On Mappings Preserving a Single Lorentz-Minkowski-Distance. I

On Mappings Preserving a Single Lorentz-Minkowski-Distance. I

Annals of Discrete Mathematics 18 (1983) 61-76 0 North-Holland Publishing Company ON MAPPINGS PRESERVING A SINGLE 61 LORENTZ-MINKOWSKI-DISTANCE. I ...

508KB Sizes 2 Downloads 27 Views

Annals of Discrete Mathematics 18 (1983) 61-76 0 North-Holland Publishing Company

ON MAPPINGS PRESERVING A SINGLE

61

LORENTZ-MINKOWSKI-DISTANCE. I

Walter Benz

Consider a comnutative f i e l d K and denote by K2 the s e t o f a l l ordered p a i r s o f elements o f K .

distance

fl of

The elements o f K2 are c a l l e d points o f the plane K 2 ,

the p o i n t s P

fl:=

The f o l l o w i n g r e s u l t was proved by F. Rado, [ 3 1 :

(ql-pl)(q2-pz).

THEOREM: Assume char K

V

( p l , p 2 ) , Q = (ql , q 2 ) i s defined by

The

P,Q E Kz

#

2,3.

Given a bijection u

PQ = 1 i f a d only i f P'Q'

: K2

+

KZ such that

= 1.

Then u must be semilinear up t o a translation (considering K2 as a vector space over K). I n case K

R ! we have proved i n [ 1 ] the sharper r e s u l t

THEOREM: Given a mapping u of the plane lR2 i n t o i t s e l f such that

'P,Q

E

IR2

PQ = 1 implies P'Q'

= 1.

Then u must be semilinear up t o a translation and hence a Lorentz transformation. The main question we are i n t e r e s t e d i n t h i s series o f three papers I, 11, I11 i s PROBLEM A: Determine a l l mappings u of K2 i n t o i t s e l f such that

'P,Q

E K2

PQ = I implies P'Q'

=

1

W.Benz

62

We s h a l l present the s o l u t i o n o f t h i s problem f o r i n f i n i t e l y many f i e l d s K, e s p e c i a l l y f o r i n f i n i t e l y many G a l o i s f i e l d s by a p p l y i n g a r e s u l t o f G. T a l l i n i ,

An important step i n our c o n s i d e r a t i o n s i s t h e f o l l o w i n g g e n e r a l i z a t i o n ( f o r

141.

4

char K

5,7) o f Rado's theorem:

THEOREM 1: &=me c;i;tr K f 2,3,5,7.

Given an i n j e c t i v e mapping a K'

+

K'

such

L k t -

-

V

:'ha

i~

P,Q E K' w s t b,

PQ = 1 implies pupu = 1

K and not necessari-

s c m i i i w a r i u i t h respect t o a monomoq?iiisn: of

ly an c:L.:omorp;ifsn/ y' t o a t r m i s l a t i o n . The proof o f t h i s theorem w i l l be given i n p a r t I o f our s e r i e s .

We l i k e t o

f i n i s h t h i s i n t r o d u c t i o n w i t h a remark about t h e connection o f t h e d i s t a n c e w i t h the Lorentz-Minkowski-distance

The

question we are a c t u a l l y i n t e r e s t e d i n i s

PROBLEM B: Given a c o m t a t i v e f i e l d K o f c h a r a c t e r i s t i c f 2 and given a f i x e d e'emer~: k E K'' := K \ {O}.

'P,Q

E

K'

Determine a22 mappings

T

: K'

+

K2 such t h a t

d(P,Q) = k impZies d(PT,QT) = k.

We l i k e t o v e r i f y t h a t problem B i s solved f o r a l l f i e l d s K f o r which problem

A can be solved.

Define f o r t h i s purpose

Given now P,Q E K2 such t h a t for a

T

o f problem B .

= 1.

Then d(P',Qu)

= k and hence d(PuT,QUr) = k

~

A consequence o f t h e l a s t equation i s P'Q'

mapping according t o problem A and hence

= 1 f o r u := T

= u-' u U.

UTG-'.

Thus a i s a

63

On mappings preserving a single LMdistance I. -

Consider now a f i e l d K

A l l o c c u r i n g f i e l d s a r e assumed t o be commutative. o f arbitrary characteristic. LEMMA 1: Assume I K I

> 4.

