On the coefficients of Bazilevi c ˘ functions and circularly symmetric functions

On the coefficients of Bazilevi c ˘ functions and circularly symmetric functions

Applied Mathematics Letters 24 (2011) 991–995 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.c...

217KB Sizes 0 Downloads 44 Views

Applied Mathematics Letters 24 (2011) 991–995

Contents lists available at ScienceDirect

Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml

On the coefficients of Bazilevi˘c functions and circularly symmetric functions Qin Deng School of Science, Hangzhou Dianzi University, Hangzhou 310018, PR China

article

abstract

info

Article history: Received 27 August 2010 Accepted 7 January 2011

In this work, we study the coefficients of Bazilevi˘c functions and circularly symmetric functions, and obtain exact estimates. © 2011 Elsevier Ltd. All rights reserved.

Keywords: Analytic functions Univalent functions Bazilevi˘c functions Circularly symmetric functions

1. Introduction Throughout this work, A denotes the class of analytic functions f (z ) in the unit disk U = {z ∈ C : |z | < 1} normalized such that f (0) = 0 and f ′ (0) = 1. Let S , K , S ∗ , Sc and Bα denote the subclasses of A of functions that are univalent, convex, starlike, close-to-convex and Bazilevi˘c, respectively. We also denote by P the class of analytic functions p with p(0) = 1 and Re{p(z )} > 0 in U. Note that P is known as the Carathéodory class. Also, it is well known that the inclusion relations K ⊂ S ∗ ⊂ Sc ⊂ Bα ⊂ S

are valid. See [1–3] for further information. Following [3,4], for f (z ) ∈ A , we see that f (z ) ∈ Bα if and only if zf ′ (z )



f (z )

f (z ) g (z )

α

∈ P,

z∈U

(1.1)

for some g (z ) ∈ S ∗ , α ≥ 0. Let D be a domain in C with 0 ∈ D. We shall say that D is circularly symmetric if, for every R with 0 < R < +∞, D ∩{|z | = R}, is either empty, the whole circle |z | = R, or a single arc on |z | = R which contains z = R and is symmetric with respect to the real axis. Following [5,6], we shall denote by Y the class of those functions f (z ) in S which map U onto a circularly symmetric domain. The elements of Y will be called circularly symmetric functions. Associated with each f (z ) in S is a well defined logarithmic function log

f (z ) z

=2

∞ −

γn z n ,

z ∈ U.

(1.2)

n =1

The numbers γn are called the logarithmic coefficients of f . Thus the Koebe function k(z ) = z (1 − z )−2 has logarithmic coefficients γn = 1n , n ∈ N = {1, 2, 3, . . .}. E-mail address: [email protected]. 0893-9659/$ – see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2011.01.012

992

Q. Deng / Applied Mathematics Letters 24 (2011) 991–995

The inequality |γn | ≤ 1n holds for functions f (z ) in S ∗ , but is false for the full class S, even in order of magnitude. Indeed (see Theorem 8.4 on p. 242 of [1]) there exists a bounded function f (z ) ∈ S with logarithmic coefficients γn ̸= O(n−0.83 ). In the paper [5], it is shown that the inequality |γn | ≤ 1n is false for functions f (z ) in Sc . f (z ) λ z

Let f (z ) ∈ S , ψ(z ) = [

∑∞

] = 1+

n =1

Dn (λ)z n , 0 < λ < 1. For the estimation of coefficients |Dn (λ)|, when λ > − 12

1 , 4

Milin (see [7]) gives a sharp estimate. But when 0 < λ ≤ 14 , we only obtain |Dn (λ)| = O(n log n). Estimating the sharp order of |Dn (λ)| is a difficult problem which is still unresolved. In this work, for when f (z ) is a Bazilevi˘c function Bα , we study the coefficients |Dn | and obtain an exact estimate for the order of |Dn (λ)|. Furthermore, by using the Milin–Lebejev method, we investigate the coefficients |Dn | and obtain a sharp estimate for the order of |Dn (λ)| when f (z ) ∈ Y . Throughout the work, let A denote the absolute constant, whose value varies in different places. 2. On the coefficients of Bazilevi˘c functions We use the symbols {f }n to denote the coefficients of z n in the Taylor expansion of a function f (z ). In order to obtain Theorem 1, we need the following lemmas. Lemma 1 ([2]). Let f (z ) ∈ S. Then, for z = reiθ ,

