On the existence of positive solutions of fourth-order difference equations

On the existence of positive solutions of fourth-order difference equations

Applied Mathematics and Computation 161 (2005) 139–148 www.elsevier.com/locate/amc On the existence of positive solutions of fourth-order difference e...

201KB Sizes 0 Downloads 8 Views

Applied Mathematics and Computation 161 (2005) 139–148 www.elsevier.com/locate/amc

On the existence of positive solutions of fourth-order difference equations q Zhimin He

a,*

, Jianshe Yu

b

a

b

Department of Applied Mathematics, Central South University, Changsha 410083, Hunan, PR China Department of Applied Mathematics, Hunan University, Changsha 410082, Hunan, PR China

Abstract In this paper, by means of KrasnoselÕskiiÕs fixed point theorem, the existence of positive solutions of fourth-order difference equations is considered. Ó 2003 Elsevier Inc. All rights reserved. Keywords: Positive solution; Difference equation; KrasnoselÕskiiÕs fixed point theorem

1. Introduction For notation, given a < b in Z, we employ intervals to denote discrete sets such as ½a;b ¼ fa;aþ1;...;bg, ½a;bÞ ¼ fa;aþ1;...;b1g, ½a;1Þ ¼ fa;aþ1;...:g, etc. Let T P1 be fixed. In this paper, we are concerned with determining eigenvalues, k, for which there are positive solutions of the fourth-order difference equation D4 uðt  2Þ  kaðtÞf ðuðtÞÞ ¼ 0;

t 2 ½2; T þ 2;

ð1Þ

satisfying the boundary conditions uð0Þ ¼ D2 uð0Þ ¼ uðT þ 2Þ ¼ D2 uðT Þ ¼ 0;

q

ð2Þ

This work was supported by Mathematical Tianyuan Foundation (No: A0324621) of PeopleÕs Republic of China. * Corresponding author. E-mail address: [email protected] (Z. He). 0096-3003/$ - see front matter Ó 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2003.12.016

140

Z. He, J. Yu / Appl. Math. Comput. 161 (2005) 139–148

or uð0Þ ¼ D2 uð0Þ ¼ DuðT þ 1Þ ¼ D3 uðT  1Þ ¼ 0;

ð3Þ

where (A) f : Rþ ! Rþ is continuous (Rþ denotes the nonnegative reals), (B) aðtÞ is a positive valued function defined on ½1; T þ 1, and (C) f0 ¼ limx!0þ f ðxÞ and f1 ¼ limx!1 f ðxÞ exist. x x The motivation for the present work stems from many recent investigations in [1–6]. For the continuous case, boundary value problems analogous to (1) and (2) (or (1) and (3)) arise in various nonlinear phenomena for which only positive solutions are meaningful; see, for example [7,8]. In this paper we will apply the following KrasnoselÕskiiÕs fixed point theorem in a cone to yields positive solutions of (1) and (2) (or (1) and (3)). This theorem can be found in the book by KrasnoselÕskii [9] as well as in the book by Deimling [10]. Theorem 1.1 [9,10]. Let B be a Banach space, and let P B be a cone in B. Assume X1 , X2 are open subsets of B with 0 2 X1 X1 X2 , and let T : P \ ðX2 n X1 Þ ! P be a completely continuous operator such that, either i(i) kTuk 6 kuk; u 2 P \ oX1 , and kTuk P kuk; u 2 P \ oX2 , or (ii) kTuk P kuk; u 2 P \ oX1 , and kTuk 6 kuk; u 2 P \ oX2 . Then T has a fixed point in P \ ðX2 n X1 Þ.

2. Solutions of (1) and (2) in a cone Lemma 2.1. uðtÞ is a solution of the BVP (1) and (2) if and only if uðtÞ ¼ k

T þ1 X

Gðt; sÞ

s¼1

T X

G1 ðs; iÞaðiÞf ðuðiÞÞ;

t 2 ½0; T þ 2;

ð4Þ

i¼2

where Gðt; sÞ ¼

1 T þ2

G1 ðt; iÞ ¼

1 T



sðT þ 2  tÞ; tðT þ 2  sÞ;

1 6 s 6 t 6 T þ 2; 0 6 t 6 s 6 T þ 1;

