On the mechanism of intelcrystalline cracking

On the mechanism of intelcrystalline cracking

LETTERS TO THE On the Mechanism of Intercrystalline Cracking * In the January f956 issue of Acta ~e~ullur~ic~, R. D. Gifkins proposed a mechanism fo...

315KB Sizes 4 Downloads 76 Views

LETTERS

TO THE

On the Mechanism of Intercrystalline Cracking * In the January f956 issue of Acta ~e~ullur~ic~, R. D. Gifkins proposed a mechanism for the formation of interorystalline cracks when boundary sliding occurs.(l) In his mechanism, tensile stresses are developed at suitably oriented jogs along the grain boundary, as a result of slip in the grains which does not completely pass through the boundaries. After sufficient dislocation pile-up at grain boundaries, these tensile stresses may exceed the fracture stress. If boundary sliding occurs concomitantly, the fractured surfaces at the jog are separated to produce intercrysta~ine cracks. As a result of an experimental investigation conducted in the previous year,(z) we had come to a different conclusion about the mechanism of intercrystalline void formation, which, however, requires, as does Gifkins’s, the existence of boundary sliding and boundary jogs. In particular, Gifkins calls upon dynamic slip in one of the bounding grains, which is partially accommodated by slip in the other bounding grain, to produce the grain boundary jogs. Further, he calls upon the piled-up dislocations at the boundary jog to produce the tensile stress that is supposed to produce t,he Iocal fracture at the jog.

FIG. 1, Stresses induced by boundary sliding in bhe direction shown at jogs.

On the other hand, we believe that the boundary slip {inability of the grain boundary to maintain shear traction} at high temperature will lead to the formation of dilationa stresses parallel to the boundary at regions where the boundary slip is impeded, such as at abrupt jogs along the boundary or at grain corners. The latter possibility was originally ACTA

METALL~RGICA,

VOL.

4, ~O~E~~B~R

1956

EDITOR

conceived by Zener(3) and recently experimentally demonstcated by Chang and Grant.(*) There are two possible directions to bo~dary jogs relative to a horizontal boundary. Namely, up or down as the boundary is traversed from left to right. If the top grtlin is sliding to the right relative to the bottom

(3)

SEPAffATE

FRACTURED

SURFACES.

ORIGINALLY CONTINUWS 9’*‘ LINER\‘,

(11 DEVELOP

TENSILE

STRESSES

(2)

DEVELOP

FRACTURE

ACROSS JOG.

FIG. 2. Steps in the development of int~~crystalline cracks due to increasing boundary slip, according to the mechanism by Chen and Meehlin.(*)

grain, then compressive stresses are produced across “up” jogs and tensile stresses are produced across “down” jogs. Fig. 1 illustrates this point. The mag~tude of the stress developed across a jog depends upon the shear relaxation Iength between jogs and the boundary area of the jog itself. Thus, in our mechanism, the boundary sliding accomplished two necessary conditions for the production of intercrystalline cracks. It produces the tensile stresses that result in fracture across the jogged interface, and also it separates the fractured surfaces. Fig. 2 illustrates this sequence. In Gifkins’s mechanism, on the other hand, boundary slip is required solely to separate the fractured surfaces. The experimental evidence we have obtained relates to the necessity of having graid-boundary sliding in order to produce intercrystalline voids. Bicrystals were grown from 99.999% copper. Specimens were cut from one bicrystal so that the grain orientation relative to the boundary is constant for all specimens. For one series of such specimens, shear t,raction was applied parallel to the bicrystal boundary at 1200°F for 20 hours in a dead loading apparatus. For another series of such specimens, a tensile stress of 1000 p.s.i. was applied normal to 635

656

ACTA

METALLURGICA,

VOL.

4,

D’apres

lui,

diffraction

X

spon~aient cristaux

1956

les

fragmentations

obtenues

des

dans les deux

taches

pas au mQme ph~nom~ne.

d’aluminium

polygoniseraient Nous voudrions

Des mono-

t&s pur faiblement

uniquement

de

cas ne corredeform&

vers 630°C.

p&ciser exactement

notre point de

vue. 11 est d’abord

certain

que la methode

que nous

avons proposee(3)

pas&de une sensibiliti sup&ieure B celle de Guinier-Tennevin.c4) M. de Beaulieu peut

FIG. 3. Spscimen subjected to shear parallel to grain boundary. Voids have developed along grain boundary. Conditions: 600 p.s.i., 482”C, 20 hours in H,, as polished, x 150.

the boundary

for 10 hours at 1200°F.

series of specimens, parallel stress,

shear traction,

to the boundary, applied

For a third

applied

was succeeded

as above,

normal

as before by tensile

to the boundary.

