On New Generalizations of Hilbert's Inequality

On New Generalizations of Hilbert's Inequality

Journal of Mathematical Analysis and Applications 248, 29᎐40 Ž2000. doi:10.1006rjmaa.2000.6860, available online at http:rrwww.idealibrary.com on On ...

100KB Sizes 1 Downloads 36 Views

Journal of Mathematical Analysis and Applications 248, 29᎐40 Ž2000. doi:10.1006rjmaa.2000.6860, available online at http:rrwww.idealibrary.com on

On New Generalizations of Hilbert’s Inequality Yang Bicheng Department of Mathematics, Guangdong Education College, Guangzhou, Guangdong 510303, People’s Republic of China E-mail: [email protected] Submitted by L. Debnath Received February 25, 2000

By introducing three parameters A, B, and ␭, we give some generalizations of Hilbert’s integral inequality and its equivalent form with the best constant factors. We also consider their associated double series forms. 䊚 2000 Academic Press Key Words: Hilbert’s inequality; weight function; ␤ function; weight coefficient.

1. INTRODUCTION If f and g are real functions, such that 0 - H0⬁ f 2 Ž t . dt - ⬁ and 0 dt - ⬁, then

H0⬁ g 2 Ž t .





H0 H0

f Ž x. g Ž y. xqy

dx dy - ␲



žH

f 2 Ž t . dt



H0

0

1r2

g 2 Ž t . dt

/

,

Ž 1.1.

where the constant factor ␲ is best possible. Its associated double series form is as follows: If  a n4 and  bn4 are sequences of real numbers such that 0 - Ý⬁ns 1 a2n - ⬁ and 0 - Ý⬁ns1 bn2 - ⬁, then ⬁



Ý Ý ns1 ms1

a m bn mqn

-␲



žÝ

ns1

1r2



a2n

Ý ns1

bn2

/

,

Ž 1.2.

where the constant factor ␲ is still best possible. Hilbert’s inequalities Ž1.1. and Ž1.2. are important in our analysis and its applications Žcf. w1, Chap. 9x.. In recent years, Hu w2x and Gao w3x gave two distinct improvements of Ž1.1., and Gao w4x gave Ž1.2. a strengthened version. By introducing a 29 0022-247Xr00 $35.00 Copyright 䊚 2000 by Academic Press All rights of reproduction in any form reserved.

30

YANG BICHENG

parameter ␭ g Ž0, 1x and estimating the weight function, Yang w5x gave Ž1.1. a generalization as ⬁



H0 H0

f Ž x. g Ž y.

Ž x q y.



␭ ␭ , 2 2

dx dy - B

ž /ž



H0

t 1y ␭ f 2 Ž t . dt



H0 t

1r2 1y ␭ 2

g Ž t . dt

/

,

Ž 1.3. where B Ž p, q . is the ␤ function. But w5x hasn’t proved that the constant factor B Ž ␭2 , ␭2 . Ž0 - ␭ F 1. in Ž1.3. is best possible. In this paper, we continue this work and make some generalizations of Ž1.3. by introducing three parameters, A, B, and ␭. We also give the associated generalizations of Ž1.2..

2. SOME NEW RESULTS ON HILBERT’S INTEGRAL INEQUALITY First, we define the weight function ␻␭, A, B Ž x . as

␻␭ , A , B Ž x . s



H0

1y ␭ r2

x

1

Ž Ax q By .

ž /



x g Ž 0, ⬁ . Ž A, B, ␭ ) 0 . .

dy,

y

Ž 2.1. Setting u s Ž By .rŽ Ax . in Ž2.1., we have

␻␭ , A , B Ž x . s s

Ž Ax .



H0

1y ␭

B Ž 1 q u. 1

Ž AB .

␭r2

B



x 1y ␭

1y ␭ r2

ž /

du

Au

1



H0

Ž 1 q u.



uy1q ␭ r2 du.

