Scr~pta
MIiTAI.LURGICA
Vol.
ON THE P L A S T I C
14, pp. 923 - 928, 1980 Printed in the U.S.A.
BEHAVIOUR
Th.
OF C O N C E N T R A T E D
Wille
and Ch.
Cu-~n
Pergamon Press Ltd. All rights r e s e r v e d .
SINGLE C R Y S T A L S
Schwink
I n s t i t u t A fur Physik, T e c h n i s c h e U n i v e r s i t M t D - 3 3 O O B r a u n s c h w e i o , Fed. ReD. G e r m a n y (Received
June
5, 1980)
Introduction Solid s o l u t i o n h a r d e n i n ~ and the easy qlide staqe of d e f o r m a t i o n of c o n c e n t r a ted fcc alloys have been the o b j e c t of a l r e a d y many i n v e s t i q a t i o n s (cf. reviews (I-3)). The most i n t e n s i v e l y i n v e s t l q a t e d C u - b a s e d systems, like Cu-Al (4-9), Cu-Ge (10-13), C u - G a (10,11) and C u - Z n (14,15), have a s t a c k i n q fault e n e r q y (SFE) w h i c h c o n s i d e r a b l y d e c r e a s e s for h i ~ h e r c o n c e n t r a t i o n s of the alloyed e l e m e n t (16). C h a r a c t e r i s t i c p r o p e r t i e s of these alloys as the a p p e a r a n c e of c o a r s e slip bands i n d i c a t i n q o r e d o m l n a n t planar alide and a o r o n o u n c e d inhomoq e n e i t y of slid have been d i s c u s s e d as to be s t r o n g l y influenced or even caused by the d e c r e a s e in SFE r e d u c i n q the p r o b a b i l i t y of cross slid p r o c e s s e s (cf.2~. The i n t e n t i o n of the p r e s e n t work is to test this view and to i n v e s t i g a t e the role of SFE r e ~ a r d i n ~ the p l a s t i c b e h a v i o u r of alloys by s t u d y l n ~ a C u - b a s e d s y s t e m in w h i c h the SFE of c o p p e r is not or not a p p r e c l a b l v c h a n q e d bv alloyinq, w i t h o u t a s i m u l t a n e a u s d i m i n u i t i o n of the s o l u t i o n h a r d e n l n ~ effect. This seems to be the case for Mn as a l l o y i n ~ element where the SFE is r e p o r t e d to d e c r e a s e o n l y very s l i a h t l v with a l l o v i n a (16), at least for c o n c e n t r a t i o n s below 1Oat%Mn(17). Ni as solute even raises the SFE of c o p p e r in a c c o r d a n c e with the t h e o r e t i c a l s u ~ q e s t i o n that here the p r e s e n c e of empty d - s t a t e s results in an i n c r e a s e of the SFE (18,19). But, as the s o l u t i o n h a r d e n i n q effect of Ni is m u c h lower than that of Mn we d e c i d e d for the C u - M n s y s t e m which, moreover, until now has been I n v e s t i q a t e d with respect to its flow stress only in the d i l u t e a l l o y ranae (20). We used for our studies sln~le c r y s t a l s o r i e n t e d for sln~le slid (Schmld factor 0.49) w i t h a M n - c o n c e n t r a t i o n b e t w e e n 3.3 and 7.7 at% Mn. All samples were h o m o q e n i z e d for 24 hours at about 60 K b e l o w their m e l t l n a point, then annealed for 4 - 6 hours at 690 K and s u b s e a u e n t l y q u e n c h e d to 240 K. Samples w i t h less than 2 at% Mn do not show a LHders band in staqe I, their mode of d e f o r m a t i o n c h a n a i n q a r o u n d this c o n c e n t r a t i o n . W e will c o n s i d e r this point more c l o s e l y in a f o l l o w i n q paper (21). Critical
resolved
shear
stress
(crss)
and a c t i v a t i o n
parameters
The crss, ~oi of C u - M n samples i n c r e a s e s b e t w e e n 77 - 300 K with i n c r e a s i n ~ Mnc o n c e n t r a t i o n and d e c r e a s e s steeply with i n c r e a s i n a t e m o e r a t u r e (Fiq. I). Both findinas are typical for c o n c e n t r a t e d fcc alloys (I-3), thouqh q u a n t i t a t i v e l y the h a r d e n i n q effect of Mn exceeds that one of o t h e r e l e m e n t s llke A1 (7-9), Ga (Io,11), Ge (11,13) and Zn (14,15) (cf. Fiq. I). The d e p e n d e n c e of ~ o on the M n - c o n c e n t r a t i o n is s h o w n in Fiq. 2 in a loq ~ o - log c - DIot. For compar is o n w i t h t h e o r i e s (cf. (1)) d a s h e d lines i n d i c a t e ci/2- and c 2 / 3 - d e p e n d e n c i e s . As r e p o r t e d a l r e a d y for C u - G e a l l o y s (cf. (13)) also the C u - M n alloys obey for h i a h e r c o n c e n t r a t i o n s m o r e c l o s e l y a c l / 2 - r e l a t i o n s h i D than the c 2 / 3 - L a b u s c h law (22).
