cosh-1 ½gl dO(dql/q°),
(29)
o 2r~
Ii = S exp(zn~q? + •naqi a)cosh -1 821 dq~(dql/q°l), (30) 0
and where (14) also has been used. In order to carry out these four-fold integrations (27)-(30) we introduce the new variables t x = sinh ½Zl sin 01 cos ¢, y = sinh ½21 sin 01 sin qs,
(31)
z = sinh ½Zl cos 01. The connexion between the corresponding differential elements is found by calculating the Jacobian of this transformation. The result is dx dy dz = ½sinh 2 ½21 cosh ½Z1 sin 01 d21 d01 d # .
(32)
Calculation of the Jacobian of the t r a n s f o r m a t i o n (11) gives the connexion
[c/. (1.56)] dql/q ° == sinh2 %1 sin 01 d21 d01 d~l.
(33)
W i t h (32) and (33) we find cosh-1 ½21 dq)(dql/q °) = 8 d~l dx dy dz.
(34)
Next we introduce the new variable of integration z = (1 + x 2 + y2).~ sinh ½t.
(35)
This gives cosh-1 ½21 dq~(dql/q °) = 4(1 + x 2 + y2).t cosh ½t dcp1 dt dx dy.
(36)
In the following two sections we shall calculate the integrals (27)-(30) using the new variables t, x and y.
3. The calculation o/the integral I'. With the help of (10), (11), (31) and (35) we find
n~q~ = --(1 -: x 2 + y2) cosh(t -- 2) -- (x2 - / y 2 ) cosh 2.
(37)
F r o m the law of conservation of energy m o m e n t u m (IV.7) and the defit T h e v a r i a b l e z as it is i n t r o d u c e d in eq. (31) will o c c u r o n l y in t h e eqs. (32), (34) a n d (35). I n all o t h e r f o r m u l a e z = m c 2 / k T Iv. (IV.34)].
RELATIVISTIC KINETIC GAS THEORY. VI
37
nition of the relative m o m e n t u m (IV.6), we obtain t
t
q, = ½(q, + q l , - - g J m c ) ,
(38a)
qia = ½(q. + q l . + g'~/mc).
(38b)
W i t h (9)-(11), (13), (23), (24), (31), (35) and (38a), we find nc,q '~ = --(1 + x 2 + y2) sin 2 ½0 cosh(t -- Z) -- (x2 + y2) sin 2 ½0 cosh z
(39)
-- x sin 0 sinh X -- c°s2 ½0 cosh Z. Using the abbreviations z' = z + 4 s i n
2½0;
4'=~cos
2½0,
(40)
we can write the argument of the exponential of the integrand of (29) in the form zn~q~ + ~naq'~ -- --z'(1 + x 2 + y2) cosh(t -- ;~) z,(x 2 + y2) cosh ;~ -- 4x sin 0 sinh z -- 4' cosh ;~.
_
(41)
Note that the argument of the exponential is independent of 91- W h e n we insert (36) and (41) into (29), we find I ' = 4{exp(--4' cosh 2)}×
T --co
_
~ --co
co
2r~
I
f exp{--z'(1 + x 2 + y 2 ) c o s h ( t - ) ~ )
--oo
0
z,(x 2 + y2) cosh g -- ~x sin 0 sinh X} ×(1 + x 2 + y2)½ cosh it dgl dt dx dy.
(42)
' ' After having expressed the scalar productin terms of x, y, t and 91 with the help of (9)-(I 1), (13), (16), (17), (24), (31), (35) and (38a), we carry out the integration over 91. The terms containing either sin 91 or cos 91 vanish, since the integration is carried out over a whole period. The terms which do not contain 91 give a factor 2~, while the terms containing either cos 2 91 or sin 2 91 yield a factor r~. In this w a y we arrive after a lengthy calculation at
I'=
8~ e x p ( - - 4 ' cosh 2) 7 --co
_
? --oo
~ exp{--z'(1 + x 2 + - y 2 ) c o s h ( t - Z) --co
z,(x 2 + y2) cosh Z -- 4x sin 0 sinh )~} P ( x , y, t)
× (1 + x 2 + y2)~ cosh ½t dt d x dy,
(43)
P ( x , y, t) =~ (sinh 2 Za -- ½ sinh 2 ;~) Q(x, y, t).
