On the possibility of semiconducting or semimetallic properties in some aluminides, silicides and germanides of non-magnetic transition metals

On the possibility of semiconducting or semimetallic properties in some aluminides, silicides and germanides of non-magnetic transition metals

PHYSICS LETTERS Volume 83A, number 2 ON THE POSSIBILITY OF SEMICONDUCTING IN SOME ALUMINIDES, OF NON-MAGNETIC 11 May 1981 OR SEMIMETALLIC PROPE...

235KB Sizes 2 Downloads 36 Views

PHYSICS LETTERS

Volume 83A, number 2

ON THE POSSIBILITY

OF SEMICONDUCTING

IN SOME ALUMINIDES, OF NON-MAGNETIC

11 May 1981

OR SEMIMETALLIC

PROPERTIES

SILICIDES AND GERMANIDES

TRANSITION

METALS

I.M. CHAPNIK Cavendish Laboratory,

Universiry of Cambridge, Cambridge CB3 OHE, England

Received 16 January 1981 Revised manuscript received 19 March 1981

Deviations of atomic volume from additivity are determined for transition metal germanides, silicides, and aluminides. On the basis of the interrelation between the atomic volume deviations and the occurrence of semiconducting properties the possibility of semiconducting properties in some compounds is indicated.

It was shown recently [l-3] , that there exists an interrelation between the occurrence of semiconducting (and probably semimetallic) properties and the deviation of the atomic volume of a compound from additivity. This interrelation has indicated that in an agreement with the theoretical considerations [4] the interatomic distances in semiconductors are larger than that in metals. The aim of the present note is to determine which of the known transition metal germanides, silicides and aluminides could possess semimetallic or semiconducting properties and therefore to be considered as possible thermo-electric materials [5]. The percentage deviation of the atomic volume (V) from the sum of its components (En) is given by 22-V ---xloo=u~,

K=mtn 2n

V

whereAV=EQ -V,cr=lOO(mtn)/2n;mandnare the numbers of transition metal and of Ge or Si atoms in the compound, respectively. The coefficient (m t n)/ 2n provides the normalization to the case of equiatomic compound, since the contraction is apparently mainly due to the presence of Ge or Si, having as a semiconducting element an anomalously large atomic volume. For the aluminides the more simple formula K = 100 X AV/V is adopted. The crystallographic data were taken mainly from 0 03 l-9 163/81 /OOOO-0000/$02.50

0 North-Holland

the same sources as in the previous notes [ l-3,6 J . Calculated data of K and available data [7] of the superconducting transition temperatures (T,) are presented in tables 1,2 and 3 (known ferro- and antiferromagne tics are marked with an asterisk). The negative deviations from the additivity for aluminides and the negative or small positive deviations for germanides and silicides may be caused by the presence of atomic magnetic moments [3,8], by creation of closed electron subshells in the atomic cores outside the inert gas shells [9], or by .the possession of semimetallic or semiconducting properties [l-3]. Therefore some of the following aluminides, CrAl, , Cr+13,

Ud3,

UJQ,

U42,

ThN

n3A2mA2,

VAI,,,

CrAl4 (table 1);silicides Np3Si2, y -USi,, USi, U3Si2, U3Si, U3Si5 (table 2); germanides U,Ge,, ThGe, UGe,, ThGe, (table 3) probably could be semimetals or semiconductors. Although the compounds Th3Al2 and VAl,u (in samples comprising second phases) have been reported as being superconductors 171, the latter property, however, may be caused by the thin layers of the second phase precipitated on the grain boundaries [lo-121. On the other hand, the alloys Cr,Al, ReSi, and CrSi2, reported as being semiconductors (see ref. [3]), but displaying no negative or small positive deviation, are apparently metals. But the low conductivity observed is probably due to the presence of thin layers of Publishing Company

77

-13

Cu2Mg

NpA2

< 0.4

2.6

1.6

-5

-5

-5 -5 -3 -2

CrB AlB,

u3A12

cubic

ThA12

Tha Afz

VAIIO

1.6 < 1.3

0

CsCl hexag.

WA112

CsCl

&W

Real2

Nb3Al

WMl2

TC%2

M3M

monocl.

v7Abs

V4A123

+1

18.1

3.1

< 1.1

0

+1

-

0.9

0 0

0

3.3

-1

cu_Mn

Re&fs Ts, Al

-1

cubic

W&2

0.2

< 1.0 -

-2 -1

Ni3 Sn

wa12

Moh2

-

mA3

n2A17

CrAl4 Th,Al

ThAl

0.1

< 1.1 -

-8 -7

Cu2Mg

u‘4l2

-

CrsAk

< 2.0

UAl4

monocl. CuA12 orthor.

