On the phase oscillation spectrum in CDW conductors

On the phase oscillation spectrum in CDW conductors

Synthetic Metals, 29 (1989) F407 F413 F407 ON THE PHASE OSCILLATION SPECTRUN IN CDN CONDUCTORS S.N.ARTENENKO and A.F.VOLKOV I n s t i t u t e of R...

229KB Sizes 19 Downloads 100 Views

Synthetic Metals, 29 (1989) F407 F413

F407

ON THE PHASE OSCILLATION SPECTRUN IN CDN CONDUCTORS

S.N.ARTENENKO and A.F.VOLKOV I n s t i t u t e of

Radioengineering

and

Electronics

of

the

Academy

of Sciences of the U.S.S.R., Mosco, (U.S.S.R)

ABSTRACT By means of

a

kinetic

approach

based on

l o n g - . a v e - l e n g t h phason spectrum i s c a l c u l a t e d . I t

the

Keldysh

technique

the

i s shown that screening of

the CDW charge by q u a s i p a r t i c l e s renders the phason spectrum soundlike with v e l o c i t y depending on q u a s i p a r t i c l e density.

INTRODUCTION The c o l l e c t i v e o s c i l l a t i o n s spectrum in CD# conductors was calculated f o r the f i r s t

time in the pioneering work of Lee, Rice, and Anderson [ I ] .

I t uas

shown there that the P e i e r l s t r a n s i t i o n leads to a modification of phonon spectrum near t h e momentum Q (O i s t h e CDN wave v e c t o r ) two new modes of o s c i l l a t i o n s .

In t h e l o n g - w a v e - l e n g t h

corresponds to amplitude oscillations, the phase of t h e o r d e r p a r a m e t e r . determined,

to a great extent,

the e l e c t r i c f i e l d .

and t o appearance of limit,

one o f them

and the o t h e r one t o o s c i l l a t i o n s

Kinetic

properties

of

o f t h e CDN c o n d u c t o r s a re

by the phase mode (phasons)

interacting

with

For instance, the phase mode is c l o s e l y connected with

F r o e l i c h c o n d u c t i v i t y because the phase o s c i l l a t i o n s at wave vectors k ~ O, and frequencies ~ ~ 0 correspond to uniform s l i d i n g of the CDM. I t was shown in [ I ]

that at zero temperature the e f f e c t s of d i e l e c t r i c screening lead to a

finite

phason frequency. But i f

there i s a large amount of charge c a r r i e r s

(the case of high enough temperatures T ~ A or of incomplete d i e l e c t r i s a t i o n at Peierls

transition)

due t o s c r e e n i n g e f f e c t s [2]

and [ 3 ]

above t h e energy gap, th e phason spectrum i s m o d i f i e d caused by q u a s i p a r t i c l e s .

Such a case was a n a lyse d in

where t h e s e u n d l i k e phason spectrum was o b t a i n e d a t T ~ A : ~ =

kv . But t h e e x p r e s s i o n s f o r

0379-6779/89/$3.50

v

calculated

in [ 2 ]

and [ 3 ] appeared t o be

© Elsevier Sequoia/Printedin The Netherlands

F408 d i f f e r e n t : according to [2] v according to [3] v

~ V~Q/T,

~ vAIt~'7~, that i s , v i.e.,

~ 0 at A ~ O, and

the phason v e l o c i t y is f i n i t e at A = 0

(here v is the Fermi v e l o c i t y , ~ is the dimensionless constant of e l e c t r o n phonon coupling, ~Q i s the bare phonon frequency). Two approaches were used f o r c a l c u l a t i o n of c o l l e c t i v e o s c i l l a t i o n s spectrum.

In the T i r s t o÷ them [ I , 2 , 4 ] Feynean diagrams f o r phonon 6reen°s

functions were summed up; in the second approach, equations f o r the current and f o r the phase ~, derived from microscopic equations, were used. Here we present the r e s u l t s f o r the phason spectrum obtained by means of k i n e t i c approach f o r the case o~ semiconducting CDN conductors l i k e TaS3, blue bronze etc. Ne r e s t r i c t ourselves to the l i m i t of low temperatures T ~ & when the concentration of q u a s i p a r t i c l e s is small. Our r e s u l t s d i f f e r ,

to some e x t e n t ,

from the r e s u l t s obtained in a recent paper [4).