Ž 2.2.

Since the ␤-function B Ž p, q . possesses the explicit formulation Žcf. w5, p. 117 Ž10.x.

B Ž p, q . s



H0

t py 1

Ž1 q t .

pq q

dt

Ž p, q ) 0 . ,

Ž 2.3.

GENERALIZATIONS OF HILBERT’S INEQUALITY

31

by Ž2.2. we have

␻␭ , A , B Ž x . s

1

Ž AB .

␭ ␭ 1y ␭ , x , 2 2

x g Ž 0, ⬁ . Ž A, B, ␭ ) 0 . .

ž /

B

␭ r2

Ž 2.4. If A G B ) 0, ␭ ) 0, and 0 - ␧ - ␭r2, we ha¨ e

LEMMA 2.1. ⬁

H1

xy1 y ␧

H0Br Ax Ž

1

.



Ž 1 q u.

uŽ ␭y2y ␧ .r2 du dx s O Ž 1 .

Ž ␧ ª 0q . . Ž 2.5.

Proof. Since A G B ) 0, for x G 1, we have 0 - BrŽ Ax . F 1, and 1

Br Ž Ax .

H0

Ž 1 q u.

uŽ ␭y2y ␧ .r2 du ␭

Br Ž Ax .

H0

uŽ ␭y2y ␭ r2.r2 du s

4



B

␭r4

ž / Ax

.

Then we find that 0-



H1 4



xy1 y ␧

H0Br Ax Ž

␭r4

B

ž /



H1

A

1

.

Ž 1 q u.



xy1 y ␭ r4 dx s

uŽ ␭y2y ␧ .r2 du dx 2

4

␭ r4

B

ž /ž / ␭

.

A

Hence Ž2.5. is valid. The lemma is proved. THEOREM 2.1. Let f and g be real functions, ␭ ) 0, such that 0 H0⬁ t 1y ␭ f 2 Ž t . dt - ⬁ and 0 - H0⬁ t 1y ␭ g 2 Ž t . dt - ⬁. If A, B ) 0, we ha¨ e ⬁



H0 H0

f Ž x. g Ž y.

Ž Ax q By .



dx dy

␭ ␭ B , ␭r2 2 2 Ž AB . 1



H0

y ␭y1



H0



ž / žH ␭

dx

f Ž t . dt

dy -

1

Ž AB .



H0

0

2

f Ž x.

Ž Ax q By .

t

1y ␭ 2



B

1r2

t

1y ␭ 2

␭ ␭ , 2 2

g Ž t . dt

ž /

2



H0

/

; Ž 2.6.

t 1y ␭ f 2 Ž t . dt.

Ž 2.7.

32

YANG BICHENG

Inequalities Ž2.6. and Ž2.7. are equi¨ alent. Both the constant factor Ž1r Ž AB . ␭ r2 . B Ž ␭2 , ␭2 . in Ž2.6. and the constant factor Ž1rŽ AB . ␭ .? B Ž ␭2 , ␭2 .@ 2 in Ž2.7. are best possible. In particular, for ␭ s 1, if A, B ) 0, we ha¨ e

Ži. ⬁

f Ž x. g Ž y.



H0 H0

dx dy -

Ž Ax q By . ⬁

1r2

žH

H0

0

2

dy -

dx

Ž Ax q By .



f 2 Ž t . dt

␲2



H Ž AB . 0

1r2

g 2 Ž t . dt

/

, Ž 2.8.

f 2 Ž t . dt ;

Ž 2.9.

for ␭ s 2, if A, B ) 0, we ha¨ e

Žii. ⬁



Ž AB .

f Ž x.



H0 H0



f Ž x. g Ž y.



H0 H0

Ž Ax q By .

2

1

dx dy -

Ž AB .

ž



H0

1 t

f 2 Ž t . dt



H0

1 t

1r2

g 2 Ž t . dt

/

,

Ž 2.10. ⬁

H0 y H0

Ž Ax q By .



