2 . 1&max[l, l*]
It follows from duality that &A 2 & W &1, p 2 (0) C(h l&12 +h l*+(1#: )&1 +h l*+(1#; )&1 ) Ä 0, 1
1. That is, A+R+B+7 is bounded in W &1, r(0), r>1. So it follows from Lemma 3.4 that A+R+B+7 is compact in H &1 loc (0). This means, '(v) t +q(v) x &S is compact in H &1 loc (0). By the arguments above, we have our desired result. This completes the proof of Theorem 3.1. K Incorporating Theorem 2.1 with Theorem 3.1, we have the following framework theorem of the approximate solutions v h defined in Section 2. Theorem 3.2. Suppose that the initial data (: 0(x), m 0(x), ; 0(x), n 0(x)), # : , # ; > 53 and given functions D(x) satisfy the conditions 0: 0(x), ; 0(x)M 1 , |m 0(x)| M 2 : 0(x), |D(x)| M 3 .
: 0(x), ; 0(x)0, |n 0(x)| M 2 ; 0(x),
THE BIPOLAR HYDRODYNAMIC MODEL
273
Then, the approximate solutions v h satisfy the following estimates and compactness: (1)
There is a constant C(T )>0 such that 0: h(x, t), ; h(x, t)C, |m h(x, t)| C: h(x, t), |n h(x, t)| C; h(x, t),
(x, t) # I T .
(2) For every domain 0/I T and every weak entropy pair (', q), the sequence of enrtopy dissipation measures '(v h ) t +q(v h ) x is compact in H &1 loc (0). Following [4, 10, 11, 30, 31] we have the compactness framework theorem needed in the paper: Theorem 3.3. Assume that approximate solutions v h(x, t)=(: h(x, t), m h(x, t), ; h(x, t), n h(x, t)) satisfy the following framework: (1)
Let 0: h , ; h C, |m h | C: h ,
|n h | C; h , a.e.
for a positive constant C. (2) The sequence of entropy dissipation measures '(v h ) t +q(v h ) x is compact in H &1 loc (0) for every weak entropy pair (', q) and every open bounded set 0/R 2+ . Then, for # : , # ; > 53 , there exists a convergent subsequence, still labeled v h , such that (: h(x, t), m h(x, t), ; h(x, t), n h(x, t)) Ä (:(x, t), m(x, t), ;(x, t), n(x, t)).
4. THE GLOBAL EXISTENCE AND BOUNDARY CONDITION OF WEAK SOLUTIONS In this section, we will prove the convergence of a sequence of the approximate solutions v h derived by the modified Godunov scheme, and
274
KAI-JUN ZHANG
imply the global existence of weak entropy solutions of (1.16)(1.19). At the same time we prove the weak solutions to satisfy the boundary conditions in the sense of traces. Theorem 4.1. Suppose that the conditions of Theorem 3.2 hold. Then, (1) The sequence of the approximate solutions v h =(: h , m h , ; h , n h ) has a convergent subsequence, still labeled v h , such that (: h(x, t), m h(x, t), ; h(x, t), n h(x, t)) Ä (:(x, t), m(x, t), ;(x, t), n(x, t))
a.e.,
(4.1)
and there is a constant C(T )>0 such that 0:(x, t), ;(x, t)C, |m(x, t)| C:(x, t), |n(x, t)| C;(x, t)
(4.2) a.e.
(2) The bounded measurable function v(x, t)=(:(x, t), m(x, t), ;(x, t), n(x, t)) is an entropy weak solution of (1.16)(1.19), i.e., (:(x, t), m(x, t), ;(x, t), n(x, t)) satisfies (1.20)(1.23) and (1.25). Proof. From Theorem 3.3, we obtain a convergent subsequence, still labeled v h , such that (: h(x, t), m h(x, t), ; h(x, t), n h(x, t)) Ä (:(x, t), m(x, t), ;(x, t), n(x, t))
a.e.
Clearly, 0:(x, t), ;(x, t)C, |m(x, t)| C:(x, t), and |n(x, t)| C;(x, t) a.e. For every function # C (I T ) satisfying (x, T )=0, and (0, t)= (1, t)=0, we consider the integral identity T
| | 0
1
(: h t +m h x ) dx dt+
|
: h dx=A :()+R :(),
(4.3)
t=0
0
where A :()=: i, j
R :()=: i, j
| (: &: ) dx, i h
i j
i
ti+1
| | (m &m ) h
ti
h
x
(4.4) dx dt.
(4.5)
275
THE BIPOLAR HYDRODYNAMIC MODEL
For 53 <# : , # ; 2, using Holder's inequality, (3.1), and the fact that : ij is the average value of : h on cell (x j&1 , x j ), we have
} | (: &: )( & ) dx } : | | & | dx \ + \: | |: &: | dx+ h && \ : | |x&x | dx+ \ : | |: &: | dx+
|A :()| = :
i h
i j
i
i j
i, j
12
i
12
i 2 j
i h
i, j
i 2 j
i, j
12
12
C1
i h
j
i, j
Ch
12
12
i 2 j
i, j
&& C 1 Ä 0,
h Ä 0.
as
(4.6)
For # : , # ; >2, by (3.13), we have
}
| (: &: )( & ) dx }
|A :()| = :
i h
i, j
: i, j
i j
i
i j
| | & | |: &: | dx i
i j
h && C 1 : i, j
i h
i j
| |: &: | dx i h
i j
Ch 1#: && C 1 Ä 0,
as h Ä 0.
