On the stability of non-autonomous perturbed Lotka–Volterra models

On the stability of non-autonomous perturbed Lotka–Volterra models

Applied Mathematics and Computation 219 (2013) 6868–6881 Contents lists available at SciVerse ScienceDirect Applied Mathematics and Computation jour...

298KB Sizes 12 Downloads 77 Views

Applied Mathematics and Computation 219 (2013) 6868–6881

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

On the stability of non-autonomous perturbed Lotka–Volterra models F. Capone, R. De Luca, S. Rionero ⇑ University of Naples Federico II, Department of Mathematics and Applications ‘R. Caccioppoli’, Complesso Universitario Monte S. Angelo, Via Cinzia, 80126 Naples, Italy

a r t i c l e

i n f o

Keywords: Nonautonomous systems Lotka–Volterra generalized systems Stability/instability via Direct Method

a b s t r a c t The paper is devoted to an extended Lotka–Volterra system of differential equations of predator–prey model. The extension is proposed with perturbation terms, which are null for the positive equilibrium state. In the original Lotka–Volterra system, the equilibrium state is not asymptotically stable due to the fact that perturbations are periodic in time. The aim of the paper is to characterize a form of perturbation terms guaranteeing the asymptotic stability or instability of equilibrium state. The reason of the proposed model is that for large time scale, the Lotka–Volterra model is too simple to be realistic. In the paper, the non-autonomous perturbations do not change the equilibrium state but introduce functions of time as well as for additional perturbed terms as for the main part of the equations modified from Lotka–Volterra model. Theorems are proposed in a renormalized form of the differential equations for time and the two variables. The key point of the paper comes from the use of a Liapunov function introduced in Section 2 which allows to obtain conditions for the asymptotic stability (Section 3) and instability (Section 4) by using a Cetaiev instability theorem following conditions on the renormalized coefficients in time of System (6). An appendix recalls the main results of the Liapunov Direct Method for non-autonomous binary systems of ordinary differential equations. Ó 2013 Elsevier Inc. All rights reserved.

1. Introduction The celebrated Lotka–Volterra model governing the predation between two species is based, as it well known, on the assumptions: (i) in the absence of predators, the preys increase at a constant rate; (ii) in the absence of preys, the predators decrease at a constant rate; (iii) the rate at which preys are eaten is proportional to the product of the densities of predators and preys. Therefore denoting by a; b; c; d positive constants and by x and y respectively the preys and predators densities, the equations governing the model are of the type:

x_ ¼ xða  byÞ;

y_ ¼ yðc þ dxÞ:

⇑ Corresponding author. E-mail addresses: [email protected] (F. Capone), [email protected] (R. De Luca), [email protected] (S. Rionero). 0096-3003/$ - see front matter Ó 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.01.003

ð1Þ

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

6869

A well established criticism can be done to (i)–(iii) and hence to (1). In fact, the following remarks hold [1] (1) the growth behavior assumed by (i) is reasonable only for a limited time, since, a continuous increasing of the population will exhaust its resources; (2) the density of each specie does not exhibit any structure (space location, age, differences of sex or genotype, . . .); (3) changes in density are deterministic, ignoring the random effects in the environment influence on the interaction between x and y; (4) the effects of interactions within and between the species are instantaneous, ignoring the influence of delayed processes. In the literature can be found several perturbed Lotka–Volterra models

x_ ¼ xða  byÞ þ F;

y_ ¼ yðc þ dxÞ þ G;

ð2Þ

developed by many authors. Different types of perturbation terms F; G have been introduced in order to account for variations of the idealized hypotheses (i)–(iii) as well as to put controls on the growth of both predators and preys (see, for instance [1–17] and for models of binary reaction–diffusion of P.D.Es [18–24] and the references therein). The influence of the perturbation terms on the stability of the positive ecological equilibrium state

c x¼ ; d

a y¼ ; b

ð3Þ

of (1) or on the existence both of periodic solutions or perturbed critical points, have been studied. In particular, in [5–9,14– 17], the perturbation terms are such that