(44)
where
38
W . A . van L E E U W E N AND S. R. de GROOT
The factor Q(x, y, t) in (44) is given b y
Q(x, y, t) - cos 4 ½0 + sin 4 ½0(x 2 + y2)2 + cotgh e X sine Oxe + sinh-e Z sin4 ½0(1 + x 2 + y2)2 sinhe(t _ X) + 2 sin e ½0 cos 2 ½0(x 2 + yz) + 2 cotgh Z cose ½0 sin Ox -- 2 sinh -1Z sin2 1 0 c°s2 ½0(1 q- x u + ye) sinh(t -- Z) + 2 cotgh Z sin2 ½0 sin Ox(x e + yZ) - - 2 sinh-1Z sin4 ½0(x2 + Y2)( 1 + xe + Y~) sinh(t -- Z) -
-
2 sinh -e Z cosh Z sin2 ½0 sin Ox(1 + x 2 q- y.Z) s i n h ( / - - Z)
-- sinh-2 Z sin4 ½0( xe q- y2) (1 q- x 2 q- y2) (1 + cosh t) -- ½sinh-2 X sin2 0(1 + x 2 + y'~) cosh ') ½t + ½ sinh-2 Z sin2 0(1 + x e) -
-
sinh-2 Z sine 1 0 sin Ox(1 -- x 2 + ye) sinh t.
(45)
L e t us introduce the abbreviations b -- z'(1 + x 2 + y2), if = cosh ½g, K =- cos 10,
(46) .9°
sinh ½Z,
i ~ = sin ~0.
(47)
(48)
T h e expression (43) m a y then be r e w r i t t e n I ' -- 8n(z')-~ e x p { - - z ' -- 2'(1 + 29o2)}×
II
dx dy exp{--2z'ife(x 2 + ye) _ 42Kagor~x}
× eb bt I dt e x p { - - b cosh(t -- Z)} cosh ½tQ(x, y, t),
(49)
where also (44) and the relation
-- sinh2 Za -- ½ sinhe Z,
(50)
which follows from (9), (10) and (16), h a v e been used. W i t h the abbreviations (46)-(48), the expression for Q(x, y, t) (45) becomes Q(x, y, t) = K4 @ o-4(x 2 ~- y2)2 _@ o.eK2(1 _~_ 49o2 ~_ 4,~g4) ,~g-2if-2x2 + l(z') -e a49O-2~-eb2 sinhe( t -- Z) + 2a2K2( x2 + y2)
+ 2aKa(1 + 250 e) 9o-l~f-lx -- (z') -1 o'2K2~90-lif-lb sinh(t -- X) + 2aaK(1 + 29o2) . ~ - l i f - l x ( x 2 + ye)
RELATIVISTIC KINETIC GAS THEORY. VI _
_
-
-
39
(Z')-I a4~-l(~-l(x2 + y2) b sinh(t -- Z) (z')-I aaK(1 + 25¢2) 5a-2~-'~xb sinh(t -- •)
__ ¼(g')--i {74~-2(~--2(X2 _~ y2) b(1 + cosh t) - - ¼(Z') -1 0"2K2,9°-2(~-2b(1 -~- c o s h
t)
+ 10"2/<2,.~-2~--2
(51)
+ ½a2K25g-2(6~-2X2 -- l(z')-i aaK,Sa-2c6~-2xb sinh t. It is convenient to introduce the operators St and Sxy by St[g(t)] =- (27:) -'~ b~ e ~ cg-1 T dt exp{--b cosh(t -- Z)} cosh(½t) g(t)
(52)
-co
Sxy[h(x, y)] -- 2=-lz-2(z') 8 ~6 exp(_2~2a2K25¢2/z')
×
~
~ dx dy exp{--2z'~e(x 2 + y2) _ 42aK2f~} h(x, y).