(4.7)
It follows from the uniform bound of v :h that
}
R :()= : i, j
: i, j
ti+1
| | (m &m ) h
h
x
ti+1
| |_ ti
i, j
: i, j
ti+1
| | \ |m ti+1
| | \C$ ti
1 k {
\ +
}|
t
e &(t&s){
ti
|
1
0
G x(: h(!, s)
}& | | dx dt x
| (1&e &t&ti { )+: h
h
ti
C$ 1+
}
|m h | (1&e &(t&ti ){ )+: h
&; h(!, s)&D(!)) d! ds :
dx dt
ti
|
t
+
e &(t&s){ ds C$ | x | dx dt
ti
|t&t i | +C${(1&e &(t&ti ){ ) | x | dx dt {
+
T
| | 0
Ch && C 1 Ä 0,
1
| x | dx dt 0
as
h Ä 0.
(4.8)
276
KAI-JUN ZHANG
Then, (4.6)(4.8) imply that lim
hÄ0
_|
T
|
0
1
(: h t +m h x ) dx dt+
|
&
: h dx =0.
t=0
0
(4.9)
Using the dominated convergence theorem in (4.9), we have T
| | 0
1
(: t +m x ) dx dt+
|
: 0(x) dx=0.
(4.10)
t=0
0
For every function # C 1(I T ) satisfying (0, t)=(1, t)=0 for t0 and (x, T)=0 for 0x1, we consider the integral identity T
| | 0
1 0
(m h t + f 2(v :h ) x +V :2(v :h ) ) dx dt+
|
m h dx
t=0
=A :()+R :(),
(4.11)
where f :2(v : )=m 2:+: #: # : and V :2(v : )=: 10 G x (:&;&D) d!& m{ , A :()=: i, j
ti+1
xj
ti
xj&1
| (m &m ) dx+: | | i h
i j
i
i, j
V :2(v h ) dx dt,
(4.12)
and R :()=: i, j
ti+1
| | ti
xj xj&1
[(m h &m h ) t +( f :2(v :h )& f :2(v :h )) x
+(V :2(v :h )&V :2(v :h )) ] dx dt.
(4.13)
In terms of the uniform bound of v :h , and |m h &m h | ( k{ |m h | +C$k |: h |), we have ti+1
xj
||
_ | | + | | |{f (v +%(v &v ))| + { & |m | _ +C$: k dx dt \{ +
|R :()| :
i, j
| | ti
t
x
xj&1
: 2
: h
: h
: h
h
h
Ch && C 1 Ä 0, where % # [0, 1].
as
h Ä 0,
(4.14)
277
THE BIPOLAR HYDRODYNAMIC MODEL
We decompose A :() into three parts,
{
A :()= : i, j
{
= {
|
(m ih &m ij )( i & ij ) dx + : i, j ti+1
| | (V (v )&V (v
+ :
: 2
ti
i, j
: h
: 2
:i h
ti+1
| | V (v )(& ) dx dt= : 2
ti
)) ij dx dt
: h
i j
=
#A :1()+A :2()+A :3().
(4.15)
For A :1() and A :2(), by Lemma 3.1, we have, for 53 <# : 2,
}
|A :1()| = : i, j
| (q +m &m )( & ) dx } i h
i
i j
i
i j
12
12
+ _\ + + : | (m &m ) dx \ + & C$h && \N : | |x&x | dx+ (C$ &q & C$ :
i, j
| ( & ) i
i 2 j
:
i, j
|q
2 i
dx
12
1
i, j
dx
i h
0
i 2 j
12
12
C1
j
0
i
+C$)
j
Ch 12 && C 1 Ä 0,
as h Ä 0,
(4.16)
where q i = m ih (1&e &k{ ) & : ih tti e &ti &s { 10 G x ( : h(!, s) & ; h(!, s) & i&1 D(!)) d! ds. For # : >2, from Lemma 3.6, we have
}
|A :1()| = : i, j
: i, j
| (q +m &m )( & ) dx } i
i h
i j
i
i j
| \ |2 | + |m &m | ) | & | dx i h
i
i j
i
i j
h && C 1 (C$+C$h (1#: )&1 ) (hC$+h 1#: ) && C 1 Ä 0,
as
h Ä 0,
(4.17)
where q i =m ih (1&e &k{ )&: ih
|
ti ti&1
e &ti &s{
|
1
0
G x (: h(!, s)&; h(!, s)&D(!)) d! ds,
278
KAI-JUN ZHANG
and |A :2()| : i, j
||
| i & ij |
\ |x&x |
|V 2(v :h )|
h+
j
Ch && C 1 Ä 0,
|(x, t)& i | k dx dt |t&t i |
+
as h Ä 0.