Then every element of K2 can be w r i t t e n i n the form

,. . . ,xn

with f i n i t e l y many eZements x, ,x,

in K

.

(ActuaZly n can be choosen d 4.)

PROOF: We n o t i c e t h a t KZ i s an a b e l i a n group w i t h t h e a d d i t i o n x2 YY1 4- Y 2 1 1 1 Observe (0,O) = ( 1 t ( - l ) , - t -). - There e x i s t s an element 5 0,-1 i n K such 1 -1 1 t h a t E 2 t c t 1 f 0 because otherwise I K I S 4. Put - = c 2 t c t 1 and x, = t ( c Z + c ) , 1 1 1 x, = t ( 6 t l),x, = - t c . Hence (1,O) = (x, t x, t x,, - t - t - ) . x1 x2 x3 For a j 0 we have 1 1 1 t - t -). (a,o) = (ax, t ax, t ax3, ax, ax, ax, ( X I YX,

MY,

I n case b (a,b)

YY2

1

:= (XI

4

+

4

0 we observe 1 1 b). = ( a - by 0 ) +

(s,

For t h e r e p r e s e n t a t i o n o f (a,b) i n f o r m (x,

.

a t most f o u r elements x, ,x, ,x, ,x,

+ * . * + xn'

x,

t

... t -)1

we hence need

'n

REMARK: I n case I K I G 4 t h e r e does n o t e x i s t a r e p r e s e n t a t i o n as described i n lemma 1.

This w i l l p l a y a r o l e l a t e r on ( s . p a r t 111). 1 x), x

Denote by M t h e s e t o f a l l p o i n t s ( x , (IKI

E Ka.

Hence, by lemma 1

>4), M generates K 2 , i . e . K2 = < M > .

LEMMA 2: Assume char K

Given p o i n t s P j Q of K2.

{2,3,5,i3.

= 1'

onZy i f t h e r e e x i s t p o i n t s P.,B such t h a t AB = 12,.

PROOF: F o r P = ( p , t ) , A = ( p - - q-p, t 15

4 q,

Q = (q,t),

p

- y15- ) , B

= (p

9 P

-

-

, PB

= 14,

put 49 - (q-p), 15

t

-

60 -). q-p

,

Then = 4,,

= 0 i f and

@=

16'

,

W. Ben2

64

Q = ( t , q ) change t h e components i n t h e d e f i n i t i o n o f A,B. Consider v i c e versa p o i n t s P 4 Q and p o i n t s A,B such t h a t = l’, PB = 14’ , QA = 4 ’ , @ = 16’, AB = 1Z2. Without l o s s o f g e n e r a l i t y we assume A = (O,O),

I n case P = ( t , p ) ,

-

Then according t o t h e equations i t t u r n s o u t t h a t Q € I (1,16),(16,1)}

P = (1,l).

= 0.

and hence

i f and o n l y i f t h e r e e x i s t p o i n t s A,B,C

.-

@

QA = 4 ’ .

= 22,

qc =

-

4

Then @ = 0 = 1’ , AC = 1 2 , CP = l’,

REMARK: I n case char K = 7 t h e f o l l o w i n g can be proved: Given P

Q.

I

such t h a t

AB = 2’.

2’,

2. --

K be a f i e l d .

Let

0“ = 0; 0 := (O,O),

v P,Q Define

~p

-,K’

such t h a t

and

-

PQ = 1 i m p l i e s pago = 1 .

E K?

: K”

+

K” by means o f

1 (Notice O ( x , -)” X

since

Consider an i n j e c t i v e mapping a : K2

0

1

1 = 1 because o f O(x, -) = 1 . )

= 0 ( x , -)“

X

X

Thus

(9

i s injective

i s injective.

G . Coizsider -

x1 ,xz

6

21.

K w i t h x’ f

X’Z

.