0036- 9 7 4 8 / 8 0 / 0 8 0 9 2 3 - 0 6 5 0 2 . 0 0 / 0 C o p y r i g h t (c) 1980 Pergamon Press Ltd.
924
FLOW OF Cu-Mn CRYSTALS
50 ~
Vol.
~0 ":
\\o
-
/13 /
n
/0/0"
o/
9,3 - - -
10
/ / /
10 "-.
~ 295 K
o/O
20
20
a/
n4~
~n/
MPa
Cu M
8
77K
50
~o
14, No.
/
/
/
-~-
/
!u20_at%Zn
/
/ /.
C20 Cb
.1" /
/
/I//"
l
T K FIG.
c
I
FIG.
T e m p e r a t u r e d e p e n d e n c e of the crss for C u - M n (o). For c o m p a r i s o n curves for C u - 7 . 3 a t % G e and C u - 3 O a t % Z n (both from (13)).
a t % Mn 2
Double l o ~ a r i t h m i c plot of the d e p e n d e n c e of the crss, ~ O, on c o n c e n t r a t i o n of Cu-~n for two temperatures.
F o l l o w i n g w e l l - k n o w n p r i n c i p l e s a t h e r m o d y n a m i c a l a n a l y s i s of the ~Zfo(T)-curves yields v a l u e s for the c h a r a c t e r i s t i c a c t i v a t i o n parameters: average free activation enthalpy, ~-~o, d e n s i t y of o b s t a c l e s in the glide plane, Nz, and athermal c o n t r i b u t i o n to the flow stress, ~ o The basis for the a n a l y s i s is always an A r r h e n i u s e q u a t i o n for the strain rate: = ao exp -
f( ~ s ' & C o ' N z )
'
(I)
kT where f is a d i m e n s i o n s l e s s function a d d i t i o n a l l y d e p e n d i n g on the e f f e c t i v e stress on a d i s l o c a t i o n , ~s, w h i c h is the d i f f e r e n c e b e t w e e n the applied stress, N o , and the a t h e r m a l stress ~ o c o r r e c t e d for the T - d e p e n d e n c e of the shear modulus ~(T) :
%
:
-
(T)i (Ol
(2)
The choice of d i f f e r e n t p o t e n t i a l s for the i n t e r a c t i o n b e t w e e n d i s l o c a t i o n and o b s t a c l e s (23) influences the function f, but not a p p r e c i a b l y the r e s u l t i n , act i v a t i o n parameters. T a k i n g Seeger's p o t e n t i a l (24) one gets as a first approximation:
o12/3
X%
T
2/3
where C and To are functions of the a c t i v a t i o n parameters, essentlallv. The e q u a t i o n s a t i s f a c t o r i l y d e s c r i b e s the t e m p e r a t u r e d e p e n d e n c e of the crss and yields via C and T o by a graphic e v a l u a t i o n EPJo and Nz, if some choice for T ~ o is made guided by the c o n s i d e r a t i o n that only a finlte ~ o yields a t e m p e r a t u r e d e o e n d e n c e of ~ w h i c h is not u n r e a s o n a b l y large (23). Table I shows these results for four alloys t o g e t h e r with the scatter caused by the u n c e r t a i n t i e s in ~po.
Vol.
[4, No.