(4.18)
By Lemma 2.4, Lemma 2.5, and Lemma 2.1, we have
}
|A :3()| = : ij i, j
|| (V (v )&V (v : 2
C && : i, j
C && : i, j
C && : i, j
: h
: 2
:i h
)) dx dt
|| ( |: &:
:i h
|| |: &:
| dx dt
h
h
|
ti+1
i h
}
| + |m h &m ih | ) dx dt
=h dt
(by Lemma 2.4)
(by Lemma 2.5)
ti
C= && ,
(4.19)
where =>0 is an arbitrarily small constant. It follows from (4.14)(4.19) that lim
hÄ0
_|
T 0
|
1 0
(m h t + f :2(v :h ) x +V :2(v :h ) ) dx dt+
|
&
m h dx =0.
t=0
(4.20) Using the dominated convergence theorem, we have T
| | 0
1 0
\
T
| |
1
+
0
0
m 2 : #: x dx dt + : #:
\ \: |
m t +
+ +
1
0
G x (:&;&D) d!&
m dx dt+ {
+
|
m 0(x) dx=0. t=0
(4.21)
We can similarly get (1.22)(1.23). For every weak and convex entropy pair (', q) and every nonnegative smooth function that has compact support in region I T , we consider the integral identity T
| | 0
1
('(v h ) t +q(v h ) x ) dx dt=A( )+R( )+7( )+S( ), 0
where A( ), R( ), 7( ), and S( ) are similar to those of (3.15).
(4.22)
279
THE BIPOLAR HYDRODYNAMIC MODEL
Since (', q) is a convex entropy pair and 0, as [51], we have 7( )0,
(4.23)
| (v &v ) { '(! )(v &v ) dx +: | ('(v )&'(v ))( & ) dx
A( )=: ij
i h
i T j
2
i j
i j
i
i h
i j
i, j
i h
i j
i, j
: i, j
{
| ('(v )&'(v ))( & ) dx i h
i j
i
i j
1
&Ch l&12 && C l0 ,
5 <# : , # ; 2 , 3
&C(h l&12 +h l+(1#: )&1 +h l+(1#; )&1 ) && C l0 ,
{
max 1&
1 1 , 1&
=
# : , # ; >2. (4.24)
As in (3.28), we have S()&Ch && H 10 .
(4.25)
Using the fact that : h(x, t)=: h(x, t), ; h(x, t)=; h(x, t), and m h(x, t)=m h(x, t) e &t&ti { +: h _
|
e &t&s{
ti
G x(: h(!, s)&; h(!, s)&D(!)) d! ds,
n h(x, t)=n h(x, t) e &t&ti { &; h
|
t
1
0
_
|
|
t
t i&1 t
e &t&s{
ti
1
0
G x(: h(!, s)&; h(!, s)&D(!)) d! ds,
t i&1 t
280
KAI-JUN ZHANG
we obtain 1 |V 2(v ih )&V 2(v ih )| m ih (e &ti &ti&1 { &1)+: ih {
}
|
|
ti
e &ti &s{
ti&1
1
G x (: h(!, s)&; h(!, s)&D(!)) d! ds
_
0
1 + n ih (e &(ti &ti&1 {) &1)&; ih {
}
|
|
ti
e &ti &s{
ti&1
1
G x(: h(!, s)&; h(!, s)&D(!)) d! ds
_
0
k (|m ih | + |n ih |) 2 +(: ih +; ih ) {
|
}
ti
}
e &ti &s{ ds
ti&1
C$ Ch. {
Then,
||
R( )=:
1
0
i, j
{'(v ih +%(v ih &v ih ))(v ih &v ih ) d% i dx
| \|
=:
1
0
i, j
|
1
_
|
0 1 0 1
_
ti
e &ti &s{
ti&1
&
0
_
' n(v ih +%(v ih &v ih )) d% } n ih (1&e &k{ )+; ih
i
_
|
ti
| \| 0
1 0
e &ti &s{
ti&1
' m(v ih +%(v ih &v ih )) d%
e &ti &s{
ti&1
1
|
0
G x (: h(!, s)&; h(!, s)&D(!)) d! ds
& +
&m ih (1&e &k{ ) i dx+: } ; ih
ti
& +
1
} : ih
|
G x(: h(!, s)&; h(!, s)&D(!)) d! ds i dx
&Ch&:
_
|
G x(: h(!, s)&; h(!, s)&D(!)) d! ds i
+
|
_
' m(v ih +%(v ih &v ih )) d% } m ih (1&e &k{ )&: ih
|
ti ti&1
e &ti &s{
|
i
1
| \| 0
1
0
' n(v ih +%(v ih &v ih )) d%
1
0
& +
G x(: h(!, s)&; h(!, s)&D(!)) d! ds
+n ih (1&e &k{ ) i dx.