Ž Ax q Ay1 y .

-B

y

dy -

dx

f Ž x. g Ž y.



H0 H0

H0

2

1



Ž AB .

2

H0

1 t

f 2 Ž t . dt ;

Ž 2.11.

for ␭ ) 0, if A ) 0 Ž B s 1rA., we ha¨ e

Žiii.



2

f Ž x.



␭y1



H0

␭ ␭ , 2 2

t 1y ␭ f 2 Ž t . dt 2

y.



dx



H0

0

f Ž x.

Ž Ax q A

dx dy



ž / žH y1



dy - B

1r2

t 1y ␭ g 2 Ž t . dt

␭ ␭ , 2 2

ž /

2



H0

/

,

Ž 2.12.

t 1y ␭ f 2 Ž t . dt,

Ž 2.13. where the constant factors in Ž2.8. ᎐ Ž2.13. are still best possible.

GENERALIZATIONS OF HILBERT’S INEQUALITY

33

Proof. By Cauchy’s inequality, we have ⬁

f Ž x.



H0 H0

Ž Ax q By .

F

½



␭r2

Ž Ax q By .

y

Ž Ax q By .



x



Ž Ax q By .

␭ r2

Ž1y ␭ r2 .r2

ž /

dx dy

x

dx dy

y

y

␭r2

y

1y ␭ r2

ž /

g2 Ž y.



H0 H0

g Ž y.

ž /

f 2Ž x.



H0 H0 =

Ž1y ␭ r2 .r2

x

1r2

1y ␭ r2

ž /

dx dy

x

5

.

Ž 2.14.

If Ž2.14. takes the form of the equality, then there exist constants c and d such that Žcf. w7, p. 29x.

c

f 2Ž x.

Ž Ax q By .

x



1y ␭ r2

ž / y

g2 Ž y.

sd

Ž Ax q By .

y



1y ␭ r2

ž / x

a.e. in Ž 0, ⬁ . = Ž 0, ⬁ . . Then we have cf 2 Ž x . x 2y ␭ s dg 2 Ž y . y 2y ␭ a.e. in Ž0, ⬁. = Ž0, ⬁.. Hence we have cf 2 Ž x . x 2y ␭ s dg 2 Ž y . y 2y ␭ s constant a.e. in Ž 0, ⬁ . = Ž 0, ⬁ . , which contradicts the facts that 0 - H0⬁ t 1y ␭ f 2 Ž t . dt - ⬁ and 0 H0⬁ t 1y ␭ g 2 Ž t . dt - ⬁. Hence Ž2.14. takes the form of strict inequality. By Ž2.1., we have ⬁



H0 H0

-

f Ž x. g Ž y.

Ž Ax q By .

½



H0



dx dy

␻␭ , A , B Ž x . f 2 Ž x . dx



H0

1r2

␻␭ , B , A Ž y . g 2 Ž y . dy

5

. Ž 2.15.

In view of Ž2.4., we have Ž2.6.. Since H0⬁ t 1y ␭ f 2 Ž t . dt ) 0, then there exists a constant T0 ) 0 such that < .< for any T ) T0 , H0T t 1y ␭ f 2 Ž t . dt ) 0. Setting g Ž y, T . s y ␭y1H0T Ž AxfqŽ x By . ␭ dx,

34

YANG BICHENG

y g Ž0, T xŽT ) T0 ., by Ž2.6., we have 0-

s

-

2

T 1y ␭ 2

y

H0

s

g Ž y, T . dy

T

½H

y ␭y1

H0

0

T

H0 H0

Ž Ax q By .

1

Ž AB .

␭ ␭ , 2 2



dx

dy

5

dx dy



2

ž /

B



2

f Ž x . g Ž y, T .

T

Ž Ax q By .

2

2

f Ž x.