(53)
-co -co
In the appendix it will be shown t h a t Still = 1, St[b sinh(t -- Z)] : ½5p%~-1, St[ b2sinh2( t - Z ) ] = z '
1 -}-~-z,+X 2+y2
St[b(l + c o s h t ) ] : 2 z '
~2
St[b sinh t] = 2z'
APW +
~ z'
)
,
3 } 4z' + ( x 2 + y ' a ) ~ 2 ' 5" 4 z ' ~ + (x~ + y'>) ~
and Sxy[l] :
<~4, z'
( z 'z
z'
S~u[x2 + y2] = ½7 ~ + k ~ 1
Sxv[(x 2+y2)2] = ~2z Z 2
+ \~
+ 2
.7,'
~ K2
2 --z + 1] ~ - y,2~2,
z'
z2 Z
2 -F
z
z' ] a 2
Z2 ~ K4
4--z + 6 - 4-Z + 7 ~ ] ~ - ~4, Z'2 / &" Z2 (~
5 ~'z
}
'
(54)
40
W.A.
l
van LEEUWEN
Z'
( Z '2
S~v[x2]- 4 z2 w +
Sxv[X(X2 +
y2)] =
A N D S. R. d e G R O O T
Z'
\ ~ - - 2 - -z + i ]~ ~a2 s ~ w , z
z2
(z z' z'" ~ ~3 + ~z - 3 + 3--z + --z2 / --~3 9°~"
(55)
The factor in St (52) has been chosen such t h a t St[l] -~ 1. The factor in the integral operator Sxy (53) is such t h a t if we write I ' (49) with the help of St and Sxv:
I' =/'Sxy[St{Q(x, y, t)}],
(56)
the f a c t o r / ' is equal to ]' -- (2r:)~ z2(z ') -~ ~ - 5 exp{--(z + 2) -- 22'zSe2/z'}(a~a~}(q"q~).
(57)
We have chosen to write /' separately for later convenience. Taking together the 102 terms resulting from the 15 integrals of (56), we find with the help of (51), (54) and (55) the result I'
=
1'[½•2(3K2
--
~2) + ~z-l~2(K2 + ~z-la2)
@ K2{3K2~q~2 -r- z-lo'2( ~5#2 - - ~)}(z/z') dr- K4oG°2(~ 2 - - ½)(Z/Z')2].
(58)
Note t h a t all terms with z' in the n u m e r a t o r have vanished.