(4.26)
281
THE BIPOLAR HYDRODYNAMIC MODEL
It follows from (4.23)(4.26) that T
| | 0
1
1
| \|
('(v h ) t +q(v h ) x ) dx dt+: 0
0
i
_
} : ih
|
ti
e &ti &s{
ti&1
|
_
|
e &ti &s{
ti&1
' m(v ih +%(v ih &v ih )) d%
G x (: h(!, s)&; h(!, s)&D(!)) d! ds
0
&
ti
0
1
&m ih (1&e &k{ ) i & } ; ih
1
|
|
1 0
' n(v ih +%(v ih &v ih )) d%
1
G x (: h(!, s)&; h(!, s)&D(!)) d! ds
0
& +
+n ih (1&e &k{ ) i dx
{
&Ch l&12(&& C l0 +h 32&l(1+&& H 10 )), 1 5
{
=
As [51], letting h Ä 0 in (4.27) and using the fact that v h Ä v a.e., we obtain the entropy condition T
| | 0
T
1
('(v) t +q(v) x ) dx dt+ 0
| | 0
1
{'(v) V 2(v) dx dt0,
(4.28)
0
where
\
V 2(v)= 0, :
|
1
G x (:&;&D) d!&
0
m , 0, &; {
|
1
G x (:&;&D) d!&
0
n . {
+
This completes the proof of Theorem 4.1. K Now we turn to the boundary conditions of weak solutions. Let v(x, t)=(:(x, t), m(x, t), ;(x, t), n(x, t)) be a weak solution of (1.16)(1.19) obtained in Theorem 4.1. We introduce the generalized function B: C 10(R 2 ) Ä R 2 as follows: for # C 10(R 2 ), T
| |
1
B()=&
0
0
(v t + f (v) x +F) dx dt,
282
KAI-JUN ZHANG
where m 2 : #: n 2 ; #; + , n, + : #: ; #;
\ F= 0, : | \
f (v)= m,
1
0
T
+,
m G x (:&;&D) d!& , 0, &; {
|
1
G x (:&;&D) d!& 0
n {
T
+.
We take ` 0 , ` T , ' 0 , ' 1 # C 10(R) with ` 0(0)=1,
` 0(T)=0;
` T (0)=0,
` T (T)=1;
' 0(0)=1,
' 0(1)=0;
' 1(0)=0,
' 1(1)=1.
For any / # C 10(R), we define the generalized functions, v C( } , 0)(/)=B(/ } ` 0 )&/(0) B(' 0 } ` 0 )&/(1) B(' 1 } ` 0 ), v C( } , T )(/)=&B(/ } ` T )+/(0) B(' 0 } ` T )+/(1) B(' 1 } ` T ), f C(v)(0, } )(/)=B(' 0 } /), f C(v)(1, } )(/)=&B(' 1 } /), where (/ } ` 0 )(x, t)=/(x) ` 0(t) and so on mean the tensor product. Then we can define the trace of v along the segments (0, 1)_[0] and (0, 1)_[T], and the trace of f (v) along the segments [0]_(0, T ) and [1]_(0, T ), respectively, as v C( } , 0), v C( } , T ), f C(v)(0, } ), f C(v)(1, } ). Similarly, for any t # (0, T ), we also can define v C( } , t) as the trace of v along the segment (0, 1)_[t]. For any x # (0, 1), define f C(v)(x, } ) as the trace of f (v) along the segment [x]_(0, T ). It is similar to [19], we have Lemma 4.1. Let v be a weak solution of (1.16)(1.19). Then v C( } , 0)| (0, 1) , v C( } , T)| (0, 1) # L loc(0, 1); f C(v)(0, } )| (0, T ) , f C(v)(1, } )| (0, T ) # L loc(0, T), and for any # C 10(R 2 ), T
| | 0
1
(v t + f (v) x +F) dx dt 0
=
|
1
v C(x, T ) (x, T) dx&
0
|
T
+
0
|
f C(v)(1, t) (1, t)&
1
v C(x, 0) (x, 0) dx
0
|
T
0
f C(v)(0, t) (0, t) dt.
(4.29)
283
THE BIPOLAR HYDRODYNAMIC MODEL
Theorem 4.2. Let v h(x, t)=(: h(x, t), m h(x, t), ; h(x, t), n h(x, t)) be the approximate solutions of (1.16)(1.19) constructed in Section 2 and v(x, t)= (:(x, t), m(x, t), ;(x, t), n(x, t)) is the limit function of v h as h Ä 0. Then v(x, t) satisfies the initial-boundary conditions, m C(0, t)=m C(1, t)=0,
t # (0, T )
n C(0, t)=n C(1, t)=0,
t # (0, T )
v C(x, 0)=v o(x),
x # (0, 1)
(4.30) (4.31)
Proof. From the proof of Theorem 4.1, is easy to get, for any # C 10(R 2 ), that T
lim
hÄ0
_| | 0
1
(: h t +m h x ) dx dt+
|
: h dx&
t=0
0
|
&
: h dx =0,
t=T
which implies T
| | 0
1
(: t +m x ) dx dt+
|
: 0(x) dx& lim
hÄ0
t=0
0
|
: h dx=0.
t=T
(4.32)
Inserting (4.29) into (4.32), we have
|
1
: C(x, T ) (x, T ) dx&
0
|
1
: C(x, 0) (x, 0) dx
0
|
T
+
|
m C(1, t) (1, t)&
0
|
T
m C(0, t) (0, t) dt& lim
hÄ0
0
|
: h dx t=T
1
+
\(x, 0) (x, 0) dx=0.