ð5Þ

and 

ðT þ 1  tÞði  1Þ; ðT þ 1  iÞðt  1Þ;

2 6 i 6 t 6 T þ 1; 16t6i6T:

ð6Þ

Z. He, J. Yu / Appl. Math. Comput. 161 (2005) 139–148

141

Proof. BVP (1) and (2) is equivalent to solving D2 uðt  1Þ ¼ k

T X

G1 ðt; iÞaðiÞf ðuðiÞÞ;

t 2 ½1; T þ 1;

ð7Þ

i¼2

uð0Þ ¼ uðT þ 2Þ ¼ 0;

ð8Þ

and it is also equivalent to solving uðtÞ ¼ k

T þ1 X

Gðt; sÞ

s¼1

T X

G1 ðs; iÞaðiÞf ðuðiÞÞ;

t 2 ½0; T þ 2:

ð9Þ

i¼2

h

The proof of the lemma is complete. From (5)

for ðt; sÞ 2 ð1; T þ 1Þ  ð1; T þ 1Þ;

Gðt; sÞ > 0;

ð10Þ

and Gðt; sÞ 6 Gðs; sÞ ¼

sðT þ 2  sÞ T þ2

for 1 6 s 6 T þ 1; 0 6 t 6 T þ 2:

ð11Þ

Merdivinici [3] has shown that, if Y is defined by   T þ1 3ðT þ 1Þ Y ¼ t2Z: 6t6 ; 4 4 and if  r ¼ min

min Y T þ 2  max Y ; T þ1 T þ1

 ;

then Gðt; sÞ P rGðs; sÞ ¼

rsðT þ 2  sÞ T þ2

for t 2 Y ; 1 6 s 6 T þ 1:

ð12Þ

Let B ¼ fu : ½0; T þ 2 ! Rjuð0Þ ¼ uðT þ 2Þ ¼ D2 uð0Þ ¼ D2 uðT Þ ¼ 0g; with norm, kuk ¼ maxt2½0;T þ2 juðtÞj, then ðB; k  kÞ is a Banach space. Define a cone, P , by P ¼ fu 2 B : uðtÞ P 0 for t 2 ½0; T þ 2; and mint2Y uðtÞ P rkukg:

ð13Þ

Also, we define the number s 2 ½0; T þ 2 by T þ1 X s¼1

Gðs; sÞ

X i2Y

G1 ðs; iÞaðiÞ ¼ max

t2½0;T þ2

T þ1 X s¼1

Gðt; sÞ

X i2Y

G1 ðs; iÞaðiÞ:

ð14Þ

142

Z. He, J. Yu / Appl. Math. Comput. 161 (2005) 139–148

Theorem 2.1. Assume that conditions (A), (B) and (C) are satisfied. Then, for each k satisfying 1  P  P T þ1 r s¼1 Gðs; sÞ i2Y G1 ðs; iÞaðiÞ f1 < k < P

T þ1 s¼1

Gðs; sÞ

1 PT

i¼2

 ; G1 ðs; iÞaðiÞ f0

ð15Þ

there exists at least one solution of (1) and (2) in P . Proof. Let k be given as in (15). Then, let e > 0 be such that 1  P  P þ1 Gðs; sÞ i2Y G1 ðs; iÞaðiÞ ðf1  eÞ r Ts¼1 6k6 P T þ1 s¼1

Gðs; sÞ

PT

1

i¼2

 : G1 ðs; iÞaðiÞ ðf0 þ eÞ

Define a summation operator T : P ! B by ðTuÞðtÞ ¼ k

T þ1 X

Gðt; sÞ

s¼1

T X

G1 ðs; iÞaðiÞf ðuðiÞÞ;

u 2 P:

ð16Þ

i¼2

We note that from (5), (6) and (16), if u 2 P , then ðTuÞðtÞ P 0 for t 2 ½0; T þ 2. From the properties of G, Tu satisfies the boundary conditions (2). Moreover, for u 2 P , we have ðTuÞðtÞ ¼ k