Then

1 1 0 1 1 Since (x, + x z , - t - ) i s o f PROOF: Denote (xi + x 2 , - t --) by (u,v). XI xz 1 1 = 1 and hence d i s t a n c e 1 from (xi, - ) we g e t (u,v)(ei, -) X i ’i u(cp1-101) = v q1 V Z ( P ~ - W ) , i . e . u = v cpI cpz because of 8 , # c p z . Now 1 (u W ) ( V - -) = 1 i m p l i e s v2 v1 = v(pl + 8 ’ ) - If v = 0 then u = v q1cpZ = 0 (91 1 1 l a 1 and hence (x, + XI, - + = 0, i . e . (x, t x z , - + -) = 0 because o f t h e i n j e c t i v i t y of o. Thus v

cp1cp2

XI

x,)

XI

T h i s c o n t r a d i c t s x12 = x2’.

= p, t W , i . e .

(u,v) = (cpl

+

(p2,

1 1 - + -). PI

82

X’

On mappings preserving a single LMdistance

b. Consider Pa =

P

x1 ,xz

(cpl

:= (XI

,. . . ,xn

+...t

cp

p.p = 1

-

y

*

K with xI2 ,xi

y . .

., x i p a i m i s e distinct.

Then

1 1 t...t -) with

'n

cp1

+...t xn, x,t...t

1 -)X and cp i := rp(xi). n

Consider n 2 3 and Pi :=P- (xi,

PROOF: By induction. Pa =: (u,v),

n

E

65

1 and P "= ( 1. i v+i

c,p

c -)1

v + i 'v

x). With I

i ( n o t i c e induction) we g e t

PiuPu = 1 and

(u - c

-

(v

)

v + i 'v

c

-)

I

= 1.

'v

v+i

Hence

c

v =

v+i

For i

l t u 'v

1

z

-

v + i 'v

+ j we g e t

<

=

' t

v+i

= z ' t

1

u - c

u+j

v + i 'v

'v

1

u - c

u + j 'u

i.e.

If u = c

cpv

1 then v = I - according t o (1) and we are ready.

Assume u

cpV

Hence

+

E cpv

and thus

(cpj

-

qi)

This implies u

(u

- "J

- ccpV

=

-

=

'pi

-

'pi2

-

'j

cpj2 *

for all i

+j

because o f

'pi

cp.

J

and hence

W. Benz

66 +

c'1

z

=

'02

-

Vb

u = WI +

q 3 ,

a contradiction.

char K $ I2,3,5}.

c. Assume -

iii

a:,

iiil

:il

,.. . ,a n

,.ii

+. . .+

a

2 ,

1 are p a i m i s e d i s t i n c t ,

1 =

=

n

Then there e x i s t elements al , a2

3 7, a2

-,1

=

1)

at

=

K"

with

1 1 +. ..+ . a

a1

n

PROOF: Case c h a r K $ I7,11,13,17,29,31,37,43,53,61,671 P u t at =

,... an 6

-2 -,

=

7

1 -,

6

as - 7 Y

a3

a6

:

1

= a5

.

Case c h a r K E (31,37,53,61,67} :

Case c h a r K E 129,431: Put

at

=

12 -,

ill

13

1 -,

=

a3

UI

-3 = -,

13

~ 1 4=

1 , a3

a5

=

4 -,

13

a6

1

= a5

Case c h a r K = 7 :

Case c h a r K = 11 :

Put

at

= -3,

a2

= -4,

Case c h a r K = 13 : Put a1 = 4,

a2

1

= a1

a3

=

2,

a4

= -5

.

.

Case c h a r K = 17 : Put a1 = 8,

J . Assume

a2

=-2,

a3

= 5, a4 = 7

char K $ {3,51.

Then cp(-x) =

PROOF: T h i s i s t r i v i a l f o r c h a r K g e t w i t h elements

=

-

(q(-x),

1 cp(-x)

-)

ai

.

= 2.

o f step c :

applying step b.

- cp(x)

f o r alZ x E K"

So assume c h a r K

f 2.

Given x

E

K" we

On mappings preserving a single L-Mdistance REMARK: d i s a l s o t r u e i n case c h a r K = 3.

e . Assume

char K

4

{3,5.1.

67

T h i s w i l l p l a y a r o l e i n p a r t 111.

Consider pairwise d i s t i n c t eZements x1 ,x2

,.. . ,xn

E

Then ( X l t...t x

with

‘pi

1 1 0 t . . . t -) = (cplt...tcpn, n’ x1 n

1

pl

+...t

1 -)

+

.

‘n

:= cp(xi).