0
Take (x, t)=`(x) /(t) # C 10(R 2 ) with `, / # C 10(R), and /(0)=1, `(1)= `(0)=0, /(T)=0 in (4.33). We get
|
1
0
: C(x, 0) `(x) dx=
|
1
: 0(x) `(x) dx,
0
which implies : C(x, 0)=: 0(x) on (0, 1). Similarly, holds that m C(x, 0)=m 0(x), ; C(x, 0)=; 0(x), and n C(x, 0)= n 0(x) on (0, 1).
284
KAI-JUN ZHANG
Take (x, t)=`(x) /(t) # C 10(R 2 ), `, / # C 10(R), /(T )=/(0)=0, `(0)=1, `(1)=0 in (4.33), and one can get
|
T
m C(0, t) /(t) dt=0.
0
Thus m C(0, t)=0 on (0, T). It is similar to show that m C(1, t)=0, n C(1, t)=0, n C(0, t)=0 on (0, T ). This completes the proof of Theorem 4.2. K
5. RELAXATION LIMITS In this section we deal with the relaxation limit of entropy weak solutions of (1.16)(1.19) as { Ä 0. By making the change of the scale t= {s , we can transform (1.16)(1.19) into the scaled form : {s +m {x =0,
\
({ 2m { ) s + { 2 =: {
|
1
(m { ) 2 + p(: { ) :{
+
(5.1)
x
G x(: {(!, s)&; {(!, s)&D(!)) d!&m {,
(5.2)
0
; {s +m {x =0,
\
({ 2n { ) s + { 2 =&; {
(n { ) 2 + p(; { ) ;{
|
1
+
(5.3)
x
G x(: {(!, s)&; {(!, s)&D(!)) d!&n {,
(5.4)
0
where s
\ {+ , 1 s m (x, s)= m x, , { \ {+ : {(x, s)=: x, {
s
\ {+ , 1 s n (x, s)= n x, . { \ {+
; {(x, s)=; x, {
From [50], we have the following div-curl lemma.
(5.5)
(5.6)
285
THE BIPOLAR HYDRODYNAMIC MODEL
Lemma 5.1 (div-curl Lemma). Given two sequences [U { ] and [V { ] uniformly bounded in L 2loc and assume that [div U { ] and [curl V { ] belong to a bounded set of L 2loc independent of {. Then U { } V { ( U } V in D$, where U=w&lim U { and V=w&lim V {. Lemma 5.2. Let (: {, m {, ; {, n { ) be the entropy solutions of (5.1)(5.4). Then for any T>0, there exists a constant C=C(T) independent of { such that (n { ) 2(x, t) dx dtC(T ), ; {(x, t)
(5.7)
&{: {& L ([0, 1]_[0, T]) +&{; {& L ([0, 1]_[0, T]) C(T ),
(5.8)
&{ 3m {& L ([0, 1]_[0, T ]) +&{ 3n { & L ([0, 1]_[0, T]) C(T ),
(5.9)
T
| | 0
1
0
(m { ) 2 (x, t) dx dt+ : {(x, t)
T
| | 0
1 0
where { satisfies (1.8) Proof. It is easy to get (5.8) and (5.9) from Theorem 4.1. We prove (5.7) now. Consider the classical mechanical entropy-entropy flux pair '*=
: #: 1 n2 ; #; 1 m2 + + + , 2 : # :(# : &1) 2 ; # ;(# ; &1)
q*=
1 m3 1 1 n3 1 #: &1 + m+ + : ; #; &1n. 2 2 2: # : &1 2; # ; &1
From the entropy inequality, we have, for almost every t0, t
|
1
'*(x, t) dx 0
|
1
0
\
(m&n)
|
1
G x (:&;&D) d!& 0
m2 n2 (x, t) dx. & :{ ;{ (5.10)
+
Let (t)=
|
1
0
f (t)=
|
\
m2 n2 + (x, t) dx, : ;
+
1
'*(x, t) dx.
0
Then we have df C$ - & , dt {
(5.11)
286
KAI-JUN ZHANG
which comes from the deduction
|
1
(m&n) 0
|
1
\|
1
G x (:&;&D) d! dx 0
m2 dx :
12
1
+ \ | \| n + | \ ; dx+ \| ; \| 0
1
0
2
2
1
:
0
12
1
0
0
1
0
12
+ + G (:&;&D) d! dx + +
G x (:&;&D) d!
dx 2
12
x
C$ - (t). Here we have used Lemma 2.6 and Theorem 2.1, and C$ is independent of {. Now let ,(s)=
s
\{+ =|
{2
F(s)= f
1
0
\
(m { ) 2 (n { ) 2 + { (x, s) dx, :{ ;
+
s
\ {+ .
Then, in view of (5.11), we get dF C$ - ,&,, ds
(5.12)
which leads to F(t)+
|
T
,(s) dsF(0)+C$ 0
|
T
- ,(s) ds.
0
Thus we obtain, by F(t)0,
|
T
0
,(s) dsF(0)+C$ - T
\|
T
,(s) ds 0
+
12
.
That is,
|
T
0
,(s) ds 14 (C$ - T+- (C$) 2 T+4F(0)) 2.