4. The calculation o/I~, I1 and I. Now t h a t we have obtained I', we m a y calculate the remaining integrals I i , I1 and I relatively easily since we are already in possession of the m a t h e m a t i c a l material needed. First we note t h a t we m a y obtain I i (30) from I' (29) by replacing q~ by qiu, or, in view of (38a, b), by replacing g~ by --g~. This can also be achieved b y replacing O and ~b in (24) with n -- O a n d r: + ~b, respectively. This replacement a m o u n t s to the interchange of a and K in (48), so t h a t we m a y also obtain I i from I' by interchanging a and K in (58). In this way we find I i -- 11[½~2(3~ 2 -- ~2) + ~z-lK2(~2 + _~z-lK2) ~ - O'2{3(12~ 2 -4- z - - l t ~ 2 ( ~ 2 - -
7)}(Z/Zl) -~- Cr4oG°2(,.9a2
--
1)(Z/Zl)2],
(59)
where /i = (2~)~ z2(zl) -~ ~ - 5 exp{--(z + ~) -- 221z~2/Z'l}(a,a,)
(6o)
zi=z+2cos
(61)
210;
21=2sin2½0
RELATIVISTIC KINETIC GAS THEORY. VI
41
[c/. (40) and (57)j. The c o m p u t a t i o n of I1 (28) proceeds analogously to that of I'. We find
I1 = / 1 T x y [ T t { R ( x , y, t)}~,
(62)
TtEg(t)] =-- (2~)-t d½ eaCK-1 ~o dt exp{--d cosh(t -- %)} cosh(½t) g(t),
(63)
--oo
d --= (z + 2)(1 + x 2 + y2),
(64)
Tzv[h(x, y)J =-- 2~-lz-2(z + 2) z c~6 ×
II
dx dy exp{--2(z + 2) ff"{x 2 + y2)} h(x, y),
(65)
R(x, y, t) =~ }(z + 1) -1 5:-2
_
6a-lC~-l(z + 2)-1 (x 2 + y2) d sinh(t -- Z)
-- ~(z -f- 2) -1 Sf-zcK-Z(x2 -t- y2) d(1 + cosh t), /1 =---(2~)I z2(z + 2)-½~ -5 exp{--(z + 2)}(a/,a,>(qUq,>.
(66) (67)
Comparison of (46), (52) with (53) and (63), (64) with (65) shows t h a t expressions for T¢[...3 and Txv[...J are obtained from those for St[...J (54) and Sxu[...J (55) by setting K = 0 and replacing of z' by z + 4. Using these expressions for Tt[...] and T~v[...3, we find from (62) and (66), that I1 =- 3/1/16z 2.
(68)
Making use of the first expression of (54) we can evaluate immediately (27). This gives I ----- (27:)t z-~Cd-1 exp(--z -- 2 cosh %)(aua~)(quqv).
(69)
We shall make use of the integrals 1 (69), 11 (68), I' (58) and I i (59) to solve the eigenvalue problem for tensor eigenfunctions in the following section.
5. The tensor pseudo-eigenvalue equation. Let us introduce the new parameters s -= 2/(~ + z),
s' = K2s,
s l = ~2s.
(70)
The generating function of the Laguerre polynomials is a) WP(z, s) = (1
--
s -(p+I))
e -'s/(1-s).
(71)
The connexion with the Laguerre polynomials is given by z) (n l) -1 {~n~p~(r, s)/~sn},=o = L~(r).
(72)
Insertion of (58), (59), (68) and (69) into (26) followed by multiplication of
42
W . A . van LEEUWEN AND S. R. de GROOT
b o t h sides of (26) with mZc2eZ/(1 - - s) ~ and use of (IV.30, 34), (4), (9), (10) and (71), yields 5e [~o~(7-,s) (aua~'/
(73)
0
where T(7-, s) -- (1 + z-17- + ~z-27-2) W~(7-, s) + ~ z - 2 + ( - ~ K 4 + ½K~ - Iz-1~27- + Iz-17- _ ~z-'~2 + ~z-1~4 _ ~ z - 2 ~ 4 _ l z-2~2~ _ Iz-27-2) ~ ( ~ , s') + ~(z-17- + ½z-27-2 _ ]z-la27- + Iz-2~27- -- ~z-laz) ~(7-, s')
+ ~4(z-17- _ z-27-2) ~0~(7-,s') + ( _ ~.~4 + 1~2 _ ~z-1~2~- + ~z-17- _ ~z-1,~2 + ~z-l,,4 _ ~ z - 2 ~ 4 _ ~z-2K27- _ ¼z-27-2) ~(7-, sl) + ~2(z-1~ + ~z-27-2 _ ~z-1~27- + ~z-2~27- _ ~ z - l ~ ) ~ ( ~ , si) + ¼K4(z-17- -- z-27-2) ~(7-, s~).