½F ðx;yÞ ¼ ½Gðx;yÞ ¼ 0:

ð4Þ

Our aim here is to consider a general class of non-autonomous perturbation terms verifying (4), in order to study their influence on the stability/instability of (3) and on the existence of periodic solutions. In particular, since in the Lotka–Volterra model (1) (i) ðx; yÞ is stable but not asymptotically stable; (ii) the perturbations ðn ¼ x  x; g ¼ y  yÞ, with ðn0 – 0; g0 – 0Þ, are periodic in time with the same period; our aim is precisely to introduce, as measure of random effects in the environment that influence the interaction between x and y, the perturbation terms ðF; GÞ guaranteeing (i)’ the asymptotic stability of ðx; yÞ and hence the non-existence of periodic solutions ðx ¼ x þ n; y ¼ y þ gÞ for ðn0 – 0; g0 – 0Þ; (ii)’ the instability of ðx; yÞ; (iii)’ the overcoming of (1)–(3). The non-autonomous perturbation terms considered in the present paper are:

8   < F ¼ f ðtÞxða  byÞ þ D1 ðtÞ x y  x ;  y : G ¼ gðtÞyðc þ dxÞ þ D ðtÞy x  y; 2

ð5Þ

x

and hence the perturbed Lotka–Volterra models studied can be written:

8   < x_ ¼ f1 ðtÞða  byÞx þ D1 ðtÞ x y  x ;  y : y_ ¼ f ðtÞðc þ dxÞy þ D ðtÞy x  y; 2 2 x

ð6Þ

with f1 ¼ 1 þ f , f2 ¼ 1 þ g. We assume fi : Rþ ! Rþ , (i ¼ 1; 2). In view of (6), one obtains

8     > < x_ ¼ af1 ðtÞ 1  yy x þ xD1 ðtÞ yy  xx ;   > y_ ¼ cf ðtÞ1 þ xy þ yD ðtÞ x  y : : 2 2 x x y

ð7Þ

Setting [18–21]

(

x ¼ xX;

u1 ðtÞ ¼

y ¼ yY; D1 ðtÞ ; af1 ðtÞ

s¼a

u2 ðtÞ ¼

Rt

f ðzÞ dz;

0 1 D2 ðtÞ ; af1 ðtÞ

cf2 ðtÞ wðtÞ ¼ af ; 1 ðtÞ

ð8Þ

6870

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

model (7) becomes

(

dX ds dY ds

¼ ð1  YÞX þ u1 ðtÞðY  XÞ; ¼ wðtÞð1 þ XÞY þ u2 ðtÞðX  YÞ;

ð9Þ

Eq. (9) having ðX  ; Y  Þ ¼ ð1; 1Þ as critical point where neither species is extinct. We assume that

w; ui 2 L1 ðRþ Þ \ C 1 ðRþ Þ;

ði ¼ 1; 2Þ;

ð10Þ

with

jui ðt1 Þ  ui ðt 2 Þj 6 Li jt 1  t 2 j;

ði ¼ 1; 2Þ;

jwðt1 Þ  wðt2 Þj 6 Kjt1  t 2 j;

ð11Þ

where t 1 ; t 2 2 Rþ and Li (i ¼ 1; 2), K positive constants. Further we require that

8 > < u1 ðtÞ < 1; > :

8t 2 Rþ :

ð12Þ

wðtÞ þ u2 ðtÞ > 0;