T þ1 X

Gðt; sÞ

s¼1

6k

T þ1 X

T X

G1 ðs; iÞaðiÞf ðuðiÞÞ

i¼2

Gðs; sÞ

s¼1

T X

G1 ðs; iÞaðiÞf ðuðiÞÞ;

t 2 ½0; T þ 2;

i¼2

and so kTuk ¼ max jðTuÞðtÞj 6 k t2½0;T þ2

T þ1 X

Gðs; sÞ

s¼1

T X

G1 ðs; iÞaðiÞf ðuðiÞÞ:

i¼2

Thus, if u 2 P , then minðTuÞðtÞ ¼ min k t2Y

T þ1 X

t2Y

P rk

Gðt; sÞ

T X

s¼1

T þ1 X s¼1

Gðs; sÞ

G1 ðs; iÞaðiÞf ðuðiÞÞ

i¼2 T X i¼2

G1 ðs; iÞaðiÞf ðuðiÞÞ P rkTuk:

ð17Þ

Z. He, J. Yu / Appl. Math. Comput. 161 (2005) 139–148

143

Consequently, T : P ! P . It is also easy to check that T : P ! P is completely continuous. Now, turning to f0 , there exits H1 > 0 such that f ðuÞ 6 ðf0 þ eÞu, for 0 < u 6 H1 . Thus, for u 2 P with kuk ¼ H1 , (11) and (16) implies that ðTuÞðtÞ 6 k

T þ1 X

Gðs; sÞ

s¼1

6k

G1 ðs; iÞaðiÞf ðuðiÞÞ

i¼2

T þ1 X

Gðs; sÞ

s¼1

6k

T X

T X

G1 ðs; iÞaðiÞðf0 þ eÞuðiÞ

i¼2

T þ1 X

Gðs; sÞ

s¼1

T X

G1 ðs; iÞaðiÞðf0 þ eÞkuk 6 kuk;

t 2 ½0; T þ 2:

i¼2

Therefore, kTuk 6 kuk;

for u 2 P \ oX1 ;

ð18Þ

where X1 ¼ fu 2 B : kuk < H1 g: If we next consider f1 , there exists an H 2 > 0 such that f ðuÞ P ðf1  eÞu, for all u P H 2 . Let H2 ¼ maxf2H1 ; r1 H 2 g, and define X2 ¼ fu 2 B : kuk < H2 g: If u 2 P with kuk ¼ H2 , then mint2Y uðtÞ P rkuk P H 2 , and ðTuÞðsÞ ¼ k

T þ1 X

Gðs; sÞ

s¼1

Pk

G1 ðs; iÞaðiÞf ðuðiÞÞ

i¼2

T þ1 X

Gðs; sÞ

X

G1 ðs; iÞaðiÞðf1  eÞuðiÞ

i2Y

s¼1

P kr

T X

T þ1 X s¼1

Gðs; sÞ

X

G1 ðs; iÞaðiÞðf1  eÞkuk P kuk:

i2Y

Hence, kTuk P kuk;

for u 2 P \ oX2 :

ð19Þ

From (18) and (19), Theorem 1.1 implies that T has a fixed point u 2 P \ ðX2 n X1 Þ. This fixed point u is a solution of (1) and (2) corresponding to the given value of k. The proof of Theorem 2.1 is complete. h Theorem 2.2. Assume that conditions (A), (B) and (C) are satisfied. Then, for each k satisfying

144

Z. He, J. Yu / Appl. Math. Comput. 161 (2005) 139–148

1  P  P T þ1 r s¼1 Gðs; sÞ i2Y G1 ðs; iÞaðiÞ f0 < k < P

T þ1 s¼1

Gðs; sÞ

1 PT

i¼2

 ; G1 ðs; iÞaðiÞ f1

ð20Þ

there exists at least one solution of (1) and (2) in P . Proof. Let k be given as in (20). Then, we can choose e > 0 such that 1  P  P T þ1 r s¼1 Gðs; sÞ i2Y G1 ðs; iÞaðiÞ ðf0  eÞ 6k6 P T þ1 s¼1

Gðs; sÞ

1

 : G ðs; iÞaðiÞ ðf þ eÞ 1 1 i¼2

PT

Let T be the cone preserving, completely continuous operator that was defined by (16). Beginning with f0 , there exits H1 > 0 such that f ðuÞ P ðf0  eÞu, for 0 < u 6 H1 . So, for u 2 P with kuk ¼ H1 , we have ðTuÞðsÞ ¼ k