(74)
Now we note t h a t we can eliminate
(75) we arrive, after having differentiated (73) and (74) n times with respect to s, at the expression [L~(7-)
× [{I(3en+2 -- en+l) -- ~ z - l ( 7 e n -- 19en+l + 12en+2) + ~z-2(en
- - 2en+l + en+2 -- (~onen) -- ¼z-17-(en - - 5en+~)
@ Iz-27-(en -- en+l) @ ¼z-27-2en} L~(r)
+ {~Z-l(7 ---
-
1Z-27-2(en
4z-17-)(en --
--
2en+l -]- en+2) --
-lz-17-(en
--
4en+l -~- 3en+2)
en+l)} L ;n(7-)
¼z-17-(l -- z - l r ) ( e n -- 2en+l + en+2) L~(7-)I.
(76)
Using the relations 3) L~ +1(7") =
~ L~m(*), m-O
(77)
R E L A T I V I S T I C K I N E T I C GAS T H E O R Y . VI
43
• L~+I(T) = (~" -- n) L~(T) + (n + P) ~n-l~rP 17~,,
(78)
~'LPn+I(T) ---~ (n -~- p -~- 1) LnP(T) -- (n -~- 1) Ln~+m('r),
(79)
for the associated Laguerre polynomials, we can eliminate the terms containing • or r 2 as a factor, as is shown in section 2 of the appendix. We then obtain the tensor pseudo-eigenvalue equation: ~[L~(T)] = (1 + ½Z--IT)-~ '~ + ¼Z-1 [(n + ~)(en -- Sen+l)Ln_I(T i × [1(3en+2 - - en+l) L ~(~) )
3- {(2n -- 1) en+l + 3(2n + 5) en+2} L~(T) + (n + l)(e.+l
5e.+2) Ln+I(*)~ + al,z-Z[(2n + 3)(2n + 5) enL~_2(, ) -
-
-- (21, + 5){4nen + 2(2n + 5) en+a}L~_m(, ) + {(--3~0n + 4n 2 + 4n + 3) en + 2(8n 2 + 28n + 1 l) en+l
+ 2(2n2 + 12n + 19) en+2}L~('r) -- 4(n + 1){(2n + 1) en+l + (2n + 7) en+2} Ln+I(T ~ ) + 4(n + 1)(n + 2) en+zL~+ 2(~')1]
(80)
This equation is used to determine the viscosity.
6. The viscosity/or a gas o] Maxwellian molecules. H a v i n g obtained the tensor pseudo-eigenvalue equation (80), we are in a position to solve the integral equation (1), which reads [CI = G ,
(81)
where C is in the function to be determined, and where
G :
-- 1/kT.
(82)
One m a y verify that G satisfies the solubility conditions. Since the set of associated Laguerre polynomials L~ is complete, we can t r y oo
C :
~, , Y~ cn L ,At},
(83)
n=0
and write oo
(1 + ½,-17)0 C =
Z g.L2(*). n=0
(84)
F r o m (82) and (84) we find, up to order z-i: go = -- (1 + ~ z -1)/kT,
g . -- 0
(n > 2).
gl = ---~z-1/kT,
(8s)
44
W.A. van LEEUWEN AND S. R. de GROOT
If now (85) and (84) are inserted into the pseudo-eigenvalue equation (80) we find, by identification of the coefficients of Ln(T), the recursion relations ~(3en+2 - - en+l) c,,
+ ¼z-l[(n @ ~)(en+l -- Sen+2) Cn+X + {(2n -- 1) en+x + 3 ( 2 n + 5) en+2} Cn + n ( e n - - 5en+j c n - l l
-~- l~6Z-2[(2n -~- 7)(2n + 9) en+2Cn+2 - - (2n q- 7){4(n + 1) en+l + 2(2n + 7) en+2} Cn+l @ {(--3b0n @ 4n 2 -~- 4n + 3) en + 2(8n 2 + 28n + 11) en+l + 2(2n 2 + 12n + 19) en+2}cn --
4 n { 2 n e n + (2n + 5) en+l} Cn-1
-p 4(n -- 1) nenCn-2] = gn
(n :
O, 1 , 2 , . . . ) .