PROOF: N o t h i n g i s t o prove f o r n = 1. Case n = 2: F o r xlz (Xl + xz

+ xi 9

Consider x12 = x z 2 and xl

see a.

1 1 u x, + x,’ = o0 =

a c c o r d i n g t o s t e p d. ( x , + x2

Now

1

Thus

x,’

Now a p p l y i n d u c t i o n .

Hence xz = -xl.

1 1 (030’ = (cp(x1 )+cp(-X1 1, -t cp(x1) cp(-x1)

1 1 0 xl + = (cp(X1 )fcp(X2

Y

xz

1

1

t-). 1, cp(x1) V(X2 1

L e t n be 2 3.

N o t h i n g i s t o prove i n case t h a t

= x2 x12 ,..., xz a r e p a i r w i s e d i s t i n c t because o f b. Otherwise suppose xz n n-1 n w i t h o u t l o s s o f g e n e r a l i t y and o f c o u r s e x ~ - xn.~ Hence xn = - x ~ - ~ Now .

+

(x, t...t xn

,... )“ =

(Xl t . . . +Xn-*

,... )“

= ( T I t . . . t cpn-2’...)

- . f Asswne char K

4

I2,3,5,7,11,13,17,19,23,31,37}.

Then there e x i s t

XI

,XZ

=

a

,x3 E K such that

1 1 1 xl t xz t x3 = 1, - t - t - = 0, x1 xz x3 (ii)I f k E 12,3,4,5} then the seven eZements 1 1 1 , - 1 are paimise d i s t i n c t . k x l y kxz 3 kx3 9 ~9 ~3

(il

PROOF: Case c h a r K $ {29,73,97,103,113,157,199,239,241,349,401} P u t x1 =

3 -, xz 7

=

2 - 7,

x3 =

6 7



Case c h a r K E {29,73,97,113,157,199,241,349,401 10 15 6 P u t x1 = 19,xz = 19,x3 -19

I:

:

Kit

68

W.Benz

Case c h a r K E {103,2391:

Put

XI

=

12 -, 13

Asswne char K

(-I)

a

3 -13’

x* =

kl

4 13

x3 = -

$ {2,3,5,7}.

+..+a

Then f o r k E t2,3,4,5} then exist

1

=k=kn(k) akl

i i i j ak ,,... a k n ( k ) ,-1

.

1

t . . . +-,

a

kn(k) are pairwise distinct.

PROOF: Case c h a r K $ {11,13,17,19,23,31,37}:

A p p l y i n g s t e p f we p u t

, ak2 = kx,, ak3 = k x 3 , 1 1 - _1 a -k4- kxl ’ ak5 - kx,’ ak6 - kx3 * Case c h a r K = 11 : P u t akl

= kxl

azl

= 1 , a,:

_-

= 2 , a 2 3 = -3, ,a.,

= -4,

a z s = -5

a 3 1 = -2, a s 2 = 5 ,

arl

= -3, aa2 = -4

aal

= 1, a

s2=

,

-3, a S 3 = -4

Case c h a r K = 13: Choose a

1 + (-3)

t

4 = 2 ,

V!J

. according t o

, ,

(-2) + 6 + 3 + ( - 4 b 3

(-2) t 6 = 4 1 + ( - 2 ) + 6 = 5 , Case c h a r K = 17 :

1

t

(-6)

t

(-3) +

2

t

9 = 2,

(-6)

t

(-3)

t

2

t

9

t

3

+

6 = 4 ,

t

( - 7 ) = 5,

7

t

5

(-5)

= 3,

Case char K = 19 :

1

t

(-3) 1+(-3 1

t

(-3)

t

, + 6 = 3 , )+6=4 , t 8 = 5 ,

(-7) t 8 = 2

6 + (-7)

,

On mappings preserving a single L-Mdistance

69

Case char K = 23 :

2+(-11)+

3

1+2+(-11)+

t 8 = 2 ,

3 t 8 = 3 ,

,

(-5) t 9 = 4

1 t(-5)

.

9 = 5

t

Case char K = 31 :

1

6 t ( - 5 ) = 2 ,

t

(-11) + 14 = 3 , 1

+

(-11) t 14 = 4 ,

1 t 6 + (-5)t Case char K

1

t

.

