On the pressure dependence of the ferroelectric Curie temperatures of KH2PO4 and KD2PO4

On the pressure dependence of the ferroelectric Curie temperatures of KH2PO4 and KD2PO4

Volume 26A. number 10 ON THE PHYSICS PRESSURE DEPENDENCE TEMPERATURES OF LETTERS 8 A p r i l 1968 OF THE FERROELECTRIC KH2PO 4 AND KD2PO 4 CUR...

157KB Sizes 0 Downloads 21 Views

Volume 26A. number 10

ON

THE

PHYSICS

PRESSURE DEPENDENCE TEMPERATURES OF

LETTERS

8 A p r i l 1968

OF THE FERROELECTRIC KH2PO 4 AND KD2PO 4

CURIE

R. BLINC and B. 7,EKS The University, Nuclear Institute J. Stefan, Ljubljana, Yugoslavia Received 26 February 1968

The dependence of the ferroelectric Curie temperatures (Tc) of KH2PO 4 and KD2PO 4 on hydrostatic p r e s sure has been evaluated for the protonic o r d e r - d i s o r d e r model in a four particle cluster approximation. The results agree rather well with the recent experimental data if the overlap of the protonic wave functions between the two sites in the H-bond is included, whereas the neglect of this overlap - as in the original Slater model - results in the wrong sign of the isotope effect in the TC p r e s s u r e coefficients.

U m e b a y a s h i et al. [1] h a v e r e c e n t l y shown that the f e r r o e l e c t r i c C u r i e t e m p e r a t u r e s (TC) of K H 2 P O 4 and K D 2 P O 4 d e c r e a s e w i t h i n c r e a s i n g h y d r o s t a t i c p r e s s u r e and S a m a r a [2] found a s i m i l a r d e c r e a s e of both T C and the C u r i e - W e i s s c o n s t a n t f o r a 90% d e u t e r a t e d K D 2 P O 4 c r y s t a l . T h e m o s t i n t e r e s t i n g r e s u l t of t h e s e s t u d i e s i s the d i s c o v e r y of a l a r g e i s o t o p e e f f e c t in t h e TC p r e s s u r e c o e f f i c i e n t s [1], w h i c h s e e m s to s u p p o r t the so-called proton tunneling model for ferroelect r i c i t y in c r y s t a l s of t h i s type. In o r d e r to s e e w h e t h e r t h i s i s r e a l l y the c a s e we d e c i d e d to e v a l u a t e the p r e s s u r e e f f e c t s f o r the " t u n n e l i n g " v e r s i o n [3] of t h e S l a t e r - T a k a g i S e n k o - U e h l i n g m o d e l as w e l l a s f o r the o r i g i n a l m o d e l [4] w h e r e the o v e r l a p of t h e p r o t o n i c w a v e f u n c t i o n s b e t w e e n the two s i t e s in the h y d r o g e n bond i s n e g l e c t e d . It can be shown [3,5] that the C u r i e t e m p e r a t u r e s a r e r e l a t i v e l y i n s e n s i t i v e to s m a l l c h a n g e s in the e n e r g y of a H 3 P O 4 o r a H 4 P O 4 d e f e c t , but d e p e n d s t r o n g l y on the S l a t e r s h o r t - r a n g e c o n f i g u r a t i o n e n e r g y E, the t u n n e l i n g m a t r i x e l e m e n t F and the l o n g - r a n g e d i p o l e - d i p o l e i n t e r a c t i o n e n e r g y y. T h u s : Tc(P) = T C [~(p), r ( P ) , ),(P)]. In e v a l u a t i n g t h e p r e s s u r e d e p e n d e n c e of t h e s e p a r a m e t e r s , we s h a l l a s s u m e that the p r i n c i p a l e f f e c t of p r e s s u r e is to r e d u c e the O - H - - O d i s t a n c e s s i n c e the h y d r o g e n bond i s the s o f t e s t bond in t h e c r y s t a l . A r e d u c t i o n of t h i s d i s t a n c e d e c r e a s e s t h e width 2~ of the p o t e n t i a l b a r r i e r , s e p a r a t i n g the two p r o t o n i c e q u i l i b r i u m s i t e s and s l i g h t l y increases the O-H distances. Neglecting this last e f f e c t one o b t a i n s