T

T 1y ␭ 2

x

H0

T 1y ␭ 2

f Ž x . dt

H0

y

g Ž y, T . dy.

Ž 2.16.

Thus we find T

H0

y

F s

2

f Ž x.

T

␭y1

H0

Ž Ax q By .



dx

dy

T 1y ␭ 2

y

H0

T

y

H0

g Ž y, T . dy

␭y1

1

-

Ž AB .



2

f Ž x.

T

H0

Ž Ax q By .

B

␭ ␭ , 2 2

2

ž /



dx

dy

T 1y ␭ 2

H0

x

f Ž x . dx.

Ž 2.17.

Since 0 - H0⬁ t 1y ␭ f 2 Ž t . dt - ⬁, by Ž2.17., it follows that 0 H0⬁ y 1y ␭ g 2 Ž y, ⬁. dy - ⬁. Hence by Ž2.6., when T ª ⬁, neither Ž2.16. nor Ž2.17. takes equality. We have Ž2.7.. On the other hand, if Ž2.7. is valid, by Cauchy’s inequality we have ⬁



H0 H0

s

F

f Ž x. g Ž y.

Ž Ax q By . ⬁

dx dy



y Ž ␭y1.r2

H0



½H

0

y ␭y1



H0



H0

f Ž x.

Ž Ax q By .

y Ž1y ␭.r2 g Ž y . dy

dx

1r2

2

f Ž x.

Ž Ax q By .





dx

dy



H0

y 1y ␭ g 2 Ž y . dy

5

. Ž 2.18.

Whence by Ž2.7. we have Ž2.6.. It follows that Ž2.6. and Ž2.7. are equivalent.

GENERALIZATIONS OF HILBERT’S INEQUALITY

35

For 0 - ␧ - 12 , setting f␧ Ž t . as f␧ Ž t . s t Ž ␭y2y ␧ .r2 , for t g w1, ⬁.; f␧ Ž t . s 0, for t g Ž0, 1., we find H0⬁ t 1y ␭ f␧2 Ž t . dt s 1␧ . If there exists A, B, and ␭ ) 0 such that the constant factor Ž1rŽ AB . ␭ r2 . B Ž ␭2 , ␭2 . in Ž2.6. is not best possible, without loss of generality suppose that A G B; then there exists a positive number K - Ž1rŽ AB . ␭ r2 . B Ž ␭2 , ␭2 . such that Ž2.6. is valid by changing Ž1rŽ AB . ␭ r2 . B Ž ␭2 , ␭2 . to K. Particularly, we have ⬁

f␧ Ž x . f␧ Ž y .



H0 H0

Ž Ax q By .





dx dy - K

t 1y ␭ f␧2 Ž t . dt s Kr␧ .

H0

Ž 2.19.

Since 1



H0

Ž 1 q u.



uŽ ␭y2y ␧ .r2 du s B

␭ ␭ , q o Ž 1. 2 2

ž /

Ž ␧ ª 0q . ,

setting u s Ž By .rŽ Ax ., by Ž2.5., we find ⬁



H0 H0

s s s

f␧ Ž x . f␧ Ž y .

Ž Ax q By . ⬁

H1

dx dy



1

Ž AB .



␭r2

H1

␭r2

½

1

Ž AB .

H1



H1



s

Ž AB . 1

1

␭r2

1



xy1 y ␧

1



H0

Ž 1 q u.

H0Br Ax Ž

.

B



␭r2

B





uŽ ␭y2y ␧ .r2 du dx

uŽ ␭y2y ␧ .r2 du dx 1

Ž 1 q u.



␭ ␭ , q o Ž 1. y O Ž 1. 2 2

½ ž /

1

␧ Ž AB .

dy dx



HBrŽ Ax . Ž 1 q u .

xy1 y ␧

H1

1

Ž Ax q By .

xy1 y ␧

y s

y Ž ␭y2y ␧ .r2



x Ž ␭y2y ␧ .r2

␭ ␭ , q o Ž 1. . 2 2

ž /

uŽ ␭y2y ␧ .r2 du dx

5

5 Ž 2.20.