(86)
The first of these recursion relations (n = 0) contains the three u n k n o w n coefficients co, Cl and c2. To obtain one particular set of coefficients Cn which satisfy (86) we proceed in the same m a n n e r as in section 5 of article IV of this series. First we determine the non-relativistic solution by neglecting in (86) the terms of order z -1 and z -2. This gives for the non-relativistic a p p r o x i m a t i o n gn to the coefficients Cn: Cn :
2gn/(3en+2 - - en+l)
(n : 0, 1,2 . . . . ),
(87)
where gn is the non-relativistic limit of gn. The first approximation to the coefficients Cn can now be found b y inserting these values into the terms of (86) which are of order z -1 and z -~ and by solving the resulting set of equations. If this procedure is continued we find a solution of (86) as a power series in z -1. We carry out the first step of this programme by substitution of (87) and (85) into the terms of ( 8 6 ) w h i c h are of order z -1, while we neglect the terms of order z-~. Solving the resulting set of equations we find, up to order z -1 (z - - m c Z / k T ) : co--
3kTe2
1 + c -~
8
rn
'
1
Cl = - - ~c -2 m ( 3 e a - - e2) ' Cn
=
0
(88)
(n > 2).
The coefficient of viscosity (11.81) can now be calculated. W i t h the help of (83)-(85), (88), (IV.43, 53) and (V.28) we obtain, up to order z - l : ---- (2z:)~ m ~ ( k T ) ~ ~x e - z cogo, where we have also used the fact t h a t
= §(A~vpapv) 2.
(89)
RELATIVISTIC KINETIC GAS THEORY. VI
45
Insertion of the values (85) and (88) into (89) results finally in
kT(
45
r/-- 37~z2 1 + c - 2 - 4
kT)
m
,
(90)
up to the order c-2. The viscosity is seen to differ from its non-relativistic limit b y an additional term of order c-2. Remark I. In the non-relativistic theory of a Maxwell gas, the conductionviscosity r a t i o / , given by
/ ~ 2/cv~1
(91)
is known 4j to be ~. In the relativistic theory, however, from (91) and (II.21) with (III. 18), (V.43, 90) and (90) we find the viscosity ratio to be /=~
1 - - c -2 17 2
m"
(92)
Remark 2. In the non-relativistic kinetic theory, the volume viscosity is a vanishing quantity, while in the relativistic theory it is, in general, a quantity of order c-2 [c]. (III.74)]. The volume viscosity of a relativistic Maxwell gas has been calculated b y Israeli). The result is a quantity of order c-4: ~v = c-4 5(kT)a/12rcm2z2.
(93)
The thermal-diffusion coefficient is, in general, a non-vanishing quantity in the kinetic gas theory, but vanishes for a gas of Maxwellian molecules in the non-relativistic theory. In the relativistic theory we find [c[. (V.66, 88)1 a quantity of order c-2: ,
s
D T = c-2 - 16~
k2T
2 --
pm
1)
--
w2
--
(94)
The difference in dimensions having been noted, the order of magnitude of the thermal-diffusion coefficient is still a factor c2 bigger than the order of magnitude of the volume viscosity.
APPENDIX
1. Calculation o[ integrals appearing in sections 3 and 4. Let us consider the integral a =-- T exp{--b cosh(t-- Z)}cosh ½t dt. --co
(A.1)
46
W.A. van LEEUWEN AND S. R. de GROOT
After the substitution t' = t -- Z, we m a y obtain for (A. 1) : co
a = 2 cosh ½X ~ e x p ( - - b cosh ½t') cosh ½t' dt'.
(A.2)
0
W i t h the substitution u = sinh ½t' the integral (A.2) takes the form of a Poisson integral. Thus we find a = (2~)~ b-~ e -b cosh ½Z.