8
FLOW OF Cu-Mn
Table
925
CRYSTALS
I
Activation parameters A--Go, N z as d e t e r m i n e d from thermal a c t i v a t i o n a n a l y s i s for C u - M n a l l o y s a c c o r d i n g to egu. (3), e v a l u a t e d for a ranoe of most p r o b a b l e a t h e r m a l stresses, T~o, in each case. Nz is c o m p a r e d w i t h the a v e r a q e areal d e n s i t y of Mn~atoms, NMn = c a t ' 4 / ( ~ ' b 2) (Cat = atomic c o n c e n t r a t i o n ) . ~)uo
T
O~°
[at%]
[MPa]
[K]
[ ".Pa ]
3.3
6-8
3.8
Nz/NU n
Z"juo/ '~o
10 -3
77
30.9
0.9-1.2
9-11
O.8-I .O
O.19-O.26
16.6
1.2-1.5
2- 3
O.2-N.3
0.36-0.48
77
32.8
0.8-0.9
22-24
295
18.1
1.2-1.5
2- 4
I .6-I .8
O. 24-0.30
O.2-0.3
0.44-0.55
77
42.8
0.8-0.9
38-47
2.0-2.5
O.28-0.33
295
22.5
0.9-1.0
14-18
0.7-0.9
0.53-0.62
77
49.8
0.7-0.8
81-1OO
3.0-3.7
O. 28-O. 32
295
23.8
0.8-0.9
32-47
I .2-I .8
O. 59-0.67
12-14
7.7
[eV]
[m-2 ]
295 8-IO
5.5
Nz. IO 14
GO
CMn
14-16
The i m p o r t a n t c o n c l u s i o n s that can be drawn are: I) The ~ o - v a l u e s , v a r v i n q with CMn from 0.7 - 1.2 eV for 77 K and from 0.8 - 1.5 eV for 295 K, are of nearly ,the same m a g n i t u d e as those d e t e r m i n e d for Cu-Ge alloys and C u - 3 O a t % Z n (23). 2) The ratio of the o b s t a c l e d e n s i t y to the a v e r a g e areal d e n s l t v of single Mnatoms, Nz/NMn, is smaller than 5.10-3 for all alloys. That shows that as in oth e r fcc alloys i n v e s t i q a t e d not sinqle atoms but qroups of them act as obstacles (7,12,13,23,25). 3) The r a t i o b e t w e e n the p r o b a b l e a t h e r m a l stress and the crss, ~ o / ~ o , is found to i n c r e a s e w i t h s o l u t e c o n c e n t r a t i o n from about 20% to 30% ~ o r T = 77 K, and from 35% to 70% for T = 295 K. S i m i l a r values were found for C u - G e and C u - Z n (23).
~°°t
FIG.
%oi ~o i
,/o
,
i"
°/
~o --~°/
//
""
.¢/
.''"
T= 295 K
.-.."
20: __o~-~°~
O,5 o,1'
'
o,2 "
'
~,0 k'3
"
o,
"~'
'
,9
o.'5 .....
15 0,6
3 and FIG.
4
Strain h a r d e n i n ~ curves up to fracture (arrows) for C u - 7 . 7 a t % M n (o) and C u - 3 . 8 a t % M n (o) at T = 295 K (Fiq. 3) and T = ~7 K (Fig. 4) o = 1.16 I0-~ s-1. The curves for oure copnet (-.-, 99.999%) are taken from (27), that for C u - 3 O a t % Z n (---) from (15). For C u - 7 . 7 a t % M n , 295 K, the end of the L¢Iders reoion is indicated by an arrow.
0.7
= In I/1o FIG.
3
926
FLOW OF Cu-Mn
CR Y S T A L S
Vol.
14, No.
FIG.
4
8
.of-
Y20 !
YO0
s
,
T M~
/
0
,'/
80 /
/
O/
0
Q,
01 '
0/./." .'"
60
e~ -
°
_
°
w ~
-l"
i
ee
"
0,.5
o~
012
~o
o~s
o~$
o14
Strain
8 . . . .
,.,.s
0,6
=lnl/Io
hardenina
.