(-11) t 14 = 5

37 :

( - 3 ) t (-12) t

17 = 2

(-3) t (-12) t

17 = 3 ,

17

+ (-13)

(-4) t h. Assume char K -

4

= 4

9 = 5

.

.

I

{3,5,71.

Given x E K

k a

Then (kx, --)

k cp(x)

= (kcp(x), - f o r

k E {2,3,4,5]. So assume char K { 2.

PROOF: This i s t r i v i a l f o r char K = 2.

= (cp(X)Y

according t o e and d.

1

-1cp(x)

Hence (Zx,

2 0 X)

-

t vx,

T

+ -x -x

y

.

2 cp(x)

= (2cp(x), -)

The same procedure f o r (vx,

Applying g we g e t

3,4,5,

v

completes t h e p r o o f o f h.

i. Assume

char K

(Xl t . . . t xn,

4

{2,3,5,7}.

l a 1 x, t . . . + x) =

n

Given

(cpl

X,

+.. .t

,... ,xn cp n,

1

K

*.

Then

1

cpl +...+ -)

cpn

with

'pi

:= cp(Xi).

W.Benz

70

PROOF: This i s t r u e f o r n = 1 and a l s o f o r n = 2 according t o e and h. induction.

L e t n be

Now apply

3.

2

Case A : I t x l,..., x n l j

> 2.

x2 w i t h o u t l o s s o f g e n e r a l i t y . 1 := - -). Then, by i n d u c t i o n , ( w f i xv* w+i x

We assume x1 Put Pi

1

Pi0 = (vi;

‘? i j

1 Put P : = (zxw,z -)

, vf7 i -). qb

’+

5 ‘J

and Pa =: (u,v).

So

E.1

= 1 implies

1 u-

di

‘w

f o r i = 1 and i = 2 we g e t

u

1 0 implies v = i -according

zvW = - z~~

u .-

+ 0. -

((PI

We have

q1

Hence by ( 3 )

(PI

) (u

-

Tipw,)

=

(11

{ v2 because o f xI

U - E vW = -

i . e . u = v3 t

$1

q4+...+

-

t o ( 2 ) and we a r e ready.

IpL

cc2

1

#

-

$92

2

.

x2 and thus

9

p ‘.,

So ( 2 ) ( p u t i = 1) i m p l i e s

v =

1 1 +t...t 0:

P3

1 1 1 1 1 - + - = - t - +...+ v, (P2 cc3 $94 Wn

-

But according t o i n d u c t i o n we have

.

Assume now

On mappings preserving a single LMdistance (x3 t . . . t x

1 - t . . .+ n' x3

=

+)CJ

(cp3

-&1-

.

t . . -t cpn,

n

t...t

1 p' . n

This i mp l i e s, since u i s i n j e c t i v e , (x3

+...+

Hence

x

1 n ' x3 = 0

cpl+cpa

1 +...+x) P, i . e . =

n Thus

by d.

u

= I cp

x1 t xz = 0. by ( 4 ) , c o n t r a d i c t i n g the assumption

*o.

u - I l p

Case B : x1 = xz =

...

= x n = : x . n u n Here we have t o prove ( n x, X) = (n'p, -), cp

cp

:= cp(x).

Applying h we can assume n 2 6. Put y1 := 2x, y2 := 2x, y3 := Yl +y2 +y3 +y4 = 5 x

,

1 t -1+ - 1+ - = 1 - 5 Y1 Y2 Y3 Y, x

.

X -, y4 2

:=

X 7.

Hence

Now (n-6)x+yl+yzty3+y4+x, = ( x t . . . t x ty1 tyz 2

(n-6)-times c

ty3

ty4

-

n-6 t x

1 -t...t Y1

tx, 1 t . .. t 1 t 1 t . .. t 1 t 1-) X x Y1 Y4 x

0

2

(n-1) summands Similarly n-1 X)

CJ

((n-l)x,

= ( x t ...t x t y l

ty2 ty3 t y 4 ,

1 t...t X

1 1 x t y1 t . . .

1

y,'"

( n 1'6) -"tim i s Since i i s assumed t o be t r u e up t i l l n-1 summands we g e t

-

(nx,

((n-l)x, n o n Thus (nx, X) = (n'p, -). rp

j. Asswne

.

group 'K PROOF: K

char K $ {2,3,5,7).

CJ

IH .