We remark that (i) (10) and (11) guarantee (global) existence and uniqueness of smooth solutions of (9); (ii) (12)1 guarantees that the preys grow up in the absence of predators; (iii) (12)2 guarantees that the predators decrease in the absence of preys. Our aim is to characterize the functions w; ui (i ¼ 1; 2) guaranteeing the nonlinear stability (instability) of the biological meaningful equilibrium state ðX  ; Y  Þ ¼ ð1; 1Þ, existing 8w; ui (i ¼ 1; 2). The plan of the paper is as follows. Section 2 is devoted to some fundamental preliminaries. In particular a novel Liapunov function is introduced and its time derivative along the solutions of (9) is obtained. In Section 3 conditions guaranteeing the stability of ðX  ; Y  Þ ¼ ð1; 1Þ are furnished, while the instability is analyzed in Section 4. Final remarks are showed in Section 5. Finally in Appendix A we recall the essential tools of the Direct Method for nonautonomous O.D.Es. 2. Preliminaries In view of (9), it follows that

8 h io R n > < X ¼ X 0 exp 0s 1  YðzÞ þ u1 ðzÞ YðzÞ  1 dz; XðzÞ h io R n > : Y ¼ Y 0 exp 0s wðzÞð1 þ XðzÞÞ þ u2 ðzÞ XðzÞ  1 dz; YðzÞ

ð13Þ

and hence fX 0 > 0; Y 0 > 0g ) fXðsÞ > 0; YðsÞ > 0; 8s > 0g. Setting



X ¼ u þ 1; Y ¼ v þ 1;

ð14Þ

Eq. (9) becomes

(

du ds dv ds

¼ u1 ðtÞu þ ðu1 ðtÞ  1Þv  uv ; ¼ ðwðtÞ þ u2 ðtÞÞu  u2 ðtÞv þ wðtÞuv :

ð15Þ

In order to study the nonlinear stability/instability of ðX  ; Y  Þ ¼ ð1; 1Þ we will consider the standard ‘‘energy’’

EðsÞ ¼

1 ðl ðsÞu2 þ l2 ðsÞv 2 Þ; 2 1

ð16Þ

and the Rionero ‘‘energy’’ [18]

VðsÞ ¼

1 fAðu2 þ v 2 Þ þ ½u1 v þ ðw þ u2 Þu2 þ ½ðu1  1Þv þ u2 u2 g; 2

ð17Þ

with

AðtÞ ¼ u1 u2  ðu1  1Þðw þ u2 Þ ¼ wðtÞ½1  u1 ðtÞ þ u2 ðtÞ; and

1

þ

1

þ

li 2 L ðR Þ \ C ðR Þ, (i ¼ 1; 2), to be suitably chosen later.

ð18Þ

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

6871

Remark 1. We remark that, since w P 0, 8s 2 Rþ and (12)1 holds, then

A P u2 ; and hence u2 P 0 implies A P 0. Further, from (12), it follows that

A ¼ u1 u2  ðu1  1Þðw þ u2 Þ > u1 u2 : Hence if u1 u2 P 0, then A > 0. Along the solutions of (15), it follows that

dE 1 ¼ ds 2

   

dl1 dl2  2u 1 l 1 u 2 þ  2u2 l2 v 2 þ 2 l1 ðu1  1Þ þ l2 ðw þ u2 Þ uv þ UðsÞ; ds ds

ð19Þ

with

UðsÞ ¼ ðl1 u þ wl2 v Þuv :

ð20Þ

Moreover, setting

8 > < WðsÞ ¼ ðA1 u  A3 v Þðuv Þ þ ðA2 v  A3 uÞðwuv Þ; I ¼ ðu1 þ u2 Þ; A1 ¼ A þ u22 þ ðw þ u2 Þ2 ; A2 ¼ A þ u21 þ ðu1  1Þ2 ; > : A3 ¼ ½u1 ðw þ u2 Þ þ u2 ðu1  1Þ;

ð21Þ

along the solutions of (15) it turns out that

dV ¼ Pðs; u; v Þ þ Wðs; u; v Þ; ds

ð22Þ

with

8 3 X > > > P ¼ 12 Pi ðs; u; v Þ; > > < i¼1

  2 P 1 ¼ 2IA þ dA ðu þ v 2 Þ; ds 2

ð23Þ

d ds d d ¼ ¼ af1 ðtÞ ; dt dt ds ds

ð24Þ

2

du u2 Þ > P2 ¼ dðwþdsu2 Þ u2 þ ds1 v 2 þ 2 d½u1 ðwþ uv ; > ds > > > : du22 2 dðu1 1Þ2 2 d½u2 ðu1 1Þ uv : P 3 ¼ ds u þ ds v þ 2 ds