_
0,'7
curves
The c o m p l e t e strain h a r d e n i n ~ curves d r a w n for 295 K (Fig. 3) and 77 K (Fig. 4) show the w e l l - k n o w n e l o n g a t i o n of staae I by a l l o y i n g b e s i d e the solute h a r d e nina. At the b e a l n n i n ~ of d e f o r m a t i o n for O ~ 6 = in i/i o & O.I~ a LSders band is p r o p a a a t i n a a l o n a the crystal. A f t e r w a r d s i r r e a u l a r l y spaced strona slip bands are v i s i b l e on the crystal surface , i.e. slip is n r o c e e d l n q r a t h e r inhom o q e n e o u s l y with planar glide as also o b s e r v e d for p o l y c r y s t a l l i n e C u - 2 O a t % M n (26) . A l r e a d y at the end of staae I, where the h a r d e n i n , rate starts to increase, d o u b l e cross slip p r o c e s s e s set in abundantly. C o n s e q u e n t l y , d u r i n a the followina second stage of d e f o r m a t i o n the normal staae II - w o r k h a r d e n i n , p r o c e s s e s of pure c r y s t a l s and the work s o f t e n i n ~ p r o c e s s e s due to d o u b l e cross sllp s u p e r p o s e r e s u l t i n a in a smaller but c o n s t a n t work h a r d e n i n a rate for the second stage than o b s e r v e d for sta~e II of pure copper. This i ~ m e d l a t e l y can be seen from Fias.3 and 4. A l l o y systems in which d o u b l e cross slip sets in only after d i s t i n c t stage I I - h a r d e n i n a have a somewhat smaller work h a r d e n i n ~ rate in sta~e II, too. That is e x p l a i n e d by H i r s c h (28) by the p r e s e n c e o~ the f r i c t i o n stress leadinq to a smaller f r a c t i o n of s e c o n d a r y to primary d i s l o c a t i o n densities. The a c t i v a t i o n v o l u m e as d e t e r m i n e d inq account of F r i e d e l ' s relation):
from
stress
relaxation
experiments
V = ~ kT d i n ( - ~ ) d~ shows
a dependence
T ab l e 2 gives temperatures.
on stress
the c o n s t a n t s
which
(4)
can be very well
R and S d e d u c e d
(and tak-
described
by V = - ~
from the e x p e r i m e n t s
P
.
for d i f f e r e n t
A d i s c u s s i o n of the c o m b i n a t i o n of s o l u t i o n and strain h a r d e n i n g in the second stage w h i c h starts from linear a d d i t i v i t v o~ stresses (29) uses with a d v a n t a a e these results (cf. similar c o n s i d e r a t i o n s for C u - N i in (30)), but is not further r e p o r t e d here.
Vo[.
14,
No.
8
FLOW OF Cu-,Xln CRYS'IAI.S
Table
2
The c o n s t a n t s R and S d e s c r i b i n ~ the the a c t i v a t i o n volume, V = P / ( ~ + S ) , r e l a x a t i o n e x n e r i m e n t s for two Cu-)~n c o ~ p e r and C u - 1 O a t % N i for c o m p a r i s o n T EEl
77
295
c [at%~In]l
R [IO -21
J]
, 40
S [~"Pa]
45~±
927
2o
stress d e p e n d e n c e of as d e t e r m i n e d from stress alloys. Data for pure from (30). c [at%Ni]
~ [Io -21
,73
O
330
o
S [ ~Ipa]
3.8
350~
7.7
32o J
60~
le
276
37
3.8 7.7
2 O O O ~ ± 400 18OO |
90 ~ ± 30 60 I
O 10
885 1020
37
O