T þ1 X

Gðs; sÞ

s¼1

Pk

T þ1 X

Gðs; sÞ

T X

G1 ðs; iÞaðiÞðf0  eÞuðiÞ

i¼2

T þ1 X

Gðs; sÞ

X

G1 ðs; iÞaðiÞðf0  eÞuðiÞ

i2Y

s¼1

P kr

G1 ðs; iÞaðiÞf ðuðiÞÞ

i¼2

s¼1

Pk

T X

T þ1 X s¼1

Gðs; sÞ

X

G1 ðs; iÞaðiÞðf0  eÞkuk P kuk:

i2Y

Therefore, kTuk P kuk;

for u 2 P \ oX1 ;

ð21Þ

where X1 ¼ fu 2 B : kuk < H1 g: Using the assumption concerning f1 , there exists an H 2 > 0 such that f ðuÞ 6 ðf1 þ eÞu, for all u P H 2 . There are two cases, (a) f is bounded, and (b) f is unbounded.

Z. He, J. Yu / Appl. Math. Comput. 161 (2005) 139–148

145

Case (a): Assume M > 0 be such that f ðuÞ 6 M, for all 0 < u < 1. Let ( ) T þ1 T X X H2 ¼ max 2H1 ; Mk Gðs; sÞ G1 ðs; iÞaðiÞ : s¼1

i¼2

Then, for u 2 P with kuk ¼ H2 , we have ðTuÞðtÞ ¼ k

T þ1 X

T X

Gðt; sÞ

s¼1

6 kM

G1 ðs; iÞaðiÞf ðuðiÞÞ

i¼2

T þ1 X

Gðs; sÞ

s¼1

T X

G1 ðs; iÞaðiÞ 6 kuk;

t 2 ½0; T þ 2:

i¼2

Hence kTuk 6 kuk;

for u 2 P \ oX2 ;

ð22Þ

where X2 ¼ fu 2 B : kuk < H2 g: Case (b): It can be shown without much difficulty that there is a H2 > maxf2H1 ; H 2 g such that f ðuÞ 6 f ðH2 Þ, for 0 < u 6 H2 . Choosing u 2 P with kuk ¼ H2 , ðTuÞðtÞ 6 k

T þ1 X

Gðs; sÞ

T X

s¼1

6k

T þ1 X

Gðs; sÞ

T X

s¼1

6k

G1 ðs; iÞaðiÞf ðH2 Þ

i¼2

T þ1 X

Gðs; sÞ

T X

s¼1

¼k

G1 ðs; iÞaðiÞf ðuðiÞÞ

i¼2

G1 ðs; iÞaðiÞðf1 þ eÞH2

i¼2

T þ1 X s¼1

Gðs; sÞ

T X

G1 ðs; iÞaðiÞðf1 þ eÞkuk 6 kuk;

t 2 ½0; T þ 2:

i¼2

Therefore kTuk 6 kuk;

for u 2 P \ oX2 ;

ð23Þ

where X2 ¼ fu 2 B : kuk < H2 g: We apply Theorem 1.1 to conclude that T has a fixed point u 2 P \ ðX2 n X1 Þ: Thus in either of the case, Theorem 1.1 (ii) applied to (21) and (22) or (23) yields a fixed point of T which belongs to P \ ðX2 n X1 Þ. This fixed point u is a solution of (1) and (2) corresponding to the given k. The proof of Theorem 2.2 is complete. h

146

Z. He, J. Yu / Appl. Math. Comput. 161 (2005) 139–148

3. Solutions of (1) and (3) in a cone Lemma 3.1. uðtÞ is a solution of the BVP (1) and (3) if and only if uðtÞ ¼ k

T þ1 X

Kðt; sÞ

T X

s¼1

K1 ðs; iÞaðiÞf ðuðiÞÞ;

t 2 ½0; T þ 2;

ð24Þ

i¼2

where  Kðt; sÞ ¼

t; s;

0 6 t 6 s 6 T þ 1; 1 6 s 6 t 6 T þ 2;

ð25Þ

and  K1 ðt; iÞ ¼

t  1; i  1;

16t6i6T; 2 6 i 6 t 6 T þ 1:

ð26Þ

Proof. BVP (1) and (3) is equivalent to solving D2 uðt  1Þ ¼ k

T X

K1 ðt; iÞaðiÞf ðuðiÞÞ;

t 2 ½1; T þ 1;