Remark 2. Since

and af1 ðtÞ > 0, 8t 2 Rþ , then

df df > 0 () > 0; ds dt

8f 2 C 1 ðRþ Þ:

ð25Þ

By virtue of (25) we can state the results for the stability–instability of the null solution of (15) by means of conditions on dE dt and dV instead of dE and dV . dt ds ds Remark 3. Let f : Rþ ! R and

f ¼ inf f; þ R

f  ¼ supf ; Rþ

then it turns out that (i) at any instant t 2 Rþ and 8AðtÞ, in any disk of the phase space, centered at the origin O ¼ ð0; 0Þ, there exists a domain in which Vðt; u; v Þ > 0; (ii) if A > 0, there exists a positive constant m1 such that

A ðu2 þ v 2 Þ < V < m1 ðu2 þ v 2 Þ;

8s 2 Rþ ;

ð26Þ

and hence V is limited, has an infinitely small upper limit and is positive definite; (iii) the property (i) holds also for the energy E either when ðl1 Þ > 0 or ðl2 Þ > 0; (iv) the property (ii) holds also for the energy E, when ðli Þ > 0, (i ¼ 1; 2). In fact one has

m2 ðu2 þ v 2 Þ < E < m3 ðu2 þ v 2 Þ;

ð27Þ

6872

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

with

m2 <

  1 inf ðl1 Þ ; ðl2 Þ ; 2

m3 >

  1 sup ðl1 Þ ; ðl2 Þ : 2

ð28Þ

Lemma 1. The polynomial P 2 reduces to

8 < P ¼ dðwþu2 Þ2 ðu  v Þ2 2 ds : P ¼ dðwþu2 Þ2 u2 2

for u1 ¼ ðw þ u2 Þ; 8s 2 Rþ ;

ð29Þ

for u1  0; 8s 2 Rþ ;

ds

while P3 reduces to

8 < P ¼ dðu1 1Þ2 ðu  v Þ2 3 ds : P ¼ dðu1 1Þ2 v 2 3

for u1 ¼ 1  u2 ; 8s 2 Rþ ;

ð30Þ

for u2  0; 8s 2 Rþ :

ds

If no one of the functions ui ði ¼ 1; 2Þ is identically zero, the polynomials Pi ði ¼ 2; 3Þ, cannot be negative definite. Proof. (29) and (30) are implied by (23). Further, since

8h i2  2 2 du2 u2 ÞÞ u2 Þ > < dðu1 ðwþ  ds1 dðwþdsu2 Þ ¼ ddus1 ðw þ u2 Þ  u1 dðwþ ; ds ds h i   2 2 > : d½u2 ðu1 1Þ  du22 dðu1 1Þ2 ¼ du2 ðu  1Þ  u dðu1 1Þ ; ds

ds

ds

ds

1

2

ð31Þ

ds

one immediately deduces that Pi (i ¼ 2; 3), as quadratic forms of u and v, cannot be definite negative when no one of the functions ui (i ¼ 1; 2) is identically zero. h Remark 4. We call critical case, the case in which

AI  0;

8s 2 Rþ :

ð32Þ

Lemma 2. The quadratic polynomial P 2 þ P3 is (i) positive semidefinite either for



d 2 ½u þ ðw þ u2 Þ2  P k1 ; ds 2

u1 ðw þ u2 Þ þ u2 ðu1  1Þ ¼ const:;

or

d 2 ½u þ ðu1  1Þ2  P k2 ; ds 1

8s 2 Rþ ;