Since for ␧ Ž) 0. small enough we have wŽ1rŽ AB . ␭ r2 . B Ž ␭2 , ␭2 . q oŽ1.x ) K, by Ž2.20., in this case we obtain H0⬁H0⬁Ž f␧ Ž x . f␧ Ž y .rŽ Ax q By . ␭ . dx dy ) Kr␧ , which contradicts Ž2.19.. Hence the constant factor Ž1rŽ AB . ␭ r2 . B Ž ␭2 , ␭2 . in Ž2.6. is best possible. Since Ž2.6. and Ž2.7. are equivalent, we may conclude

36

YANG BICHENG

that the constant factor in Ž2.7. is still best possible; otherwise, using Ž2.18., we may get a contradiction. Since B Ž 12 , 12 . s ␲ , and B Ž1, 1. s 1, by Ž2.6. and Ž2.7. we have Ž2.8. ᎐ Ž2.11.. The theorem is proved. Remark 1. For A s 1, ␭ ) 0, inequality Ž2.12. changes to Ž1.3. and Ž2.13. changes to the equivalent form of Ž1.3. as



H0

y

␭y1

H0

2

f Ž x.



Ž x q y.



dy - B

dx

␭ ␭ , 2 2

2

ž /



H0

t 1y ␭ f 2 Ž t . dt. Ž 2.21.

Inequalities Ž2.12. and Ž2.6. are generalizations of Ž1.1. and Ž1.3..

3. SOME NEW RESULTS ON THE ASSOCIATED DOUBLE SERIES FORM Define the weight coefficient ␼␭, A, B Ž m. as ⬁

␼␭ , A , B Ž m . s

m

1

Ý ns1

Ž Am q Bn .



1y ␭ r2

ž / n

Ž m g N . Ž A, B, ␭ ) 0 . . Ž 3.1.

For ␭ g Ž0, 2x, 1 y ␭2 G 0, by Ž2.4. we have

␼␭ , A , B Ž m . s

⬁ ms1

-



H0

m

1

Ý

B ␭ Ž AmrB q n .

B ␭ Ž AmrB q y .

n

1y ␭ r2

ž / ž / . ␭

1

Ž AB

1y ␭ r2

ž /

m

1

s ␻␭ , A , B Ž m . s



␭ r2

y

B

dy

␭ ␭ , m1y ␭ 2 2

ŽmgN.. Ž 3.2.

THEOREM 3.1. Let 0 - ␭ F 2 and  a n4 and  bn4 be sequences of real numbers such that 0 - Ý⬁ns 1 n1y ␭a2n - ⬁ and 0 - Ý⬁ns1 n1y ␭ bn2 - ⬁. If A, B

GENERALIZATIONS OF HILBERT’S INEQUALITY

37

) 0, we ha¨ e ⬁



a m bn

Ý Ý

Ž Am q Bn .

ns1 ms1

1

-



Ž AB .

B ␭ r2

␭ ␭ , 2 2

ž /ž

1r2





ns1

ns1

Ý n1y ␭a2n Ý n1y ␭ bn2

/

,

Ž 3.3. ⬁



ns1

2

am

Ý n ␭y1 Ý ms1

Ž Am q Bn .

1

-



Ž AB .

B



␭ ␭ , 2 2



2

Ý n1y ␭a2n . Ž 3.4.

ž /

ns1

The inequalities Ž3.3. and Ž3.4. are equi¨ alent. Both the constant factor Ž1rŽ AB . ␭ r2 . B Ž ␭2 , ␭2 . in Ž3.3. and the constant factor Ž1rŽ AB . ␭ .w B Ž ␭2 , ␭2 .x2 in Ž3.4. are best possible. In particular, for ␭ s 1, if A, B ) 0, we ha¨ e

Ži.





a m bn

-

Ý Ý Ž Am q Bn .

ns1 ms1 ⬁





Ž AB .