This completes the proof of Lemma 5.2. K
THE BIPOLAR HYDRODYNAMIC MODEL
287
From Lemma 5.2, can be shown there exist :~, ;, p~, and q~ being in L ([0, 1]_[0, T]) such that p~ =w C &lim p({: { ),
q~ =w C &lim q({; { )
as { Ä 0,
(5.13)
:~ =w C &lim {: {,
; =w C &lim {; {
as { Ä 0,
(5.14)
Now we give a key result in this section. Lemma 5.3. Suppose # : , # ; 2. Then q~ =q( ; ),
p~ = p(:~ ), {: {p({: { ) ( :~p(:~ ), Proof.
{; {q({; { ) ( ;q(; ),
as
(5.15) { Ä 0 in D$,
(5.16)
For # : , # ; =2, we rewrite (5.1)(5.4) into the new form ({: { ) s +({m { ) x =0,
\
{ 3({m { ) s + { 4 ={: {
|
1
(m { ) 2 + p({: { ) :{
+
(5.17)
x
G x({: {(!, s)&{; {(!, s)&{D(!)) d!&{ 2m {,
(5.18)
0
({; { ) s +({n { ) x =0,
\
{ 3({n { ) s + { 4 =&{; {
(n { ) 2 +q({; { ) ;{
|
1
+
(5.19)
x
G x({: {(!, s)&{; {(!, s)&{D(!)) d!&{ 2n {.
(5.20)
0
We define U {: =[{: {, {m { ],
U {; =[{; {, {n { ],
(5.21)
and
{
V {: = &{ 4
(m { ) 2 & p({: { ), { 4m { , :{
=
{
V {; = &{ 4
(n { ) 2 &q({; { ), { 4n { . ;{ (5.22)
=
288
KAI-JUN ZHANG
From (5.1) and (5.3) we get div U {: =0 and div U {; =0 which lead to the boundedness of [div U {: ] and [div U {; ] in L 2loc . According to Lemma 5.2, one can get &{ 12m {& L2 ([0, 1]_[0, T ]) &{: {& 12 L ([0, 1]_[0, T])
"
(m { ) 2 :{
"
12 L1 ([0, 1]_[0, T])
independent of {,
C(T )
&{ 12n {& L2 ([0, 1]_[0, T]) &{; {& 12 L ([0, 1]_[0, T])
(n { ) 2 ;{
" "
(5.23) 12 L1 ([0, 1]_[0, T])
independent of {,
C(T )
(5.24)
which imply &U {: & L2 ([0, 1]_[0, T]) , &U {; & L2 ([0, 1]_[0, T]) C(T ),
(5.25)
and that there exist functions m~, n~ and :~, ; being in L 2([0, 1]_[0, T]) such that { 12m { ( m~,
{ 12n { ( n~
in
L 2([0, 1]_[0, T]),
(5.26)
{: { ( :~,
{; { ( ;
in
L 2([0, 1]_[0, T]).
(5.27)
As far as V {: and V {; are concerned, we have
"
&curl V {: & L2 ([0, 1]_[0, T]) = {: {
1
|
"
G x ({: { &{; { &{D) d!&{ 2m {
0
L2 ([0, 1]_[0, T])
C(T),
"
&curl V {; & L2 ([0, 1]_[0, T]) = {; {
|
1
"
G x ({: { &{; { &{D) d!+{ 2n {
0
(5.28)
L2 ([0, 1]_[0, T])
C(T). On the other hand, by means of Lemma 5.2 and Theorem 5.1, we get
"
{4
(m { ) 2 :{
"
"
{ { 2 L2 ([0, 1]_[0, T])
m{ :{
C(T ) {
"
L ([0, 1]_[0, T])
&{m {& L2 ([0, 1]_[0, T]) , (5.29)
THE BIPOLAR HYDRODYNAMIC MODEL
289
and
"
{4
(n { ) 2 ;{
"
L2 ([0, 1]_[0, T])
n{ ;{
" "
{ { 2
L ([0, 1]_[0, T])
&{n {& L2 ([0, 1]_[0, T]) ,
C(T ) {
(5.30)
which mean that &V {: & L2 ([0, 1]_[0, T]) , &V {; & L2 ([0, 1]_[0, T]) C(T ).
(5.31)
Thus, we can show V {: ( [/ : , 0],
V {; ( [/ ; , 0].
(5.32)
By (5.13), (5.29), and (5.30), we get / : =&p~, / ; =&q~. Making use of Lemma 5.1, we finally obtain U {: } V {: =&{: {p({: { ) ( U : } V : =&p~:~
in D$,
U {; } V {; =&{; {q({; { ) ( U ; } V ; =&q~;
in D$.