dTc

~(~Tc~

/~Tc\

1 da

w h e r e 77 = 2 q2 _ 1 and q2 = 2 r n E o { 2 / l ~ w i t h rn being the proton respectively deuteron mass, Eo the z e r o p o i n t e n e r g y and a = 1 - ~ 2~/a with t h e unit c e l l e d g e a = 7.45 A in c a s e of K H 2 P O 4 and a = 7.47 A in c a s e of K D 2 P O 4. In d e r i v i n g t h i s ex. p r e s s i o n E is t a k e n [3,5] to be p r o p o r t i o n a l to ~2, (as can be shown by a s i m p l e e l e c t r o s t a t i c c a l c u l a t i o n ) and F = Y o A, w h e r e A is a r e l a t i v e l y p r e s s u r e i n d e p e n d e n t r e n o r m a l i z a t i o n f a c t o r due to p r o t o n - l a t t i c e c o u p l o n g and w h e r e the " b a r g e " t u n n e l i n g m a t r i x e l e m e n t Fo is g i v e n in r e f . 6. The long-range interaction energy parameter c o n s i s t s of two p a r t s - a d i r e c t and a l a t t i c e m e d i a t e d p r o t o n - p r o t o n c o u p l i n g - both of w h i c h a r e p r o p e r t i o n a l to ~2 and y i e l d in the l i m i t [7] 2 { / a << 1 the s a m e p r e s s u r e d e p e n d e n c e . Ins e r t i n g the v a l u e s of the p a r a m e t e r s e, F, 7 u s e d in ref. 3 to d e s c r i b e the e q u i l i b r i u m d i e l e c t r i c p r o p e r t i e s of KI-I2PO 4 and K D 2 P O 4 - with L ~H = = 2.29 (as o b t a i n e d f r o m s t r u c t u r a l and s p e c t r o s c o p i c data) - and t a k i n g t h e v a l u e s of the d e r i v a t i v e s of TC f r o m the s a m e r e f e r e n c e and u s i n g d a / a dp = - 0.99 × 1 0 - 3 / k b a r a s o b t a i n e d [8] f r o m the m e a s u r e d e l e a s t i c s t i f f n e s s c o e f f i c i e n t s [9], one finds:

( d T c / d P ) H = [-1.81 - 2.07 - 0.082] d e g / k b a r = = - 4.70 d e g / k b a r

(2a)

( d T c / d P ) D = [-2.66 - 0 - 0.70] d e g / k b a r = = - 3.36 d e g / k b a r

468

7q! a

(2b)

Volume 26A, number 10

PHYSICS LETTERS

in s u r p r i s i n g l y good a g r e e m e n t with the e x p e r i m e n t a l data: ( d T c / d P ) H = - 4.52 d e g / k b a r and (dTC/dP)D = - 2.63 d e g / k b a r , a c c o r d i n g to ref. 1 and (dTc/dP) D ~ -3.9 d e g / k b a r a c c o r d i n g to ref. 2. If one, on the o t h e r hand, n e g l e c t s the t u n n e ling m a t r i x e l e m e n t F and fixed ~H and ED in the o r i g i n a l S l a t e r m o d el to account f o r the changes in the C u r i e t e m p e r a t u r e s on d e u t e r a t i o n (EH = = 60 c m -1, ED = 107 c m - 1 ) , one gets the wrong d i r e c t i o n of the i s o t op e e f f e c t s in the T C p r e s s u r e c o e f f i c i e n t s , s i n c e now (d Tc/dP) D > (d Tc/dP)H. T h i s s t a t e m e n t is s t i ll v a li d if one i n c l u d e s ~. The p r e s e n t r e s u l t s thus s e e m to show that the isotope e f f e c t s in the TC p r e s s u r e c o e f f i c i e n t s r e f l e c t the m a s s dependence of the p r o t o n i c o v e r lap. A m o r e d e t a i l e d account of this w o r k with the i nc l usi o n of the p r e s s u r e e f f e c t s in the C u r i e -

A FLIPPER-CHOPPER

FOR

8April 1968

W e i s s co n st an t s and the spontaneous p o l a r i z a tions will be published e l s e w h e r e .

