1) is asymptotically stable. This completes the proof. h Remark 1. The problem for solving LMI (10) in Theorem 1 is to determine whether the problem is feasible or not. It is called the feasibility problem. The solutions of the LMI (10) can be found by solving eigenvalue problem with respect to c, qi, g, l, m, h, a, fi, hi, mi, and ni which is a convex optimization problem [7]. Various efficient convex optimization algorithms can be used to check the feasibility of the LMI in Theorem 1. In this letter, in order to solve the LMI of Theorem 1, we utilize Matlab’s LMI Control Toolbox [8], which implements state-of-the-art interior-point algorithms, which is significantly faster than classical convex optimization algorithm [7]. Therefore, all solutions c, qi, g, l, m, h, a, fi, hi, mi, and ni can be obtained simultaneously. Remark 2. The criterion of Theorem 1 is delay-dependent on both s and r. To demonstrate the effectiveness of the proposed criterion, we give the following two examples. Example 1. Consider the neutral differential equation in [5]: d ½xðtÞ þ 0:2xðt sÞ ¼ 0:6xðtÞ þ 0:3 tanh xðt rÞ: dt
ð21Þ
By applying Theorem to the system (21), we can see that the system (21) is asymptotic stable for any s P 0 and r P 0. However, the maximum allowable delay bound for stability with s = 0.1 in Park and Kwon [5] was ¼ s ¼ 107 can be obtained as 1.902. For reference, the LMI solution of Theorem 1 with r c ¼ 5:6469 105 ;
q1 ¼ 6:3818 104 ; 5
4
a ¼ 1:5191 10 ;
m ¼ 0:0080; h ¼ 2:5171 10 ; f1 ¼ 1:8091 10
10
f5 ¼ 1:0918 1010 ; h1 ¼ 0;
h2 ¼ 0;
;
f 2 ¼ 2:3519 10
m5 ¼ 4:1288 104 ; 4
10
;
h4 ¼ 0;
h5 ¼ 0;
m2 ¼ 5:6137 104 ; m6 ¼ 0;
n1 ¼ 1:5191 10 ;
n2 ¼ 6:4240 10 ;
n5 ¼ 2:4321 104 ;
n6 ¼ 0;
f 4 ¼ 3:6358 1011 ;
f 8 ¼ 0;
h6 ¼ 0;
h7 ¼ 0;
m3 ¼ 4:8812 104 ;
h8 ¼ 8:0196 1010 ; m4 ¼ 3:9770 105 ;
m8 ¼ 0;
n3 ¼ 2:9162 104 ;
n7 ¼ 2:6114 104 ;
l ¼ 0:0509;
l ¼ 0:9950;
f 3 ¼ 4:1609 1010 ;
m7 ¼ 1:1377 105 ; 3
g ¼ 1:3809 105 ;
g ¼ 1:7010;
f 7 ¼ 7:3520 1011 ;
f 6 ¼ 0;
h3 ¼ 0;
m1 ¼ 1:8096 105 ;
q2 ¼ 1:6174 105 ;
n4 ¼ 5:4201 104 ;
n8 ¼ 0:
Thus, Theorem 1 in this letter provides a much less conservative result than the one in Park and Kwon [5]. Example 2. Consider the equation in [5]: d ½xðtÞ þ 0:35xðt 0:5Þ ¼ 1:5xðtÞ þ b tanh xðt 0:5Þ: dt
ð22Þ
Table 1 Upper bounds of b for guaranteeing stability in Example 2 Upper bounds of b Agrawal and Grace [3] El-Morshedy and Gopalsamy [1] Park [4] Park and Kwon [5] Theorem 1
0.318 0.423 0.423 0.669 1.49
O.M. Kwon, J.H. Park / Applied Mathematics and Computation 199 (2008) 385–391
391
For this system, the maximum allowable bound of b is given in Table 1. From Table 1, one can see our result gives a larger upper bound of b for guaranteeing stability than those in other literature. References [1] K. Gopalsamy, I. Leung, P. Liu, Global Hopf-bifuration in a neural netlet, Applied Mathematics and Computation 94 (1998) 171–192. [2] H.A. El-Morshedy, K. Gopalsamy, Nonoscillation, oscillation and convergence of a class of neutral equations, Nonlinear Analysis 40 (2000) 173–183. [3] R.P. Agarwal, S.R. Grace, Asymptotic stability of certain neutral differential equations, Mathematical and Computer Modelling 31 (2000) 9–15. [4] J.H. Park, Delay-dependent criterion for asymptotic stability of a class of neutral equations, Applied Mathematics Letters 17 (2004) 1203–1206. [5] J.H. Park, O.M. Kwon, Stability analysis of certain nonlinear differential equation, Chaos Solitons & Fractals, doi:10.1016/ j.chaos.2006.09.015. [6] J. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. [7] S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, Studies in Applied Mathematics, SIAM, Philadelphia, 1994. [8] P. Gahinet, A. Nemirovski, A. Laub, M. Chilali, LMI Control Toolbox User’s Guide, The Mathworks, Natick, Massachusetts, 1995.