RESULTS Linear response of a quasi-ID conductor f o r the case of small frequencies and gradients (~,kv ~ A) can be calculated with the help of k i n e t i c equations. Neglecting the transverse dispersion of e l e c t r o n i c spectrua ue represent these equations in the form [ 5 , 8 ]

[ ( S / ~ ) 2 ~ / ~ t - V ( G ) ] n z + v a n t / S x = (evE - (v /2)~o/'ax +~b~o)Sntr'd~

(1)

a n l / O t + V~nz/~X + V.L~nl/alr.L +[l~f (E2+ A 2) / (E~) + ~b~/E ) (nl-) = = (V.I.EL) B n l / ~

(2)

+ I e,

where the energy 2 is supposed to be l a r g e r than &, ~2= ~2_ ~ 2 , v = A2vo/~)/~,

) = 2(Ev b +

vo= ~f+ ~ b / 2 , ~ f and ~b are the forward and backward s c a t t e r i n g

r a t e s , r e s p e c t i v e l y ; E is the e l e c t r i c f i e l d , v transverse to the chain d i r e c t i o n ( i . e . ,

i s the e l e c t r o n v e l o c i t y

to the x - a x i s ) , < > means the

averaging over the transverse momenta p . Current d e n s i t i e s along ( j | ) perpendicular ( J )

and

to the x - a x i s and the charge density p are expressed

through n I and nz according to the r e l a t i o n s

j|

J.L = (=r~N/l)((~'b* p

+ ~o) + (EA/4w)~EI/OL

(3)

t J f ) / 2 < v 2 > ) S d e < n l v ~ le I/~>

(4)

= (~NN/l)(2SdElelnz/~

= (O'llN/Vl)(2J'd£1£tnt/~"

- v~0/Bx)

- (F..A/4m')t]EII / ~ x ,

(5)

F409

where ~ I , ~ N

the longitudinal

are

and t r a n s v e r s e

s t a t e , 1 = v / v b is the m e a n - T r e e - p a t h the d i e l e c t r i c

conductivities

in t h e normal

lengh, SA describes a renormalization oT

constant due to the appearance of the Peierls gap. In the most

i n t e r e s t i n g case of low temperatures s A = 4 ~ i N ~ b / 3 ~ 2 ~ 2 / ~ 2 . P The selfconsistency equation f o r the phase @ has a ~orm

2 2 2 = ( v E g / A 2) (2 - S d s ( t / ~ ) a n l / ~ ) (82~o/8t 2 = sj_Vj_q~)/X(og

Here s

2

= D2 ~ ? / ~ q :?

.

In l i n e a r

+2voSdS(t2/~4)n

(6)

z

a p p r o x i m a t i o n the CDM a m p l i t u d e i s not

disturbed and w i l l be considered constant. In equilibrium nz= 0 and nl= tanh(S/2T). The solution f o r deviations of the d i s t r i b u t i o n functions from the equilibrium ones and, correspondingly, the expression f o r the current density x i l l

have the d i f f e r e n t form depending on

the r e l a t i o n between the frequency ~, and i n e l a s t i c and e l a s t i c scattering -I -I rates Te and v o. F i r s t , we consider the case ~ ~ Te '~o" In t h i s case the d i s t r i b u t i o n function keeps i t s equilibrium form but the energy S is shifted by the value of the chemical p o t e n t i a l

n 1 = tanh((S

- p)/2T),

(7)

where ~ depends, g e n e r a l l y that

I e in E q . ( 2 )

Eqs.(1)

for

speaking,

on t i m e and c o o r d i n a t e s .

such a form of n I i s equal t o z e r o .