The results of the tests were, that with shear alone some

voids were found

along

the

boundary.

With

tension alone, no voids were found at the boundary. With

shear, followed

found

along the boundary.

and etching

by tension,

techniques

were used.

are shown in Fig. 3. It is apparent, therefore, necessary

condition

line voids

(cracks).

were performed mechanism,

many

that boundary

shear is a

our experiments

to a knowledge

of Gifkins’s

and do not serve to distinguish

simple experiments

results

of intercrystal-

Unfortunately,

his concept,s and ours.

between

We are now performing

to so di~erentiate.

it is apparent that grain-boundary

were

polishing

Typical

for the formation

prior

voids

Both diamond

some

In any ease,

sliding is a necessary

prerequisite in order to obtain intercrystalline

cracking.

School of Mines,

C. W. CHEN

~olurnbia I.:niversity,

E. S. MACHLIN

New York 27, IV. Y.

difficilement

dans

ses aristaux

des

sous-

11 lui est done impossible ments

thermiques

de asvoir si, pour les traite-

effect&s

& des

temperatures

infdrieures B 630”, une sous-structrue pas deja presente.

pIus fine n’est

En fait, memo dans des cristaux

moins purs, nous avons trouve des stries nettes dans les taches de diffraction

enregistrees

apres une deformation avons

faible

immediatement

(quelques

pu suivre leur evolution

%) et nous

apres divers

traite-

ments thermiques. Nos observations

peuvent se resumer de la man&e

suivante. 1. En-dessous

d’une

certaine gamme

de tempera-

tures, les sous-grains form& directement a la tempgrature ordinaire (sans intervention du processus thermiquement active de Cahn) ne semblent pas croitre

d’une

man&e

Blimine progressivement a cot& des continues. identifie

importante. La matrice les courbures locales presentes

sous-grains

parfaits

et plus

ou moms

Ce mecanisme peut &ire probablement B Ia diffusion et & la r~organisation des

dislocations,

c’est-a-dire

a ee que l’on appelle generale-

ment la “polygonisation.” 2. Au-dessus de ces temperatures (variables suivant la pure% du metal, de la deformation, etc.), une croissance reguliere de certains individus se dkveloppe

References

avec conservation

1. R. D. GIFKINS Actn Met. 4, 1955. 2. C. W. CHEN and E. S. MACHLIN

On the Mechanism of Intercrystalline Fracture, to be submitted to A.S.M. 3. C. ZENER The Micro-Mechanism of Fracture. Fracturing of Metals, A.S.M. (1947), p. 3. 4. H. C. CHANQ and N. J. GRANTMechanism of Intercrystalline Fracture Journ.aEof Metals February, 1956. * This research was supported by the United States Air Force through the Wright Air Development Center. Received April 25, 1956.

chacun

des

Au Sujet de la Mise en Evidence de la Polygonisation de 1’Aluminium par la Methode des Rayons X et par la Micrograp~ie~ Xous le m&me titre, M, de Beaulieu

a recemment

obtenus au laboraavec 110s propres

dune haute perfection

interne pour

sous-grains.

Dans les cas observes, cette &ape se deroule dans une matrice deja entierement polygonisee et peut 6tre citracterisee simple processus de croisssnce.

par un

3. Par contre, an voisinage du point de fusion, une sous-structure b larges domaines moins parfaits se forme

quelquefois

l’aluminium);

compare les importants resultats toire du Professeur Chaudron observations.(2)

detector

grains d’une taille inferieure au dixieme de millimetre.

(aussi bien dans le fer que dans

Cet &at

nous parait

correspondre

B

ce que Crussardc5) a appele “recristallisation in situ.” 11 est probable due les observations de M. de Beaulieu se rapportent b cet &at. Quoi qu’il en soit, nous n’avons jamais observe la formation de ces grands sous-grains imparfaits directement & partir de cristaux ne contenant pas au prealable une sousstructure L caractere parfait. 11 importe de remarquer