∫ 0

1 2

Lemma 2 ([8]). Let p(z ) ∈ P . Then, for z = reiθ ,



≤ r < 1,

 2 2π  ′   f (z )  dθ ≤ A(1 − r )−1 log 1 .  f (z )  1−r

(2.1) 1 2

≤ r < 1,

  2π  ′   p (z )  dθ ≤ 4 log 1 + r .  p(z )  1−r 0

(2.2)

Lemma 3 ([2]). Let f (z ) ∈ S. Then, for z = reiθ , 0 < r < 1,

|f (z )| ≤

r

(1 − r )2

.

(2.3)

Theorem 1. Let f (z ) ∈ Bα , ψ(z ) = [

f (z ) λ z

] =1+

∑∞

n =1

Dn (λ)z n , 0 < λ < 1. Then

3

|Dn | ≤ An2λ−1 (log n) 2 .

(2.4)

The exponent 2λ − 1 is the best possible. Proof. Assume without loss of generality that |f (r )| = max|z |=r |f (z )|; otherwise we consider the function e−iθ0 f (reiθ0 ). It is clear that

  nDn =

z

f (z )

λ  ′ 

z

= {λ[f (z )]λ−1 f ′ (z )z 1−λ − λ[f (z )]λ z −λ }n n

= {λh1 (z )}n − {λh2 (z )}n , λ−1 ′

(2.5) λ −λ

where h1 (z ) = [f (z )] f (z )z , h2 (z ) = [f (z )] z By means of Lemma 3, we get that, for r < 1,

|{h2 (z )}n | ≤

r −n







1−λ

|f (z )|λ |z |−λ dθ ≤

0

.

r −n

1

2π (1 − r )2λ

· 2π = r −n (1 − r )−2λ .

(2.6)

Let r = 1 − 1n ; we obtain from (2.6) that, for n = 2, 3, . . . ,

|{h2 (z )}n | ≤ An2λ .

(2.7)

A short calculation shows that

[

zh1 (z ) = h1 (z ) (λ − 1) ′

zf ′ (z ) f (z )

+

zf ′′ (z ) f ′ (z )

]

+ (1 − λ) .

zf ′ (z ) f (z ) Because f (z ) ∈ Bα , there exists a starlike function g (z ) ∈ S ∗ such that Re{ f (z ) ( g (z ) )α } > 0, α ≥ 0. Write p(z ) = then

zf ′′ (z ) f ′ (z )

=

zp′ (z ) p(z )

− 1 − (α − 1)

zf ′ (z ) f (z )



zg ′ (z ) g (z )

.

(2.8) zf ′ (z ) f (z )

( gf ((zz)) )α ; (2.9)

Q. Deng / Applied Mathematics Letters 24 (2011) 991–995

993

By applying (2.9), from (2.8) we obtain zh′1 (z ) = (λ − α)

zf ′ (z ) f (z )

zp′ (z )

h1 (z ) +

p(z )

h1 ( z ) + α

zg ′ (z ) g (z )

h1 (z ) − λh1 (z ).

(2.10)

By means of Lemmas 1 and 3, we obtain n −

|{h1 (z )}m |2 ≤ r −2n

m=0

∞ −

|{h1 (z )}m |2 r 2m ≤

m=0

=

r −2n+2−2λ







r −2n







|h1 (z )|2 dθ

0

 ′ 2  f (z )   dθ ≤ Ar −2n+2 (1 − r )−4λ−1 log 1 . |f (z )|2λ  f (z )  1−r

0

(2.11)

Let r = 1 − 1n , we obtain from (2.11) that, for n = 2, 3, . . . , n −

|{h1 (z )}m |2 ≤ An4λ+1 log n.