It

can be shown

Substituting

(7) in

and (2), one can easily obtain nz and a correction to nI determining

the transverse current density. Doing so, we get

jn= ~#B(-i

J.= ~ ( - ~

+ ~)/~x

+ ~lN(~/el)

181

* V.p)

p = -(2O'lN/Vl)(Nn/J

(g) + v~O'/2) -

where • i s the e l e c t r i c a l + ~f)/vb]exp(-A/T),

(SA/4w)a2t/ax2

potential,

~! = ~|NNnl~'~/~o

meaning. For i n s t a n c e , current,

- (SA/4~l~2t/~x~t

the first

the last

(10)

Nn=lF2~A/Texp(-A/T) . Eqs.(8-io)

term in E q . ( 8 )

~1,

~#= 2 ~ j . N [ ( V b +

have t h e e v i d e n t p h y s i c a l

d e s c r i b e s the d i s p l a c e m e n t

and second terms are the ohmic and d i f f u s i o n

currents,

n e x t term i s t h e CDM c u r r e n t . The p o t e n t i a l

~ must obey t h e c o n t i n u i t y

E x c l u d i n g ~ from t h i s .

= i ~k2/(;k2,

For q u a s i p a r t i c l e

equation,

i~)

currents

equation 8p/~t

+ divJ

we have f o r F o u r i e r components of

one has

= O.

the

F410

• . ~ l.~ / ( D^k 2 + i ~ ) , JqpH = ~NlkN 2^ where Dk

=

Jqp

= or ik ~ i ~ / ( D^E2 + ~ ) ,

(11)

2 D k , Da, =~D, v]/2Nn~DN. Dikl÷

To obtain the necessary equation for free o s c i l l a t i o n s of the phase ~, we exclude the e l e c t r i c a l potential • from the selfconsistency equation (7) using the Poisson equation. Supposing again kv ~ A , we gel iki

£&k|

(Sw~rgNNn/Vl)Dk2/(Dk + ~ ) ] - i ¢ ~ '

= 0,

~ = (12)

where E

i s the t r a n s v e r s e d i e l e c t r i c

constant.

An analogous c o n t r i b u t i o n

from

the l a t t i c e to E i is neglected because i t is small in comparison with E& ~ 1, the c o e f f i c i e n t ~ ~ ~bexp(-A/T) describes CDM damping due to quasiparticles. For s i m p l i c i t y , we w i l l drop ~ f u r t h e r . EquaLing the expression in braces in Eq.(12) to zero, we obtain the dispersion r e l a t i o n for the phase 2_

s2k 2_ °~okll/[kll+ 2 2 2 E.Lk 2 / £ A + (6NnA2 /v2)Dk2/(1)k ^ ^ 2 + i~)] .L .k

where the notation

2=o ( 3 / 2 ) ~

(13)

= 0,

is introduced.

We investigate now the phase o s c i l l a t i o n s , propagating along the x - a x i s , putting k

=0. In this case, Eq.(13) is reduced to

(14)

co2- O~2o/[I + Oal/(1)k2+ io))] = 0 2 where ~1 = 3~IA l~jNVb ' and Ne use here (and below) the notations k2 and 2 instead of k I and OI. In Eq.(14) there is the denoeinantor with a c h a r a c t e r i s t i c diffusion term which is contained also in corresponding equations of the paper [4]. From Eq.(14) i t follows that when ~o ~ 1

the

damping is s l a l l and ~ = ~ low temperatures.

(see F i g . l ) . This case is realized at s u f f i c i e n t l y o F i n i t e value of phason frequency at k ~ 0 is caused by the

displacement current in Eq.(8). In opposite l i m i t ~o ~ I '

the phason spectrum

is influenced e s s e n t i a l l y by screening action of q u a s i p a r t i c l e s , and we can omit 1 in the denominator in Eq.(14) noN. Thus, ue obtain 2

~=O i.e.,

~2(Dk2+ i ~ ) / ~ 1 , the d i s p e r s i o n r e l a t i o n

(15) has t h e s o u n d l i k e c h a r a c t e r .

phasons i s v = ~oV/2A'P~-_,__ and t h e damping c o t f f i c i e n t

The v e l o c i t y

i s equal t°~z-/C°l ' u

of that

F411

(D

(=)

½ (D

o/

(o

o

"

kv/Jl

is it

increases exponentially

At s m a l l ,

k

2o (Dk ^2 + i~)/~l

i s worth t o emphasize t h a t

oT phason v e l o c i t y

articles

is

, we have i n s t e a d oT Eq.(15) (16) t h e s c r e e n i n g by q u a s i p a r t i c l e s

t o an i n c r e a s e oT damping (see [ 4 ] )

renorealizes

The spectrum of these o s c i l l a t i o n s

(lower branch).

but T i n i t e

2 = (D|k : / Dkl) It

kv/A

a t T ~ O. The damping i s weak p r o v i d e d t h e

Trequency i s not t o o low: ~ > o ~ / ~ ] . sh~xn in F i g . 2

n

too.