Cr3 Al*

< 0.1

-10 -8

UN3

-10

UAb Cu3Au orthor.

NPALI

TcAl4

MoAl

MoAls

WALs

Mo3Als

NbA13 Tc2 Al

TaAls

VAI,

Tal7Ml2

V3A

MosAl

Cr4a9

Cr2Al*

Tas Al Nb,Al

V&l8 MoA14

WAl,

TC2A13

ReAl4

V3M

< 4.0 -

-12

-11

monocl.

ReAb

TcAle

Comp.

CusAu

< 1.5 _

_

T, (K)

NPA~ *

AV

Cr2%3

*

-14

monocl.

CrAls

____~..~

loo, ____...__~~_

Struct.

+3

WA15 C&I monocl.

hexag.

MoSis monocl.

TiAls

TiA13

TiA13

P-W a-Mn

P-W

o-phase MoSi2 cubic

o-phase

@USi, ThSi ThsSi2

_ _

.I

Lu-USi

_

-

Us!& NpSi, U3Si

_

-,. -

_ ^ -

1.1 _

_

_

_

0.64 _

< 1.2

< 0.4

0.58 11.1 _

< 1.0 0.75 _ _

7

TasSi,

TasSis

Ta2 Si

_

Nbs Si3 NbSi,

NbsSi3

ThsSis

NbsSis TcsSi

Tas Si

p-ThSi, Nba Si

USia ol-ThSi2

U3 Si

_ _

U3Si2

NpsSia y-USi, USi

Comp.

< 2.5 -

1.85

_

6)

Tc

+9 +11

+8

+8

+8

+7

+7

+7

+5 +7

+5

+4 +4

+4

+3 +3

+3

cubic WA14

+3

+3

+2

+2

+2

+1 +2

+1

monocl.

rhomb .

CSCI

trigon.

CsCl tricl.

MnAls

MnAle

Struct.

-3

tetrag.

CrsSi,

Mns Si3

CuAl,

CrSi2

CrsSis

WsSi3

AlB2

Mns Si3 cubic

TisP

P-W

MB2

Cu3Au tetrag.

U3Si2

FeB

dB2

ThSi2 tetrag. cu-ThSi2

MB2

+26

+25

+25

+24

+23

+23

+23

+22

+15 +22 +22

+15

+14

+10 +11 +14

+9 +9

+8

+4 t7

0

-4

FeB Cus Au

-7

-12

Us Si2 cubic

Struct.

WsSi Tas Si3

_

< 1.2 < 0.1 _

< 1.02 _

TcsSi3

_

WsSi3

Tc4Si

CrsSi

ReSi,

V3 Si

CrSi,

CrsSi3

ResSi,

VSi2

V5Si3

VsSi3

CrSi

MosSi,

WSi, WsSi3

19.0 _

2.41

3.16

< 1.3

< 0.1

V&s

ReSi MosSi

_ _ < 0.35 _ _

MosSi MoSi,

_

CrsSi3 TcSi

TaSi2

Comp.

< 0.1

_ _

(K)

Tc

Mns Si3

P-W CsCl

P-W MoSi2

CrSi,

WsSi3

WsSi3

WsSi3

Mns Si3 CrSi2

WsSi3

W5Si3 FeSi

P-W WsSi3 NbeSu, MoSi, tetrag.

P-W

tetrag. FeSi

Mns Si3

Mns Si3 FeSi

CrSi2

StNCt.

V

+38

t37

+34

t34

+33 +34

t30

t30

+30

+30

t30

t30

+29 t29

+29

t29

t28 +29 +29

t28 t28

+28

+27

+26 i-27 +27

(J c

Silicides of transition metals with 5.6 and 7 outer electrons and thorium silicides.

Aluminides of transition metals with 5,6 and 7 outer electrons and thorium aluminides.

Comp.

Table 2

Table 1

1.4

< 0.02 _ _

< 1.15

16.8

< 1.2

-

_

< 1.2 _

< 0.35 _

< 1.2

-

< 1.2 _

_ _

_

< 1.2 _

-

< 1.2 _

11 May 1981

PHYSICS LRl-TERS

Volume 83A, number 2 Table 3 Germanides of transition metals. Comp.

U.&e3

MnsSia

ThGe

NaCl

0

UGe,

ZrSia

+5

ThGea

ZrSia

+6

ThaGe

CuAla

m3Ge2

Th3

-9

_ -

CrB orthor.