ð27Þ

i¼2

uð0Þ ¼ DuðT þ 1Þ ¼ 0;

ð28Þ

and it is also equivalent to solving uðtÞ ¼ k

T þ1 X

Kðt; sÞ

T X

s¼1

K1 ðs; iÞaðiÞf ðuðiÞÞ;

t 2 ½0; T þ 2:

ð29Þ

i¼2

The proof of the lemma is complete.

h

From (25) Kðt; sÞ > 0;

for ðt; sÞ 2 ½1; T þ 2  ½1; T þ 1;

ð30Þ

and Kðt; sÞ 6 Kðs; sÞ ¼ s Kðt; sÞ P

for 1 6 s 6 T þ 1; 0 6 t 6 T þ 2;

1 1 Kðs; sÞ ¼ s 4 4

for t 2 Y ; 1 6 s 6 T þ 1:

ð31Þ ð32Þ

Let B1 ¼ fu : ½0; T þ 2 ! Rjuð0Þ ¼ DuðT þ 1Þ ¼ D2 uð0Þ ¼ D3 uðT  1Þ ¼ 0g; with norm, kuk ¼ maxt2½0;T þ2 juðtÞj, then ðB1 ; k  kÞ is a Banach space.

Z. He, J. Yu / Appl. Math. Comput. 161 (2005) 139–148

147

Define a cone, P1 , by   1 P1 ¼ u 2 B1 : uðtÞ P 0 for t 2 ½0; T þ 2; and mint2Y uðtÞ P kuk : 4 ð33Þ Also, we define the number c 2 ½0; T þ 2 by T þ1 X

Kðc; sÞ

X

K1 ðs; iÞaðiÞ ¼ max

t2½0;T þ2

i2Y

s¼1

T þ1 X s¼1

Kðt; sÞ

X

K1 ðs; iÞaðiÞ:

ð34Þ

i2Y

Similar to the existence results of the previous section, we have the following two theorems for positive solutions of (1) and (3). Theorem 3.1. Assume that conditions (A), (B) and (C) are satisfied. Then, for each k satisfying P

T þ1 s¼1

Kðc; sÞ

< k < P

T þ1 s¼1

4 P

i2Y

s

PT

 K1 ðs; iÞaðiÞ f1 1

i¼2

 ; K1 ðs; iÞaðiÞ f0

ð35Þ

there exists at least one solution of (1) and (3) in P1 . Theorem 3.2. Assume that conditions (A), (B) and (C) are satisfied. Then, for each k satisfying P

T þ1 s¼1

Kðc; sÞ

< k < P

T þ1 s¼1

4 P

i2Y

s

PT

 K1 ðs; iÞaðiÞ f0

i¼2

1

 ; K1 ðs; iÞaðiÞ f1

ð36Þ

there exists at least one solution of (1) and (3) in P1 . References [1] R.P. Agarwal, J. Henderson, Positive solutions and nonlinear eigenvalue problems for thirdorder difference equations, Comp. Math. Appl. 36 (11–12) (1998) 347–355. [2] J. Henderson, Positive solutions for nonlinear difference equations, Nonlinear Stud. 4 (1) (1997) 29–36. [3] F. Merdivenci, Two positive solutions of a boundary value problem for difference equations, J. Diff. Eqns. Appl. 1 (1995) 263–270. [4] R.P. Agarwal, D. OÕRegan, A fixed-point approach for nonlinear discrete boundary value problems, Comp. Math. Appl. 36 (10–12) (1998) 115–121.

148

Z. He, J. Yu / Appl. Math. Comput. 161 (2005) 139–148

[5] J. Henderson, H.Y. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl. 208 (1997) 252–259. [6] B.G. Zhang, L.J. Kong, Y.J. Sun, X.H. Deng, Existence of positive solutions for BVPs of fourth-order difference equations, Appl. Math. Comput. 131 (2002) 583–591. [7] R.Y. Ma, H.Y. Wang, On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Anal. 59 (1995) 225–231. [8] J.R. Graef, B. Yang, On a nonlinear boundary value problem for fourth order equations, Appl. Anal. 72 (1999) 439–448. [9] M.A. KrasnoselÕskii, Positive Solutions of Operator Equations, Noordhooff, Groningen, 1964. [10] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.