(2.12)

m=0

From (2.12) we obtain

|{h1 (z )}n | ≤

n −

 |{h1 (z )}m | ≤ n

1 2

m=0

n −

 12 1

≤ An2λ+1 (log n) 2 .

|{h1 (z )}m |2

(2.13)

m=0

By means of Lemma 2, we obtain

   ′   ∫  zp (z )  r −n 2π  zp′ (z )  1 −n +1 ≤    log .  p(z )  dθ ≤ Ar  p(z )  2 π 1 − r 0 n

(2.14)

Let r = 1 − 1n ; we obtain from (2.14) that, for n = 2, 3, . . . ,

 ′    zp (z )     p(z )  ≤ A log n. n

(2.15)

We obtain from (2.12) and (2.15) that

  ′  ′     n−1 n − −  zp (z )  zp (z )     |{h1 (z )}m |  ≤ A(log n)  p(z ) h1 (z )  =  {h1 (z )}m p(z )  n n −m m=0 m=0  ≤ A(log n)n

1 2

n −

 12 |{h1 (z )}m |

2

3

≤ An2λ+1 (log n) 2 .

(2.16)

m=0

By means of Lemmas 1 and 3 we obtain that

   −n ∫ 2π  ′   ≤ r  zf (z ) ||h1 (z ) dθ   f (z )  2 π 0 n ∫ 2π r −n f ′ (z ) 2 1 = |z |2−λ | | |f (z )|λ dθ ≤ Ar −n+2 (1 − r )−2λ−1 log . 2π 0 f (z ) 1−r

 ′   zf (z )   f ( z ) h1 ( z )

(2.17)

Let r = 1 − 1n ; we obtain from (2.17) that, for n = 2, 3, . . . ,

 ′   zf (z )  h ( z ) 1  f (z )

n

   ≤ An2λ+1 log n. 

(2.18)

Because g (z ) ∈ S ∗ ⊂ S, we get from (2.18) that

 ′   zg (z )  h ( z ) 1  g (z )

n

   ≤ An2λ+1 log n. 

(2.19)

Combining (2.13), (2.16), (2.18) and (2.19), we obtain from (2.10) that, for n = 2, 3, . . . , 3

n|{h1 (z )}n | = |{zh′1 (z )}n | ≤ An2λ+1 (log n) 2 .

(2.20)

994

Q. Deng / Applied Mathematics Letters 24 (2011) 991–995

Then 3

|{h1 (z )}n | ≤ An2λ (log n) 2 .

(2.21)

Combining (2.7) and (2.21), we obtain from (2.5) that, for n = 2, 3, . . . , 3

n|Dn | ≤ An2λ (log n) 2 ,

(2.22)

which implies that, for n = 2, 3, . . . , 3

|Dn | ≤ An2λ−1 (log n) 2 .

(2.23)

The Koebe function k(z ) = z (1 − z )

−2

implies that the exponent 2λ − 1 is the best possible.



Since Sc ⊂ Bα , we obtain the following corollary: Corollary 1. Let f (z ) ∈ Sc , ψ(z ) = [

f (z ) λ z

] =1+

∑∞

n =1

Dn (λ)z n , 0 < λ < 1. Then

3

|Dn | ≤ An2λ−1 (log n) 2 .

(2.24)

The exponent 2λ − 1 is the best possible. 3. On the coefficients of circularly symmetric functions In this section, by using the Milin–Lebejev method, we shall study the coefficients |Dn | when f (z ) ∈ Y . In order to obtain Theorem 2, we need the following lemma. Lemma 4 ([9]). Let f (z ) ∈ Y . Then, for n ≥ 2,

|γn | ≤ An−1 log n,

(3.1)

where the exponent −1 is the best possible. Theorem 2. Let f (z ) ∈ Y , ψ(z ) = [

f (z ) λ z

] =1+

∑∞

n=1

Dn (λ)z n , 0 < λ < 1. Then

|Dn | ≤ An2λ−1 log n.

(3.2)

The exponent 2λ − 1 is the best possible. Proof. We define dk (2λ) by the expansion 1

(1 − z )



=

∞ −

dk (2λ)z k ,

|z | < 1.