+12

-

+12

-

Cu3Au trigon. cubic

+13

d-GdSia

+17

0.87 1.49

+17

0.4

Ir4Ges Rh,,Geas

MnP tetrag. tetrag.

LaGea TiGe

a-SiaTh orthor.

HfGea

ZrSia

NbsGea Rh&% PdGe

MnsSia tetrag. MnP

IrGe TiaGe

MtlP Ni3P Ti3P orthor.

+20 +20

P-W MnP

+21 +21

ZrGea

ZrSia

+21

< 0.35

Hf3Ge

Ti3P

+21

< 1.8 1.3 -

IriGe7 LaCei PtGe

ZraGe OsaGea Nb3Ge RhGe

ZrSia ScGea Crr r Gers* tetrag.

+13 +15

< 0.35 -

< 1.2 -

+24 ~24

< 1.15

CrB CrB

+24

-

Fe2P

+25

< 1.2 -

ZraGe

hexag.

+25

< 1.8

Hf2Ge

CuAla

+25

< 0.05

Ws Sia

+26

CrSia Ua Si2

+26 +26

< 1.02 < 1.2 -

CrB

< 0.35 < 0.35

HfaGe, ScGe PdarGea

ptaa21

Zr5Q3

MnsSia

+26 +26 +26

MnsSia

+27

< 1.8

MoSi2 monocl.

+27 +27

-

+17

-

Hf&a p-MoGe2

+17

-

Pt3Ge

+18

2.24 _

RuGe

FeSi

+27

< 1.2 -

Scs Gea TieGes

Mns Sia orthor.

+27

-

+27 +27 +27 +27

< 1.2

+28 +28

-

+28

-

+18 +19 +19 +19 +19

+20 +21

+21 +22

2.2 -

CrrrGe8 CrGe*

CrsSia orthor. FeSi

Me-3

W&a

CrriQ3

< 0.35 4.7 < 1.7

Ta&a

< 1.8 -

VsGea

23.2 0.96

+22 +22

< 0.33

V17&31

monocl. tetrag.

MoGea

PbCla

+22

< 1.2

RU2 G3

orthor.

+22

NbGe2

CrSi2

+23

OsGea

+24

Nb&a TaGea

LaGe

--

+24

Pt2Ge

< 1.5 -

G)

TiSi2

< 0.1

+12

T,

MnsSia hexag.

< 0.07

+11

AV V

y&e3

+9

MnsSia

a-

TiGe2

+11

CaCls

UQ3

_ _.------

Sia

J-a@3

I&e4

stnlct.

____

NbroGe, YGe ZrGe

PtCea Pta Ge3

Comp.

2.1

oxides A1203 and Si02 on the grain or on the twin (if the crystal is twinned) boundaries [3].

vllGe8

WsSia Mns Si2 hexag.

TasGea Tis Gea

MnsSia MnsSia

+29 +29

PdzsGea

trigon. ThSi2 Fe2P

+29 +29

P-W orthor.

+31

%a3 Y&3

ya2

Pd,Ge Mo3Ge

3.0

+28

+30

< 1.2 3.8 < 0.35 1.5 2.12

W&a

+31 +32

-

m2G

PbC12

+33

-

v3Ge

P-w

+37

CraGe

P-W

+38

6.1 < 1.2 --.--

References [l] I.M. Chapnik, Philos. Mag. B37 (1978) 397.

79

Volume 83A, number 2 [2] [3] [4] [5]

PHYSICS LETTERS

I.M. Chap&, J. Mater. Sci. 12 (1977) 422. I.M.Chapnik, J. Mater. Sci. 15 (1980) 3175. N.F. Mott, Philos. Mag. 6 (1961) 287. D. Tuomi, Proc. 14th Intersociety energy conversion engineering Conf. (Boston, USA, August 1979) Part II (IEEE, New York 1979). [6] I.M. Chapnik, Phys. Stat. Sol. (a) (1980) K193. [7] B.W. Roberts, J. Phys. Chem. Ref. Data 5 (1976) 581.

80

11 May 1981

[8] I.M. Chapnik, Philos. Mag. 32 (1975) 673. [9] I.M. Chap&, J. Mater. Sci. 14 (1979) 2022. [lo] J.P. Charlesworth, Phys. Lett. 21 (1966) 501. [ 111 G. Arrenius, R. Fitzgerald, D. Hamilton, B.A. Holm and B.T. Matthias, J. Appl. Phys. 35 (1964) 3487. [ 121 T. Claeson and J. Ivarsson, J. Appl. Phys. 48 (1977) 3998.