At hiqh strains the ~ ( a ) - c u r v e s c a l c u l a t e d for single slin bend d o w n w a r d s (dashed parts). This is the result of ~lide on the c o n j u g a t e slid system evidenced by the a p p e a r e n c e of c o r r e s D o n d i n ~ Slid lines. The stress w h e r e a b u n d a n t d o u b l e cross slin sets in is smaller for Cu-Mn than for C u - G e (cf. (11)), if alloys with the same c o n c e n t r a t i o n o--~ solutes are comnared. This is in full a c c o r d a n c e with the much s t r o n g e r d e c r e a s e of the SFE in Cu-~e than in Cu-Mn with alloyinq. S u m m a r i z i n a , the strain h a r d e n i n ~ curves for C u - M n reflect the typical solid s o l u t i o n h a r d e n i n ~ P h e n o m e n a as well as the small chan~e of the SFE with alloyin~ as c o m p a r e d with the SFE of pure copper. Conclusions T a k i n ~ t o q e t h e r the results r e p o r t e d we qet the r e m a r k a b l e s t a t e m e n t that the o b s t a c l e p a r a m e t e r s and the slip p h e n o m e n a of c o n c e n t r a t e d C u - ( 3 - 8 ) a t % M n - a l l o y s w i t h a n e a r l y c o n s t a n t SFE w h i c h equals that of pure Cu are very similar to those of o t h e r c o n c e n t r a t e d c o p n e r alloys with a much lower SFE. In the latter case one u s u a l l y araues that the small SFE renders cross s l i p p i n ~ of screw dislocations difficult, c o n s e q u e n t l y c o n c e n t r a t e s the slid n r o c e s s e s to few slid p l a n e s and favours p l a n a r ulide. A m i c r o s c o o i c c o n s e q u e n c e is the formation of larqe d i s l o c a t i o n qroups as o b s e r v e d by TEM in C u - A I ( 4 - 6 ) , Cu-Zn (31) and Cu-Ge (32) and by slid line replica in C u - G a (8,10). I n h o m o ~ e n e o u s qlide in C u - M n needs a d i f f e r e n t e x n l a n a t i o n . Cross slip of screw d i s l o c a t i o n s can be impeded not only bv a small SFE c a u s i n ~ a large d i s l o c a t i o n s p l i t t i n q but also by a f r i c t i o n a l stress. This m e c h a n i s m was first s u g g e s t e d to our k n o w l e d q e by C h r i s t i a n for fcc alloys and also for bcc c r y s t a l s (33,34). Recently, B l o c h w i t z et al. (35) p r o p o se d for fcc Ni-Fe cross slid to be h i n d e r e d by a c o m b i n e d atomic s i z e - s h e a r m o d u l u s interaction, and K a r n t h a l e r and SchH~erl (36) p r o v e d in a rather d e t a i l e d study the d o m i n a t i n ~ i n f l u e n c e of friction as c o m p a r e d to the SFE by c o m p a r i s o n of strain h a r d e n i n ~ b e h a v i o u r and d i s l o c a t i o n s t r u c t u r e (via TEM) of pure Ni (SFE hiah) , N i 3 - F e (SFE hi~h) and C u - 1 5 a t % A l (SFE low). In a simple q u a l i t a t i v e p i c t u r e f l u c t u a t i o n s of the o b s t a c l e d e n s i t i e s w h i c h inc r e a s e for h i ~ h e r solute c o n c e n t r a t i o n s (33) will impede d i s l o c a t i o n m o t i o n differently in d i f f e r e n t parts of the crystal. With i n c r e a s i n ~ solute c o n c e n t r a tion and c o n s e q u e n t l y i n c r e a s i n ~ o b s t a c l e d e n s i t y the easy ~lide re~ions will d i m i n i s h until, finally, slip p r o c e s s e s set in only at a few s t r e s s - f a v o u r e d positions e.~. near the qrips of the tensile specimen. Then the d e f o r m a t i o n nroceeds in a L~ders band w h e r e the p r o p a g a t i o n of ~lide occurs by cross slip ind uc e d and s u p p o r t e d by internal s t r e s s e s and external torque (31,37,38,39). Q u a s i - p l a n a r qlide p r o c e s s e s will be c o n c e n t r a t e d to the zones of less impeded qlide w h e r e more or less sharply bound qlide bands appear. F u t u r e work will have to c h e c k and imnrove this view and to ask for the scope of i n f l u e n c e of the f r i c t i o n m e c h a n i s m also in the low S F E - a l l o y s as stressed in (36).