-,Ka i s a monomorphism of the abelian

We have I. K .I > 4 because o f char Consider P,Q E K'. 1 1 +...+ -)1 Hence P = ( x l t txn, X, t . . . t X) , Q = ( y l t +Ym, n Ym

i s injective.

$ I2,31.

lemma 1.

Moreover M' c

Then u : K'

Now applying i we g e t

...

...

by

W. Benz

72

Since M is the set of all points of distance 1 from 0 we get h 'c

--k .

q

Assume char K

assumed t o be* 0.

'P,Q

E K'

Consider an element n = 1

t2,3,5,71.

:=

Fj

n' implies P'Q"

=

.

n

1 of K, which i s

Then

= n',

PROOF: Consider P = (pl,pl), Q = (ql,ql),

Put x

+...+

PI.

Thus x

*

%

Then (ql-pl)(ql-p2) = n' + 0.

= n'

0 and

n Q = P t ( n x , -). X

Hence

+ (nx, n

Q~ = P' by j and i.

U "

P Q

--1.

= P

u

n

t ( n c p ( x ) , -1 V(X)

Thus = nw(x)

q

Assume char K

'P,Q

o

E K'

Fj

*

n -- n'. 9(x)

{2,3,5,71. =

o

Then

implies P ~ Q " = 0.

PROOF: Nothing is to prove for P =

Q. So assume

P

*

Q.

Then

existence of points A,B according to lemna 2 such thatfi = l',

F &

=

0 implies the

-= 14',

=

162 , @ = 12'. Since 14*, - 1,14,4,16,12 E K* we get PaAa = '1 , PUBu = QUA" = 4', QOBU = 16', A"B' = 12' by applying k. Now lemma 2 implies P'QU = 0

*

since P"

Q".

3. -

Consider a field mapping

U)

: K'

-+

K'

K

such that char

such that

K

$ {2,3,5,71.

Consider an injective

4')

On mappings preserving a single L-Mdbtance V

P u t (O,O)w

Ej

Ic

P,Q E

13

= 1 i m p l i e s pWqW= 1

=: (al , a z ) , ( l , l ) W =: (b, , b 2 ) .

Because o f (O,O)(l,l)

= 1 we have

(O,O)w(l,l)w

= 1, i . e .

(bl-al)(bz-az)

=

1.

Consider t h e d i s t a n c e p r e s e r v i n g mapping

1I

Y ' = (bl -al)(y

-

a,)

which i s b i j e c t i v e and l i n e a r up t o a t r a n s l a t i o n . Obviously, V

Fij

P,Q E K'

= 1 i m p l i e s pwagwa = 1

and ( O , O ) W a = (O,O), ( l , l ) W a = ( 1 , l ) .

So s e c t i o n 2 a p p l i e s t o t h e mapping w It i s I P

K'I

E

a.

Especially, w

~i

(0,O)P = 0 and ( 1 , l ) P = 01 = t ( l , O ) , ( O , l ) } .

I(l,O), (0,l)

Pa =

p r e s e r v e s d i s t a n c e 0. Hence

t ( 1 ,O) ,( 0 , l ) 3.

Define x' = y y' = x

which i s d i s t a n c e p r e s e r v i n g , b i j e c t i v e and l i n e a r . (

I

identity

1

6

( l , o ) W a = (1,O) for

8 = (

I

D e f i n e moreover

(l,O)Wa = ( 0 , l )

Then u := w a 6 i s i n j e c t i v e , p r e s e r v e s d i s t a n c e 1 and has (O,O),(l,l),(O,l),(l,O) as f i x e d p o i n t s . The l i n e y = 0 ( i . e .

{(x,o)/ x

4

{O,l},

x

E

K)) i s mapped under u i n t o t h e l i n e

fact!

Given (x,O),

(x,O)'

has a l s o d i s t a n c e 0 f r o m (0,O)'

y = 0.

t h i s p o i n t has d i s t a n c e 0 f r o m (O,O),(l,O). =

(O,O), (1,O)'

such t h a t xy

*

0.

So

= (1,O) and t h u s i s o f f o r m

l i n e x = 0 i s mapped under u i n t o t h e l i n e x = 0. ( ~ ' ~ 0 ) The . Consider a p o i n t (x,y)

In

The i n j e c t i v i t y o f u i m p l i e s

W. Benz

74

Hence u = xI

,v

*

= yl because o f (u,v)

(0,O).