The l a s t

the rigidity

but,

l e a d s not o n l y

a c c o r d i n g to E q . ( 1 5 ) ,

t o an i n c r e a s e

c i r c u e s t a n c e means t h a t t h e s c r e e n i n g

oT the CDM in an e q u a t i o n Tot ~ used in eany

(see, Tor e x a e p l e , [ 9 , 1 0 ] ) .

e

Consider now the case oT high frequencies: ~ ~ T - I . drop the c o l l i s i o n term I

e

In t h i s case, xe can

in Eq.(1,2) and Tind the s o l u t i o n of these

equations in e x p l i c i t Tore without i n t r o d u c t i o n oT the p o t e n t i a l ~. For

simplicity

we

restrict

t o t h e case kj.-- O. An e x p r e s s i o n Tor the

ourselves

d i s t r i b u t i o n Tunction n d e t e r o i n i n g the q u a s i p a r t i c l e c u r r e n t along x has the z the Tore

n = - ~ ) k v i / [ k 2 v 2- i ( ~ ( e )

-

212/~2]

(17)

z

At = ~ v o , one can n e g l e c t t h e l a s t

term in the denominator in E q . ( 1 7 ) .

t h e h e l p of E g . ( 1 7 )

the current

me can c a l c u l a t e

of phase o s c i l l a t i o n s .

T h i s can be done e a s i l y ,

t h e denominator in E q . ( 1 7 ) largest

find

neglecting all

e x c e p t t h e term k2v 2, because t h i s

xhen t h e damping i s small

expression

and, t h e n ,

(Dk 2 ~ ~ ) .

Finally,

Mith

the spectrue

the terms in term i s t h e

xe come again t o t h e

(15).

IT ~ ~ ~, one can n e g l e c t t h e second term in t h e denominator in E q . ( 1 7 ) . Then, f o r q u a s i p a r t i c l e

current

we o b t a i n t h e f o l l o x i n g

expression

F412

jqp= ( ~ N / 1 ) v ~ k ~ A ,

A = 4Nn/(~T:t)Idx

x2e-X/[x 2 _(2

/~)(A/2T)]

+

o

+ [i~2~(~)/(Tkv~3/2llexp[_lA/T)lkv/~)l,

~ = k2v 2_ 2

(18)

The second term in Eq.(18) describes the Landau damping. When k = O, we can express i

through ~ from the equation j = 0 and use the s e l f c o n s i s t e n c y

equation. Ne f i n d f o r phason spectrum

~2-~2/(1

+ 3A2A)

= 0

(19)

O

o

Consider a g a i n two l i m i t i n g

cases. At v e r y low t e m p e r a t u r e s ,hen ~

= (48/)r~)NnAT , we have ~ = ~o ( F i g . l ) . that ~ ~2,

then E q . ( 1 9 )

Landau damping i s absent)

I f the t e m p e r a t u r e i s n o t v e r y low, so

has two s o l u t i o n s .

At small k (kv ~ ~ ,

have the s o u n d l i k e c h a r a c t e r ,

by a n u m e r i c a l

factor

only

i. t .

the

t h e r e i s a high f r e q u e n c y mode: 2 = ~ 22- 2 4 1 T / A ) l k v ) 2 .

~ e s i d e s , t h e r e i s a low f r e q u e n c y mode 2 2 k2v2/(k2v2+ ~A/T), ~ = ~0 which i s w e a k l y damped at a l l k. In t h e l o n g - w a v e - l e n g t h oscillations

~=

their

(20) limit,

velocity

mhen t h e

differs

from E q . ( 1 5 )

(see F i g . 2 ) .