(A.3)
Differentiation of (A.1) and (A.3) with respect to Z yields ~° exp{--b cosh(t -- Z)} b sinh t -- ;g cosh ½t dt = la,9~W-1.
(A.4)
--oo
Similarly we obtain oo
S exp{--b cosh(t -- Z)} b2 sinh2( t -- ;g) cosh ½t dt -- a(b + }),
(A.5)
--oo oo
exp{-- b cosh(t--z) } b(1 + cosh t) cosh {t dt = a{2(b -t- 1) cg2_ ~_}, (A.6) --co oo
exp{--b cosh(t -- 9~)}b sinh t cosb ½t dt = a{2(b -¢- 1) 5 ~
-- ½~9~-1}.
--oo
(A.7) F r o m (A.3)-(A.7) with (46) and (47) we find the expressions (54) for the integrals St[...]. Let us also consider the integral T --oo
T dx dy exp{--p(x 2 + y~) -- qx} = r@-1 exp(q~/4p).
(A.8)
--Co
We introduce the abbreviation r =-- ~p-a exp(q2/4p).
(A.9)
After differentiation of (A.8) with respect to p and/or q we obtain the following integrals: SS dx dy e x p { - - p ( x 2 + y2) _ qx}(x 2 + y2) = r(p + ¼q2),
(A.10)
SS dx dy exp{--p(x 2 + y2) _ qx}(x 2 + y2)2 = r(2 + q2/p + q4/16p), (A.11) SS dx dy e x p { - - p ( x 2 + y2) _ qx} x = --½rpq,
(A. 12)
SS dx dy exp{--p(x 2 + y2) _ qx} x 2 = r(½p + ¼q2),
(A.13)
SS dx dy e x p { - - p ( x 2 -t- y2) _ qx} x(x 2 + y2) = --r(q + qa/81b).
(A. 14)
The expressions tor the integrals Sxv[...], eq. (55), are found b y choosing in
(A.8)-(A.14) p = 2z'~2,
q = 4~a~9°~,
and elimination of ~ with the help of (40).
(A. 15)
RELATIVISTIC KINETIC GAS THEORY. VI
47
2. The elimination o/the/actors r /rom the expression (76). W i t h (77) and (79), the s u m of the two terms of (76) which contain z-lLnl and z - l r L nl as a factor, m a y be written ¼z-l(n + 1)(en -- 2en+l + en+~) L~+I -=- C1.
(A.16)
Addition of (78) multiplied with an a r b i t r a r y constant k and of (79) multiplied with (1 -- k) yields the connexion rL~+I(z) : k-rL~(r) + k{(n + p) L~_t(r ) -- nL~(z)} + (1 -- k){(n + p + 1) L~(,) -- (n + 1) L~+x(T)}.
(A.17)
We m u l t i p l y this relation with r/4z 2, choose k : ½ and p : {. Then using also (79) we find t h a t the term of (76) which contains z-2~'2L~ as a factor, m a y be rewritten
lz-2~'(en -- 2en+l q- en+2)/-Tr'z z q- rL~} t2~n q- 9_f{ 2--n -- Ln+l z + C2,
(A.18)
where
C2 ~ ~z-2n(en -- 2en+l + en+2){(n + 6) Ln-1 -- nL~
-- (n +
~)
L~+ 1 + (n + 2) L~+ 2}.
(A. 19)
W i t h the help of (A.16), (A.18) and the abbreviation Ca for the first three terms of (76): Ca --= {½(3en+2 -- en+l) -- ~z-l(7en -- 19en+l + 12en+2)
+ ~z-U(en -- 2en+l + en+2 -- 6onen)} L~(T),
(A.20)
we can now rewrite (76) to read
.W[ L ~(pap~)] = (1 + ½z-it) -a [{--l(en -- 5en+l) z - i t .~ + ½(en -- en+l) z-2r + lenz-2r2} L~ + ½(en -- 4en+l + 3en+2) z-l'rL~ + 1Ag(en -- 2en+l q- en+2) z-2~'(7L~n_x q- L~ -- 2L]n+l) --
~(3en -- 2en+l -- en+2) z-2r2L~ + C1 + C2 + Ca] (PuPv).