By Minty's monotonicity arguments [29] we obtain (5.15). For # : , # ; >2, (5.1)(5.4) can be transformed into the new form ({: { ) s +{ 12({ 12m { ) x =0,
\
{ 32+#: ({ 12m { ) s + { 2+#: ={ #: &2({: { )
|
1
(m { ) 2 + p({: { ) :{
+
x
G x({: {(!, s)&{; {(!, s)&{D(!)) d!&{ #: &12({ 12m { ),
0
(5.34) ({; { ) s +{ 12({ 12n { ) x =0,
\
{ 32+#; ({ 12n { ) s + { 2+#; =&{ #; &2 ; {
|
1 0
(5.33)
(n { ) 2 +q({; { ) ;{
+
(5.35)
x
G x({: {(!, s)&{; {(!, s)&{D(!)) d!&{ #; &12({ 12n { ). (5.36)
We take U {: =[{: {, {m { ],
U {; =[{; {, {n { ]
(5.37)
290
KAI-JUN ZHANG
and
{ V = &{ {
V {: = &{ 2+#: { ;
(m { ) 2 & p({: { ), { 2+#: m { , :{
=
{ 2
2+#;
(n ) &q({; { ), { 2+#; n { . ;{
(5.38)
=
As done in the case of # : , # ; =2, we can get what we want. This completes the proof of Lemma 5.3. K Lemma 5.4. Let p, q # C 2(R) be such that p", q">0. Let [: {, ; { ] be any sequence of L , such that p(: { ) ( p(:)
in L weak C,
(5.39)
q(; { ) ( q(;)
in L weak C,
(5.40)
where :=weak C&lim : {, ;=weak C&lim ; { as { Ä 0. Then : { Ä :, p ; { Ä ; in L loc strongly for all p # (1, ). The proof of Lemma 5.4 is the same as the Proposition 4.3 of [33]. Now we are in a position to prove the main result of this section. Theorem 5.1 Assume that the conditions of Theorem 4.1 hold. Let (: {, m {, ; {, n { ) be the sequence of solutions of (5.1)(5.4). Then there exist :~, ; # L and m~, n~ # L 2 such that {: { Ä :~,
{; { Ä ;
{ 12m { ( m~,
{ 12n { ( n~
a.e. as
{ Ä 0,
as { Ä 0
in D$.
(5.41) (5.42)
The limit function (:~, m~, ;, n~ ) satisfies the simplified drift-diffusion equation, for # : , # ; =2, ; s =0,
:~ s =0, p(:~ ) x =:~
|
(5.43)
1
G x (x, !)(:~(!, s)&;(!, s)) d!,
(5.44)
0
q(; ) x =&;
|
1
0
G x (x, !)(:~(!, s)&;(!, s)) d!,
(5.45)
THE BIPOLAR HYDRODYNAMIC MODEL
291
and for # : , # ; >2, :~ s =0,
; s =0,
(5.46)
p(:~ ) x =0,
q(; ) x =0,
(5.47)
in the sense of distributions. From the dominated convergence theorem, Theorem 4.1, and Lemma 5.4, it is easy to get the proof of Theorem 5.1.
ACKNOWLEDGMENTS The author is thankful to his supervisors Professors Ling Hsiao and Pierre Degond for their warm help and guidance. Professor Peter A. Markowich also deserves thanks for his kind support and guidance. The author's work was carried out while staying at Mathematiques pour l'Industrie et la Physique, Universite Paul Sabatier, Toulouse, France, and was also supported by the Erwin Schrodinger International Institute for Mathematical Physics in Vienna while visiting. He expresses his sincere thanks for their warm hospitality and support.
REFERENCES 1. N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys. 37 (1996), 33063333. 2. N. Ben Abdallah, P. Degond, and S. Genieys, An energy-transport model for semiconductors derived from the Boltzmann equation, J. Statist. Phys. 84 (1996), 205231. 3. K. Blotekjer, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron. Devices 17 (1970), 3847. 4. G.-Q. Chen, Convergence of LaxFriedrichs scheme for isentropic gas dynamics, III, Acta Math. Sci. 6 (1986), 75120. 5. S. Cordier, Global solutions to the isothermal EulerPoisson plasma model, Appl. Math. Lett. 8 (1994), 1924. 6. P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett. 3 (1990), 2529. 7. P. Degond and P. A. Markowich, A steady-state potential model for semiconductors, Ann. Mat. Pura Appl. 4 (1993), 8798. 8. P. Degond and C. Schmeiser, Macroscopic models for semiconductor heterostructures, J. Math. Phys. 39 (1998), 130. 9. P. Degond and K. J. Zhang, Diffusion approximation of a scattering matrix model of semiconductor superlattice, to appear. 10. X. Ding, G.-Q. Chen, and P. Lou, Convergence of the fractional step LaxFriedrichs scheme for isentropic gas dynamics, I, Acta Math. Sci. 5 (1985), 415432. 11. X. Ding, G.-Q. Chen, and P. Lou, Convergence of the fractional step LaxFriedrichs scheme for isentropic gas dynamics, II, Acta Math. Sci. 5 (1985), 433472. 12. X. Ding, G.-Q. Chen, and P. Lou, Convergence of the fractional step LaxFriedrichs scheme and Godunov scheme for isentropic gas dynamics, Comm. Math. Phys. 121 (1989), 6384.