928
FLOW OF Cu-Mn CRYSTALS
Vol. 14, No. 8
References in: Dislocation in Solids (ed. F.R.N.Nabarro),Vol.4,p.155, North Holland (1979) P.Haasen, in: Physical Metallur~y (ed. R.W.Cahn),p.1011,North Holland(1970) H.Suzuki, in: Strenqth of Metals and Alloys(eds. P.Haasen,V.Cerold, G.Kostorz),Vol.3,p.1595,Peraamon Press(1979) C.S.Pand~,P.M.Hazzledine; Phil.Mag.24,1039,1393(1971) H.P.Karnthaler,P.M.Hazzledine,M.S.S~inas; Acta Met.20,459(1972) H.P.Karnthaler,F.Prinz,G.Haslinqer; Acta Met.23,155(~-~75) Z.S.Basinski,R.A.Foxall,R.Pascual; Scripta Me~.6,807(1972) F.D.Rosi; J.Mat. Sci.8,807(1973) E.Kuramoto,H.Suzuki; Trans.Jap. Inst. Met.17,683(1976) P.Haasen,A.Kin~; Z.Metallk.51,722(1960) E.Peissker; Acta Met.13,419~-~965) Ch.Schwink,H.Traub; p~s.stat.sol.3o,387(1968) H.Traub,H.Neuh~user,Ch. Schwink; Act--a Met.25,437(1977) B.J.Brindley,D.J.Corderoy,R.W.Honeycombe: Acta Met.10, IO43(1962) T.E.Mitchell,P.R.Thornton; Phil.Maq.8,1127(1963) L.Del~houz~e,A.Deruyttere; Acta Met.T5,727(1967) M.A.Quader,R.A.Dodd; J.Appl.Phys.39,~[726(1968) A.Seeaer, in: Dislocations and Mec--~anical Properties of Crystals (ed. J.C. Fisher et al.) (Wiley,New York) p.243 (1957) J.R.Harris,J.L.Dillamore,R.E.Smallmann,B.E.P.Beeston~ Phil.Mam.14,325(1966) N.Naqata,S.Yoshida; Trans.Jap. Inst.Met.1_~3,339(1972) Ch. Schwink,Th.Wille; in preparation R.Labusch; Acta Met.20,917(1972) ; phys.stat.sol.41,659(1970) H.Neuh~user,Ch. Schwin~,H.Traub; Acta Met.25,1289~-[977) A.See~er; Proc. II.UN Conf. PUAE, Geneve, Vol.6,p.250(1958) R.Labusch,R.Crange,J.Ahearn,P.Haasen, in: Rate Processes in Plastic Deformation of Materials (ed. J.C.M.Li,A.K.Mukherjee) p.26 ASM Cleveland, OH (1975) U.K.Chatterjee,A.K.Lahiri,T.Banerjee; Ind.J.Technol.8,149(1970) G.Gottstein; Acta Met.23,641(1975) P.B.Hirsch,T.E.Mitchell; Can. J.Phys.45,663(1967) U.F.Kocks,A.S.Ar~on,M.F.Ashby; Proq.M-~t. Sci.19,160(1975) H.Neuh~user,H.Fiebiaer,N.Himstedt, in: S t r e n ~ h of Metals and Alloys (eds. P.Haasen,V.Gerold,G.Kostorz) Vol.2,p.1395(1979) H.Neuh~user,J.Koropp,P.Heege; Acta Met.23,441(1~75) H.Neuh~user,H.-H.Potthoff,O.Arkan; to be published J.W.Christian,P.R.Swann, in: Alloyinq Behaviour and Effects in Concentrated Solid Solutions (ed. T.B.Massalski) p. IO5,AIME (1965) G.Taylor,J.W.Christian; Phil. Maa.15,873,893(1967) C.Blochwitz,K.Mecke,R.Stephan; Kri--st.u.Technik 13,851(1978) H.P.Karnthaler,B.Sch~aerl, in: Strenath of Metal's and Alloys (eds. P.Haasen, V.Gerold,G.Kostorz) Vol.1,p.205(1979) T.J.Koppenaal; Trans.AIME 227,257(1963[; Acta Met.1_~1,537(1963) D.H.Avery,W.A.Backofen; Trans.AIME 227,835(1963) R.Iricibar,G.Panizza,J.Mazza; Acta ~et.25,1163,1169(1977) (for further literature)
I. P.Haasen, 2,
3. 4.
5. 6. 7. 8. 9. 10. 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39.
Acknowledaement The authors are very grateful to Prof. Neuh~user for reading the manuscript and helpful comments.