On the saturation of radiation hardening

On the saturation of radiation hardening

Volume 28A, number 9 ON PHYSICS THE SATURATION OF LETTERS RADIATION 10 February 1969 HARDENING * J . M. G A L L I G A N Brookhaven National...

73KB Sizes 3 Downloads 53 Views

Volume 28A, number 9

ON

PHYSICS

THE

SATURATION

OF

LETTERS

RADIATION

10 February 1969

HARDENING

*

J . M. G A L L I G A N Brookhaven National Laboratory. Upton, New York Received 1 January 1969

A model of saturation of radiation hardening is given. This model suggests that saturation of the t h e r mal hardening component should occur at different fluence levels than would the athermal component.

It i s g e n e r a l l y o b s e r v e d in i r r a d i a t e d m e t a l s t h a t t h e1 y i e l d s t r e s s i n i t i a l l y v a r i e s with f l u e n c e a s (~t)~ [1, 2], a f t e r w h i c h t h e y i e l d s t r e s s g r a d u a l l y s a t u r a t e s . T h i s b e h a v i o r is thought to a r i s e f r o m a g e o m e t r i c a l o v e r l a p of d a m a g e z o n e s [3] w h i c h w o u l d b e e x p e c t e d on t h e b a s i s of s i m p l e p r o b a b i l i t y c o n s i d e r a t i o n s . In t h i s e x p l a n a t i o n no c h a n g e in t h e c h a r a c t e r of t h e d e f e c t s i n t r o d u c e d by i r r a d i a t i o n i s c o n s i d e r e d . F o r e x a m p l e , s u c h a m o d e l d o e s not d i s t i n g u i s h b e t w e e n t h e r a t e of c h a n g e of t h e r m a l and a t h e r m a l c o m p o n e n t s of h a r d e n i n g w i t h e x p o s u r e . W e w o u l d l i k e to i n t r o d u c e a s i m p l e m o d e l of r a d i a tion hardening which distinguishes between these two c o m p o n e n t s of t h e h a r d e n i n g and l e a d s to a s a t u r a t i o n of t h e c o m p o n e n t s at d i f f e r e n t e x p o sure levels. In t h i s m o d e l we s u g g e s t t h a t w h e n a d a m a g e z o n e is f o r m e d n e a r a p r e e x i s t i n g z o n e , t h i s s a t i s f i e s t h e c o n d i t i o n s f o r t h e f o r m a t i o n of a d i s l o c a t i o n loop, s u c h a s i s o b s e r v e d w h e n an i r r a d i a t e d s a m p l e i s a n n e a l e d [4]. A l s o , m u l t i p l e d a m a g e z o n e s w h i c h l e a d to d i s l o c a t i o n l o o p s can i n c r e a s e t h e d e f e c t d e n s i t y w i t h o u t d r a s t i cally changing the yield stress. This latter fact a r i s e s w h e n d i s l o c a t i o n l o o p s i n c r e a s e in s i z e , b u t not t h e i r s e p a r a t i o n . If l o o p s a r e s e p a r a t e d by a d i s t a n c e in s p a c e , ~, then ~ i s g i v e n a s [5] 3 ~ 212R

w h e r e 1 i s t h e s e p a r a t i o n of l o o p s in a s l i p p l a n e and 2R t h e i r a v e r a g e s i z e . T h e y i e l d s t r e s s w o u l d , in t h i s m o d e l , v a r y a s = [const(Nz) (1-f) +

_

c o n s t fl½ ~3 J

* This work was performed under the auspices of the US Atomic Energy Commission.

w h e r e N Z i s t h e n u m b e r of d a m a g e z o n e s in a s l i p p l a n e a n d f i s a f a c t o r w h i c h t a k e s into a c count the p r o b a b i l i t y of f o r m i n g a z o n e n e a r a p r e e x i s t i n g z o n e . It is e x p e c t e d that t h e f o r m a tion and g r o w t h of such d i s l o c a t i o n l o o p s w o u l d l e a d to an i n c r e a s e in t h e s t r e s s f o r y i e l d i n g , which w o u l d b e g e n e r a l l y i n d e p e n d e n t of t e m p e r ature, such as a forest hardening mechanism. A c c o r d i n g l y , t h e a t h e r m a l c o m p o n e n t of t h e r a d i a t i o n h a r d e n i n g would s t i l l b e i n c r e a s i n g when t h e t h e r m a l c o m p o n e n t t e n d s to s a t u r a t e . T h e f i n a l s a t u r a t i o n of t h e h a r d e n i n g - t h e r m a l and a t h e r m a l - would o c c u r , in t h i s m o d e l , w h e n the a p p a r e n t i n c r e a s e in d i s l o c a t i o n loop s i z e and density reaches a steady-state value determined by r a d i a t i o n a n n e a l i n g . T h e p r e s e n t m o d e l is c o n s i s t e n t with s o m e r e c e n t m e a s u r e m e n t s in r a d i a t i o n d a m a g e [4] and r a d i a t i o n h a r d e n i n g [2] in p l a t i n u m . It i s a l so c o n s i s t e n t with s o m e r e c e n t o b s e r v a t i o n s on t h e s i z e d i s t r i b u t i o n of d e f e c t s in n e u t r o n i r r a d i a t e d n i o b i u m [6]. S o m e p e r t i n e n t m e a s u r e m e n t s on r a d i a t i o n h a r d e n i n g on n e u t r o n i r r a d i a t e d t u n g s t e n and p l a t i n u m w i l l be r e p o r t e d in the n e a r f u t u r e .

References

1. J. Diehl, Radiation damage in metals (Int. Atomic Energy Commission, Vienna, 1962). 2. J. M. Galligan and M. J. Attardo, Phys. Stat. Sol. 27 (1968) 383. 3. M.J. Makin and F . J . Minter, Aeta Met. 8 (1960) 691. 4. M.J. Attardo and J. M. Galligan, Phys. Rev. 161 (1967) 558. 5. J. Friedel, Dislocations (Pergamon P r e s s , London, 1964). 6. S. M. Ohr and R. P. Tucker. J. Metals 20 (1968) 80a.

609