292
KAI-JUN ZHANG
13. R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91 (1983), 130. 14. R. J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), 2770. 15. W. Fang and K. Ito, Steady-state solutions of a one-dimensional hydrodynamic model for semiconductors, J. Differential Equations 133 (1997), 224244. 16. W. Fang and K. Ito, Weak solutions to a one-dimensional hydrodynamic model of semiconductors of two carrier type, Nonlinear Anal. 28 (1997), 947963. 17. I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Comm. Partial Differential Equations 17 (1992), 553577. 18. F. Golse and F. Poupaud, Limite fluide des equations de Bolzmann des semi-conducteurs pour une statistique de FermiDirac, Asymptotic Anal. 6 (1992), 135160. 19. A. Heidrich, Global weak solutions to initial boundary value problems for the wave equation with large data, Arch. Rational Mech. Anal. 126 (1994), 333368. 20. L. Hsiao and K. J. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift-diffusion equations, J. Differential Equations 165 (2000), 315354. 21. L. Hsiao and K. J. Zhang, The global weak solution and relaxation limits of the initialboundary value problem to the bipolar hydrodynamic model for semiconductors, Math. Models Methods Appl. Sci. 10, No. 9 (2000), 13331361. 22. J. W. Jerome, Consistency of semiconductor modelling: an existencestability analysis for the stationary Van Rroesbrock system, SIAM J. Appl. Math. 45 (1985), 565590. 23. A. Jungel, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci. 4 (1994), 677704. 24. A. Jungel, Qualitative behaviour of transient solutions of a degenerate nonlinear driftdiffusion model for semiconductors, Math. Models Methods Appl. Sci. 5 (1995), 497518. 25. A. Jungel, A degenerate drift-diffusion system with ellectric convection arising in semiconductor and electrophoretic modeling, preprint. 26. A. Jungel and Y. J. Peng, A hierarchy of hydrodanymic models for plasmas: Zero-relaxation-time limits, Comm. Partial Differential Equations 24 (1999), 10071033. 27. P. D. Lax, Hyperbolic systems of conservation laws and mathematical theory of shock waves, in ``Regional Conference Series in Applied Mathematics,'' Vol. 11, SIAM, Philadelphia, 1973. 28. P. D. Lax, ``Contributions to Nonlinear Functional Analysis: Shock Waves and Entropy,'' pp. 603634, Academic Press, San Diego, 1971. 29. J. L. Lions, Perturbations singulieres dans les problemes aux limites et en contro^le optimale, in ``Lectures Notes in Math.,'' Vol. 323, Springer-Verlag, Berlin, 1984. 30. P. L. Lions, B. Perthame, and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys. 163 (1994), 415431. 31. P. L. Lions, B. Perthame, and E. Sougandis, Existence of entropy solutions for the hyperbolic systems of isentroyic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math. 44 (1996), 599638. 32. T. Lou, R. Natalini, and Z. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Math. Anal. 59, No. 3 (1998). 33. P. A. Marcarti and A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Differential Equations 84 (1990), 129147. 34. P. A. Marcarti and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors: The Cauchy problem, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 115131. 35. P. A. Marcarti and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal. 129 (1995), 129145.
THE BIPOLAR HYDRODYNAMIC MODEL
293
36. P. A. Markowich, On steady-state EulerPoisson model for semiconductors, Z. Angew. Math. Phys. 62 (1991), 389407. 37. P. A. Markowich, C. Ringhofer, and C. Schmeiser, ``Semiconductor Equations,'' SpringerVerlag, WienNew York, 1990. 38. P. A. Markowich and C. A. Ringhofer, A singular boundary value problem modelling a semiconductor device, SIAM J. Appl. Math. 44 (1984), 231256. 39. M. S. Mock, ``Analysis of Mathematical Model of Semiconductor Devices,'' Boole, Dublin, 1983. 40. R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equation, J. Math. Anal. Appl. 198 (1996), 262281. 41. T. Nishida and J. Smoller, Mixed problem for nonlinear conservation laws, J. Differential Equations 23 (1977), 244267. 42. F. Poupaud, On a system of nonlinear Boltzmann equations of semiconductor physics, SIAM J. Appl. Math. 50 (1990), 15931606. 43. F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis of boundary layers, Asymptotic Anal. 4 (1991), 293317. 44. F. Poupaud, M. Rascle, and J. P. Vila, Global solutions to the isothermal EulerPoisson system with arbitrary large data, J. Differential Equations 123 (1995), 93121. 45. Y. C. Qiu and K. J. Zhang, On the relaxation limits of the hydrodynamic model for semiconductor devices, preprint, 1999. 46. W. Schockley, ``Electron and Holes in Semiconductors,'' Van Nostrand, New York, 1950. 47. J. Smoller, ``Shock Waves and Reaction-Diffusion Equations,'' Springer-Verlag, Berlin New York, 1983. 48. S. M. Sze, ``Physics of Semiconductor Devices,'' 2nd ed., Wiley, New York, 1981. 49. L. Tartar, Compensated compactness and applications to partial differential equations, in ``Nonlinear Analysis and Mechanics: Heriot-Watt Symposium'' (R. J. Knops, Ed.), Res. Notes Math., Vol. 4, pp. 136212, Pitman, New York, 1979. 50. W. V. Van Roosbrocck, Theory of flow of electrons and holes in germanium and other semiconductors, Bell System Tech. J. 29 (1950), 560607. 51. B. Zhang, Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices, Comm. Math. Phys. 157 (1993), 122. 52. K. J. Zhang, Global weak solutions of the Cauchy problem to a hydrodynamic model for semiconductors, J. Partial Differential Equations 12 (1999), 369383. 53. Chen Zhu and Harumi Hattori, Asymptotic behavior of the solution to a nonisentropic hydrodynamic model of semiconductors, J. Differential Equations 144 (1998), 353389.