Ý Ý ns1 ms1

a m bn

Ž Am q Bn .





Ýn Ý ns1



Ý ns1

␲2

/

,

Ž 3.5.



Ž AB .

ms1

-

2



1

Ž AB .

žÝ

Ž Am q Bn .

2

1

ns1

2

am

a m bn

Ý Ý ns1 ms1

ns1

bn2

Ý a2n ;

Ž 3.6.

ns1

-

n



a2n

Ý

1

Ž AB .

ns1

n



1

Ý

2

1r2

1

ns1

n

bn2

/

,

a2n ;

Ž 3.7. Ž 3.8.

for 0 - ␭ F 2, if A ) 0 Ž B s 1rA., we ha¨ e

Žiii.

Ý

žÝ

ns1

-

1r2



a2n

for ␭ s 2, if A, B ) 0, we ha¨ e

Žii.



1r2

2

am

Ý Ý ns1 ms1 Ž Am q Bn .





Ž Am q Ay1 n .

n ␭y1



Ý ms1



-B

␭ ␭ , 2 2



ž /ž Ý

n1y ␭a2n

2

␭ ␭ , 2 2

am y1

Ž Am q A n .



ns1

- B

1r2



n1y ␭ bn2

Ý ns1

ž /

2



/

, Ž 3.9.

Ý n1y ␭a2n , Ž 3.10. ns1

where the constant factors in Ž3.5. ᎐ Ž3.10. are still best possible.

38

YANG BICHENG

Proof. By Cauchy’s inequality, we have ⬁



a m bn

Ý Ý

Ž Am q Bn .

ns1 ms1

s





am

Ý Ý

bn

= ⬁



Ý Ý

½



Ý Ý =





½Ý



ms1

m

1r2

5

Ž1y ␭ r2 .

ž /



n

n

Ž Am q Bn .

␼␭ , B , A Ž m . a2m

ž / m

bn2

Ý Ý

Ž1y ␭ r2 .

n

Ž Bn q Am .

ns1 ms1

s

n

a2m

ms1 ns1 ⬁

ž /



Ž Am q Bn .



Ž1y ␭ r2 .

m

bn2

ns1 ms1

s

m

Ž Am q Bn .

ms1 ms1

=

Ž1y ␭ r2 .r2

a2m

½Ý Ý ⬁

n

ž /

␭r2



ž /

␭r2

n

Ž Am q Bn .

Ž1y ␭ r2 .r2

m

Ž Am q Bn .

ns1 ms1

F





Ž1y ␭ r2 .

ž / m

1r2

5

1r2



␼␭ , A , B Ž n . bn2

Ý ns1

5

.

By Ž3.2., we have Ž3.3.. By the argument used to derive Ž2.7. and the equivalence of Ž2.6. and Ž2.7. we have Ž3.4., and we can conclude that Ž3.3. and Ž3.4. are equivalent. For 0 - ␧ - ␭r2, setting a ˜n as a˜n s nŽ ␭y2y ␧ .r2 Ž n g N ., then we obtain 1



s

1



H1

s1q

t

1q ␧

dt -

ns2

Ý



n1y ␭a ˜2n s

Ý

ns1



Ý



1 1q ␧

n

-1q

ns1

1



H1

t

1q ␧

1 1q ␧

n

dt s 1 q

and ⬁

1

ns1



Ý n1y ␭a˜2n s

q O Ž 1.

Ž ␧ ª 0q . .