ð33Þ

(

u1 u1  1 dðw þ u2 Þ2 du22 ¼ const:; ¼ const:; P k3 ; P k4 ; w þ u2 u2 ds ds

ð34Þ

or

(

u1 w

¼ const:; u2 ¼ 0;

dw2 P k5 ; ds

dðu1  1Þ2 P k6 ; ds

8s 2 Rþ ;

ð35Þ

with ki (i ¼ 1; . . . ; 6) non negative constants; (ii) positive definite if the constants ki appearing – either in (33) or (34) or (35) – are positive; (iii) negative semidefinite either for

(

or

u1 ðw þ u2 Þ þ u2 ðu1  1Þ ¼ const:; d ½u21 þ ðu1  1Þ2  6 k2 ; 8s 2 Rþ ; ds

u22 þ ðu1  1Þ2  6 k1 ;

d ½ ds

ð36Þ

(

u1 u1  1 dðw þ u2 Þ2 du22 ¼ const:; ¼ const:; 6 k3 ; 6 k4 ; w þ u2 u2 ds ds

ð37Þ

or

(

u1 w

¼ const:; u2 ¼ 0;

dw2 6 k5 ; ds

with ki , (i ¼ 1; . . . ; 6) non negative constants;

dðu1  1Þ2 6 k6 ; ds

8s 2 Rþ ;

ð38Þ

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

6873

(iv) negative definite if the constants ki appearing – either in (36) or (37) or (38) – are positive; (v) undefined in the other cases. Proof. For the proof see [18]. h Remark 5. Apart from the critical case one immediately deduces that (i) if A > 0, 8s 2 Rþ , the existence of a positive constant h such that

P1 6 hðu2 þ v 2 Þ;

ð39Þ

is necessary for guaranteeing the (local) asymptotic stability; (ii) if A < 0, 8s 2 Rþ , the existence of a positive constant h such that

P1 > hðu2 þ v 2 Þ;

ð40Þ

is necessary for guaranteeing the (Cetaev) instability (cfr. Appendix A). For the sake of completeness we recall here some lemmas, proved in [18] that we will use to obtain stability/instability results. Lemma 3. Let

A > 0;

I > 0:

ð41Þ

Then does not exist a positive constant h such that

P1 6 hðu2 þ v 2 Þ;

8s 2 R þ ;

ð42Þ

and P 1 is semidefinite positive for

A P A0 e2I s ;

A0 ¼ Að0Þ;

ð43Þ

and definite positive, according to

P1 P A I ðu2 þ v 2 Þ;

ð44Þ

dA P 0; ds

ð45Þ

for

8s 2 R þ :

Remark 6. We observe that

I ¼ infððu1 þ u2 ÞÞ ¼  supðu1 þ u2 Þ: Hence (41) can be written as

A > 0;

ðu1 þ u2 Þ < 0:

Lemma 4. Let

A > 0;

I < 0:

ð46Þ

Then does not exist a positive constant h such that

P1 P hðu2 þ v 2 Þ;

ð47Þ

and P 1 is semidefinite negative for

A 6 A0 e2I s ;

ð48Þ

and negative definite, either according to

P1 6 A jI jðu2 þ v 2 Þ;

ð49Þ

dA 6 0; ds

ð50Þ

for

6874

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

or according to

P1 6 2eA jI jðu2 þ v 2 Þ;

0 < e ¼ const: < 1;

ð51Þ

for

A 6 A0 ð1  eÞe2jI js ;

8s > 0:

ð52Þ

Lemma 5. Let

A < 0;

I < 0:

ð53Þ

Then does not exist a positive constant h such that (42) holds. Further P1 is semidefinite positive for  A P A0 e2I s ;

ð54Þ

and positive definite according to

P1 P A I ðu2 þ v 2 Þ;

ð55Þ

when (45) holds.