References 1. H. Umebayashi, B.C. Frazer, G. Shirane and W. B. Daniels, Solid State Communications 5 (1967) 591. 2. G.A.Samara, Phys. Letters 25A (1967) 664. 3. R. Blinc and S. Svetina, Phys. Rev. 147 (1966) 430. 4. J.C.Slater, J.Chem. Phys. 9 (1941} 16: Y. Takagi, J. Phys. Soc. Japan 3 (1948} 271: M.E.Senko, Phys. Rev. 121 (1961) 1599; H. B. Silsbee, E.A. Uehling and V. H. Schmidt, Phys. Rev. 133 (1964) A165. 5. R. Blinc and B. ~ek~, Helv. Phys. Acta, to be published. 6. R. Blinc and D. Had~i, Mol. Phys. 1 (1958) 391. 7. G. E. Bacon and R. S. Pease, Proc. Roy. Soc. (London) A230 (1955} 359. 8. L.NovakoviS, private communication. 9. S. Hasussi~hl, Z. mr Kristal. 120 (1964) 401. B. Zwicker, Helv. Phys. Acta 19 (1946) 523.

POLARIZED

SLOW

NEUTRONS

O. STEINSVOLL and A. VIRJO *

Institutt for Atornenergi, Kjeller, Norway Received 1 March 1968

A conventional neutron spin resonance flipper for polarized slow neutrons has been rebuilt to allow pulsed (~flipper-chopper ~) operation. It is then possible to use time-of-flight technique to obtain the energy of the scattered neutrons. The construction and results of experimental tests are briefly discussed.

In a d i f f r a c t o m e t e r f o r p o l a r i z e d slow n e u t r o n s a ne ut r o n spin r e s o n a n c e flipping d e v i c e [1,2] is o r d i n a r i l y u s e d f o r r e v e r s i n g the d i r e c t i o n of the n e u t r o n p o l a r i z a t i o n v e c t o r with r e s p e c t to the m a g n e t i c g u i d e - f i e l d . When the p o l a r i z e d b e a m is r e f l e c t e d f r o m a c r y s t a l s a m p l e which has a s c a t t e r i n g c r o s s s e c t i o n ( e l a s t i c o r i n e l a s t i c ) depending on the p o l a r i z a t i o n d i r e c t i o n of the i n c o m i n g n e u t r o n b e a m , the i n t e n s it y in the s c a t t e r e d b e a m depends upon w h e t h e r the flipping d e v i c e is on o r off. It has b e e n s u g g e s t e d by Nathans [3] that this d e p e n d e n c e could be u t i l i z e d f o r m e a s u r i n g the e n e r g y s p e c t r u m of the p o l a r i z a t i o n dependent p a r t of the s c a t t e r e d n e u t r o n s f r o m the s a m p l e c r y s t a l by a t i m e - o f - f l i g h t p r o c e d u r e . F o r this p u r p o s e one should in s o m e way switch the f l i p p e r * Guest scientist on leave from Technical University of Helsinki, Otaniemi, Helsinki, Finland.

off o r on f o r sh o r t p e r i o d s of t i m e and r e p e a t t h i s switching at constant t i m e i n t e r v a l s . If the b u r s t s of r e v e r s e d n eu t r o n p o l a r i z a t i o n p r o d u c e d in this way have a p p r o p r i a t e p o l a r i t y , they a r e then c o n v e r t e d at the s a m p l e to b u r s t s of i n c r e a s ed n eu t r o n intensity that can be u s e d f o r t i m e o f - f l i g h t an al y si s. The m o s t obvious way to a c h i e v e this would be to switch the c u r r e n t in the f l i p p e r coil on and off by s o m e p u l si n g d ev i ce. " F l i p p e r - c h o p p e r s " b a s e d on this p r i n c i p l e have been s u c c e s s f u l l y t e s t e d in d i f f e r e n t l a b o r a t o r i e s [4-7]. F o r p r a c t i c a l r e a s o n s we have chosen, howe v e r , an o t h er method as a b a s i s f o r o u r f l i p p e r c h o p p e r c o n s t r u c t i o n , n a m e l y to change the m a i n (d. c.) m a g n e t i c f i el d a c r o s s the f l i p p e r coil at a constant r e p e t i t i o n r a t e . T h i s was effected by m e a n s of an e x t r a " c h o p p e r c o i l " wound around the f l i p p e r coil. When a sufficiently s t r o n g c u r 469