(A.21)
F r o m (A. 17) with p = ~ and
k = (en -- 5en+l)/(2en -- 8en+l + 6en+9.), we m a y rewrite the two terms of (A.21) which contain z - i t as a factor:
lz-l[(en -- 5en+l){(n + 5) Lln_l -- nLn) q- ( e n - - 3 e n + l +6en+2){(n + ~ ) L :n -
(n 4- 1)L~+I} ] ~ C 4 .
(A.22)
48
W.A. van LEEUWEN AND S. R. de GROOT
Now we choose in (A.17)" p = ~ and k = 2en/(3en - - 2en+l -- en+2)
and multiply the equation then obtained with r. The terms of (A.21) which contain z-2r 2 as a factor m a y now be eliminated. Then we find with (A.21) and (A.22) that
i ~ [ L ,~(P~,P,)I - - (1 + ½z-lr)-t[z-2"r[--¼(n + ~) enLn_ 1 + {l(en -- en+l + ½ n e n ) -- ~(en - - 2en+l -- en+2)(n + z)} L~
+ ~(n + 1)(en -- 2en+l -- en+2) L~+I~ + ~ z - 2 r ( e n - - 2en+l + en+2)(7Ln_ ~ 1 + L~~ -- 2Ln+l)
+ C1 + C2 + Ca + C4].
(A.23)
In (A.17) we now set p ---- ~ and replace n by n -- 1. Furthermore we make the choice k =
2en(2n +
5)/7(en - 2en+l + en+2)
for the arbitrary constant in (A.17). With the help of the resulting expression we find for z2 times the sum of those two terms of (A.23) which contain a Laguerre polynomial with a lower index (n -- 1):
g_~
--¼(n + ~ ) enr ~-1 + 13-~(en - - 2en+l + en+2) "rL~_1
= -~{(2n + 3)(2n + 5)L~_2 + (en - 8hen - 14en+l + 7en+2) × (n + {) L ~ _ 1 + (3en + 4nen + 14en+l -- 7en+2) nL2}.
(A.24)
Now the factor r has been eliminated from the left-hand side of (A.24). Choosing suitable values for k, the other terms of (A.23) containing a Laguerre polynomial with a lower index n or n + 1, m a y be similarly rewritten. Thus, with the help of the explicit expressions for C1 (A.16), C2 (A. 19), C3 (A.20) and C4 (A.22), we obtain the tensor pseudo-eigenvalue equation (80). A c k n o w l e d g e m e n t s . The authors wish to t h a n k P. H. Polak, who was willing to check some of the more involved calculations, and Dr. L. P. Staunton, who carefully read the manuscript. This investigation is part of the research programme of the "Stichting voor Fundamenteel Onderzoek der Materie (F.O.M.)", which is financially supported by the "Organisatie voor Zuiver Wetenschappelijk Onderzoek (Z.W.O.)".
R E L A T I V I S T I C K I N E T I C GAS T H E O R Y . VI
49
REFERENCES 1) Israel, W., J. math. Phys. 4 (1963) 1163. 2) de Groot, S. R., van Weert, C. G., Hermens, W. Th. and van Leeuwen, W. A., Physica 40 (1968) 257; 40 (1969) 581; 42 (1969) 309; van Leeuwen, W. A. and de Groot, S. R., Physica 51 (1971) 1 ; 51 (1971) 16. 3) Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series and Products, Academic Press (New York, 1965) p. 1037, 1038. 4) Chapman, S. and Cowling, T. G., The Mathematical Theory of Non-Uniform Gases, University Press (Cambridge, 1970) p. 174.