1



GENERALIZATIONS OF HILBERT’S INEQUALITY

39

If there exist A G B ) 0 and 0 - ␭ F 2 such that the constant factor Ž1rŽ AB . ␭ r2 . B Ž ␭2 , ␭2 . in Ž3.3. is not best possible, then there exists a positive number K - Ž1rŽ AB . ␭ r2 . B Ž ␭2 , ␭2 . such that Ž3.3. is valid by changing Ž1rŽ AB . ␭ r2 . B Ž ␭2 , ␭2 . to K. Particularly, we have ⬁



a ˜m a˜n

Ý Ý ns1 ms1

Ž Am q Bn .



-K



Ý n1y ␭a˜2n s K ns1

s

1



1

ž



q o Ž 1.

/

Ž K q o Ž 1. . .

Ž 3.11.

Since by Ž2.20. we have ⬁



Ý Ý ns1 ms1

a ˜m a˜n

Ž Am q Bn .



s





Ž mn .

Ý Ý ns1 ms1

) s



Ž Am q Bn .

H1

x Ž ␭y2y ␧ .r2

1

1

␧ Ž AB .

Ž ␭ y2y ␧ .r2

␭r2

B

y Ž ␭y2y ␧ .r2



H1



Ž Ax q By .



dy dx

␭ ␭ , q o Ž 1. , 2 2

ž /

Ž 3.12.

it is obvious that inequality Ž3.12. contradicts Ž3.11., for ␧ Ž) 0. small enough. Hence the constant factor Ž1rŽ AB . ␭ r2 . B Ž ␭2 , ␭2 . in Ž3.3. is best possible. We may show that the constant factor in Ž3.4. is best possible by the equivalence of Ž3.3. and Ž3.4.. The theorem is proved. Remark 2. For A s 1, 0 - ␭ F 2, inequalities Ž3.9. and Ž3.10. change to the following two new equivalent inequalities with the best constant factors: ⬁



Ý Ý ns1 ms1

a m bn

Ž m q n.



Ýn ns1

␭ y1





Ý ms1

-B

␭ ␭ , 2 2



ž /ž Ý 2

am

Ž m q n.

ns1



- B

1r2



n1y ␭a2n

n1y ␭ bn2

Ý ns1

␭ ␭ , 2 2

ž /

2

/

; Ž 3.13.



Ý n1y ␭a2n . Ž 3.14. ns1

Inequalities Ž3.3., Ž3.9., and Ž3.13. are generalizations of Ž1.2.. Inequality

40

YANG BICHENG

Ž3.13. is similar to the new inequality Žcf. w8x. ⬁



Ý Ý ns0 ms0

-B

a m bn

Ž m q n q 1. ␭ ␭ , 2 2





ž /½ Ý ž ns0

nq

1 2

1y ␭

/



a2n

Ý ns0

ž

nq

1 2

1r2

1y ␭

/

bn2

5

Ž 0 - ␭ F 2 . . Ž 3.15. REFERENCES 1. G. H. Hardy, J. E. Littlewood, and G. Polya, ‘‘Inequalities,’’ Cambridge Univ. Press, Cambridge, 1952. 2. Hu Ke, On Hilbert’s inequality, Chinese Ann. of Math. 13B, No. 1 Ž1992., 35᎐39. 3. M. Gao, Tan Li, and L. Debnath, Some improvements on Hilbert’s integral inequality, J. Math. Anal. Appl. 229 Ž1999., 682᎐689. 4. M. Gao, A note on Hilbert double series theorem, Hunan Ann. Math. 12, Nos. 1᎐2 Ž1992., 142᎐147. 5. B. Yang, On Hilbert’s integral inequality, J. Math. Anal. Appl. 220 Ž1998., 778᎐785. 6. Z. Wang and D. Guo, ‘‘An Introduction to Special Functions,’’ Science Press, Beijing, 1979. 7. J. Kuang, ‘‘Applied Inequalities,’’ Hunan Education Press, Changsha, 1992. 8. B. Yang and L. Debnath, On a new generalization of Hardy᎐Hilbert’s inequality and its applications, J. Math. Anal. Appl. 233 Ž1999., 484᎐497.