(3.3)

k=0

In the paper [7], it is shown that n −1 −

dk (2λ) = dn (2λ + 1) ≤ An2λ .

(3.4)

k=0

It is clear that z ψ ′ (z ) =

z ψ ′ (z )

ψ(z )

ψ(z ).

(3.5)

So ∞ − k=1

kDk z k =

∞ − k=1

2λkγk z k

∞ −

Dk z k ,

D0 = 1.

(3.6)

k=0

Comparing the coefficients of the same powers of z in (3.6) and applying Lemma 4, we obtain

  n n −1  −  −   |nDn | = 2λ kγk Dn−k  ≤ A log n |Dk |.  k=1  k=0

(3.7)

Q. Deng / Applied Mathematics Letters 24 (2011) 991–995

995

Applying Schwarz’s inequality, we obtain from (3.7) that

  n −1 n −1 − |Dk |2 − |Dn | ≤ 2 (log n) · dk (2λ) . n d (2λ) k=0 k=0 k 2

A

2

(3.8)

It is well known that (see [7])

  n −1 n − − 2λ |Dk |2 ≤ dn (2λ + 1) exp dn−l (2λ)1k , d (2λ) dn (2λ + 1) l=1 k=0 k

(3.9)

where

1k =

k −

l|γl |2 −

l =1

k − 1 l =1

l

< 0.312.

(3.10)

Combining (3.4) and (3.10), we obtain from (3.9) that n −1 − |Dk |2 ≤ Adn (2λ + 1) ≤ An2λ . d (2λ) k=0 k

(3.11)

Combining (3.4) and (3.11), we obtain from (3.8) that

|Dn |2 ≤ An4λ−2 (log n)2 ,

(3.12)

which implies that

|Dn | ≤ An2λ−1 log n.

(3.13)

The Koebe function k(z ) = z (1 − z )

−2

implies that the exponent 2λ − 1 is the best possible.



The inequality |γn | ≤ holds for functions f (z ) in S . Similarly, by using the Milin–Lebejev method we obtain: 1 n



∑∞ f (z ) Corollary 2. Let f (z ) ∈ S ∗ , ψ(z ) = [ z ]λ = 1 + n=1 Dn (λ)z n , 0 < λ < 1. Then |Dn | ≤ An2λ−1 .

(3.14)

The exponent 2λ − 1 is the best possible. Since K ⊂ S ∗ , we have: Corollary 3. Let f (z ) ∈ K , ψ(z ) = [

f (z ) λ z

] =1+

∑∞

n =1

Dn (λ)z n , 0 < λ < 1. Then

|Dn | ≤ An2λ−1 .

(3.15)

The exponent 2λ − 1 is the best possible. Acknowledgements Project 10926058 and 61003194 were supported by the National Natural Science Foundation of China. References [1] P.L. Duren, Univalent Functions, Springer-Verlag, New York, 1983. [2] Ch. Pommerenke, Univalent Functions, Vandenkoeck and Ruprecht, Göttingen, 1975. [3] I.E. Bazilevi˘c, On a case of integrability in quadratures of the Löwner–Kufarev equation, Matematicheskii Sbornik (N.S.) 37 (3) (1955) 471–476 (in Russian). [4] Y.C. Kim, A note on growth theorem of Bazilevi˘c functions, Appl. Math. Comput. 208 (2009) 542–546. [5] D. Girela, Logarithmic coefficients of univalent functions, Ann. Acad. Sci. Fenn. Math. 25 (2000) 337–350. [6] J.A. Jenkins, On circularly symmetric functions, Proc. Amer. Math. Soc. 6 (1955) 620–624. [7] I.M. Milin, Univalent Functions and Orthonormal Systems, Moscow, 1971 (in Russian). [8] Z. Ye, On the successive coefficients of close-to-convex functions, J. Math. Anal. Appl. 283 (2003) 689–695. [9] Q. Deng, On circularly symmetric functions, Appl. Math. Lett. 23 (12) (2010) 1483–1488.