We are now using t h e mapping 0 of s e c t i o n 2. (x,

l o

2)

1

(y,y)

0

= (:v(x), =

1 (v(y)' -j-' 0

f o r xy

*

($1

Thus (x,O)'

) for y

*

0.

By applying j o f s e c t i o n 2 we g e t

Now ( 5 ) i m p l i e s

Thus

and

= (cp(x),O).

*

0 it is

Also

Thus ( 0 , ~ ) ' = (0,

1 7) and hence V

0.

Consider xI ,x2 E K" such t h a t x1

For x

+

x2

*

$1

0 and consider x t K \ C0,lI.

Then

On mappings preserving a single L a d i s t a n c e A c c o r d i n g t o ( 6 ) we have v(x

(1-x)) = v(x)

t

v(1-x)

1 v ( 1 t ( - -1 ) = v ( 1 )

t

v(- -1

t

X

and

1

X

Thus ( 7 ) i m p l i e s 1 v(x)v(-) = X

But t h i s i s obviously a l s o t r u e f o r x = 1 Define

T

: K

r(X) =

I

+

L

.

K by means o f x * o for x = o

O

Thus -c i s i n j e c t i v e . r(x+y) = r(x)

+

For x t

1 0 we have T(X)T(T) = 1 .

T ( y ) f o r a l l x,y E K.

Because o f ( 6 ) t h i s i s t r u e i n case x,y,xty

Now assume x y

x = 0 o r y = 0.

We c l a i m moreover t h a t

+0

E

It i s a l s o g e n e r a l l y t r u e f o r

K".

and x t y = 0.

Thus x

+

0 and y = - x .

Now d i m p l i e s v ( y ) = - v ( x ) and hence T(X

+

y) =

T(0) =

0 = q(x)

A l t o g e t h e r we have t h a t 1 T(X)T(T) = 1 f o r a l l x

t

v ( y ) = T(X)

t

T(y).

i s a monomorphism o f t h e a d d i t i v e group o f K such t h a t

T

* 0.

By Hua's theorem (s.[ 21

, p. 324; t h e p r o o f 1 o c . c i t . a p p l i e s t o t h e p r e s e n t

s l i g h t l y more g e n e r a l s i t u a t i o n ) we t h u s g e t t h a t

T

We

i s a monomorphism o f K.

f i n a l l y p r o v e t h a t o i s a s e m i l i n e a r mapping o f t h e K-vectorspace K 2 . According t o j t h e mapping o i s a monomorphism o f K2.

(x,Y)'= f o r xy

* 0.

( T ( X ) , .(Y)) But t h i s e q u a t i o n i s a l s o t r u e i n case x y = 0.

( k x , ky)U Hence

w = u

Because o f ( 5 ) we have

c'

(r(kx),T(ky))

Thus f o r k E K

= T(~)(T(x)T , (Y)).

d' i s a s e m i l i n e a r mapping up t o a t r a n s l a t i o n .

t h e p r o o f o f theorem 1. theorem 1 a r e g i v e n by

T h i s completes

I t i s now t r i v i a l t o v e r i f y t h a t a l l t h e mappings

0

of

W. Benz

76 ( x . ~ ) + (a

T

(x)

(a

T

(Y) t b,

(x,Y)

+

where a,b,c E K , a

*

t

1 a 1

c)

b, -

T

(y)

a

T

(x) + c)

t

and

,

0.

BIBLIOGRAPHY 1. 2.

3. 4.

W . Benz, A Beckman Quarles Type Theorem f o r Plane Lorentz Transformations, b!ui,i?. z., 177 (1981), 101-106. W . Benz, V3rlesungen iiber Geometrie d e r AZgebren. Grundl. Bd. 197,

Springer-Verlag, New York 1973.

F. Rado, On the characterization of plane a f f i n e isometries, Resultate d. mat:^. , 3 (1980). 70-73. G . T a l l i n i , On a theorem by W. Benz characterizing plane Lorentz Transformations in J a e r n e f e l t ' s World. To appear in Jowlla2 of Geometry.

Mathematisches Seminar Bundesstrasse 55 2000 Hamburg 13 Federal Republic of Germany