DISCUSSION Thus, i t

turns out that the phason spectrum changes e s s e n t i a l l y with

temperature. At T = 0 and k ~ 0 the frequency of phase o s c i l l a t i o n s is f i n i t e ( F i g . l ) due to the displacement current (the l a s t term in Eq.(12)). Nhen the temperature increases, the q u a s i p a r t i c l e s screen out space dependent e l e c t r i c field.

This leads to the strong modification of the phason spectrum which

becomes l i n e a r at small k. The phase v e l o c i t y of o s c i l l a t i o n s increases on cooling e x p o n e n t i a l l y . Note that s i t u a t i o n here d i f f e r s from the case of superconductors, mhere weakly damped phase o s c i l l a t i o n s e x i s t at ~ ~

near T only [ 6 , 7 ] . c We have obtained the large phason damping assuming that the wave vectors k

are small but f i n i t e .

Damping c o e f f i c i e n t y f o r s p a t i a l l y uniform phase

o s c i l l a t i o n s , which determines the v e l o c i t y of the CDW at high E or ~, is e x p o n e n t i a l l y small at T < A. In order to obtain the c o n t r i b u t i o n to ¥ ,

d e c r e a s i n g on c o o l i n g have t o t a k e i n t o due t o t h e i r

not so r a p i d l y

account,

anharmonic i n t e r a c t i o n

These p r o c e s s e s

(as i t

i s observed e x p e r i m e n t a l l y ) ,

f o r example, the s c a t t e r i n g

caused by t h e e l e c t r o n -

phonon c o u p l i n g .

can be a n a l y z e d by means of diagram t e c h n i q u e as i t

in t h e paper [ 1 1 ] .

The c o n t r i b u t i o n

we

of phasons by phonons was done

of t h e s e processes t o y depends on

t e m p e r a t u r e w e a k l y (power law dependence) i f

the t e m p e r a t u r e i s h i g h e r than

F413

the e n e r g i e s of s h o r t - w a v e - l e n g h phonons because in t h i s processes ensure r e l a x a t i o n of t o t a l

case

Umklapp-

momentum of electron-phonon system o n l y .

The s i t u a t i o n here i s the same as in a normal metal with closed Fermi s u r f a c e . When T ~ T = h o (~ i s the phonon frequency near the 3 r i l l o u i n zone o m m boundary) then the phonon c o n t r i b u t i o n to y i s small: Yph ~ e x p ( - T / T o) because the r o l e of Umklapp-processes becomes n e g l i g i b l e . I t means t h a t at T < T the o CDW v e l o c i t y and the C)W c o n t r i b u t i o n to the c o n d u c t i v i t y above the t h r e s h o l d field

should be very l a r g e . Presumably, a sharp increase of c u r r e n t observed

in blue bronze [12] can be e x p l a i n e d by t h i s circumstances.

REFERENCES 1

P.A. Lee, T.N.Rice, P.W.Anderson, S o l i d State Coesun., 14 (1974) 703.

2

Y. K u r i h a r a , J. Phys. Sac. J a p . , 49 (1980) 852.

3

S.N. Artemenko, A.F. Volkov, Soy. Phys. JETP, 53 (1981) 1050.

4

K.Y.M. Nong, S. Takada, Phys. Rev., B36 (1987) 5476.

5

S.N. Artesenko, A.F. Volkov, in "Charge-Density-Naves in Condensed B a t t e r "

6

S.N. Arteaenko, A.F. Volkov, Usp. F i z .

7

6. Schon, in " N o n e q u i l i b r i u m S u p e r c o n d u c t i v i t y " ed. by A . I .

ed. by L.P. S o r ' k o v and 6. 6runer,

D. Langenberg, (1986),

" N o r t h - H o l l a n d " , to be p u b l i s h e d . Nauk, 128 (1979) 3. Larkin and

"North-Holland'.

8

S.N. Artesenko, A.F. Uolkov, A.N. K r u g l o v , Sov. Phys. JETP 64 (1986) 906.

9.

L.

Sneddon, Phys. Rev., 329 (1984) 719.

10 P. L i t t l e w o o d , Phys. Rev., 336 (1987) 3108. 11 S. Takada, K.Y.R. Nong, T. H o l s t a i n , Phys. Rev., ~32 (1985) 4639. 12 6. Mihaly, P. leauchene, S o l i d State Commun., 63 (19B7) 911.