3. Stability criteria Theorem 1. Let (10)–(12), (46) and (48) or (46) and (50) or (46) and (52) hold together with the condition (iii) or (iv) of Lemma 2. Then the null solution of system (15) is nonlinearly, asymptotically, exponentially (locally) stable. Proof. By virtue of the hypotheses, there exist two positive constants h1 and h2 , such that

(

P1 6 h1 ðu2 þ v 2 Þ;

ð56Þ

P2 þ P3 6 h2 ðu2 þ v 2 Þ; and hence, from (22) and (56), one obtains that

dV h 6  ðu2 þ v 2 Þ þ jWj; ds 2

ð57Þ

with h ¼ infðh1 ; h2 Þð> 0Þ. The boundedness of w; ui (i ¼ 1; 2), implies that

jWj 6 Mðu þ v Þðuv Þ 6

pffiffiffi 3 M 2 2 ðu þ v 2 Þ2 ; 2

ð58Þ

with

M ¼ maxðjA3 þ A2 wj; jA1 þ A3 wjÞ:

ð59Þ

Hence, starting form (57), one obtains: 3 1 dV 6 d1 V þ d2 V 2 ¼ Vðd1 þ d2 V 2 Þ; ds

ð60Þ

with

d1 ¼

h ð> 0Þ; 2m1

d2 ¼

pffiffiffi M 2 3

2A2

ð> 0Þ:

ð61Þ

1

Then the assumption V 20 < dd12 implies, by recursive argument, that:

V 6 V 0 eds ;

1

d ¼ d1  d2 V 20 ð> 0Þ:

ð62Þ

Moreover, by virtue of (26), V and W ¼ ðu2 þ v 2 Þ are equivalent and in particular (119)–(121) are satisfied. Now, since all the hypotheses of the Liapunov (asymptotic) stability theorem are satisfied (cfr. Appendix A, (ii)), the null solution of (15) is nonlinearly, asymptotically, exponentially, locally stable. h Remark 7. By virtue of Lemmas 2–5 and Theorem 1, apart from the critical case IA  0, the conditions (46) or the equivalent conditions

A > 0;

ðAIÞ < 0;

appear to be the basic conditions to guarantee the stability of the null solution of (15).

ð63Þ

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

6875

Theorem 2. Let (10)–(12) hold and let (46) hold by virtue of

ðu1 Þ P k1 ;

ðu2 Þ P k2 ;

ð64Þ

with ki ð¼ 1; 2Þ positive constants. Then

(

u1 P 1  ð1  u1 Þs¼0 e2ðk1 eÞs ; w þ u2 6 ðw þ u2 Þs¼0 e2ðk2 eÞs ;

ð65Þ

with 0 6 e < infðk1 ; k2 Þ, guarantee the (local) nonlinear asymptotic exponential stability of the null solution of (15). Proof. For the proof see [18]. h Remark 8. Obviously (15) cannot admit periodic solutions when the conditions guaranteeing the asymptotic stability of the null solution hold. Theorem 3. Let (10)–(12) and (46) hold and let us assume that

8 ðe1 u1 Þ > 0; ðe2 u2 Þ > 0; ðu1 þ u2 Þ > 0; > >   > > > wþu wþu > e4ð1e1 ÞFðsÞ ; 8s > 0; < 1u12 < 1u12  s¼0 wþu2 u2 > > > wþ e4ð1e2 ÞGðsÞ ; 8s > 0; > 1u1 1u1 > s¼0 > > R Rs : s FðsÞ ¼ 0 u1 ðzÞ dz; GðsÞ ¼ 0 u2 ðzÞ dz; with

ð66Þ

ei ði ¼ 1; 2Þ constants such that ð1  e1 Þu1 þ ð1  e2 Þu2 > 0;

8s 2 Rþ ;

ð67Þ

then the zero solution of (15) is nonlinearly (locally) asymptotically exponentially stable. Proof. Requiring

(

2u1 l1 þ ddls1 < 2e1 u1 l1 ;

ð68Þ

2u2 l2 þ ddls2 < 2e2 u2 l2 ; one obtains that

(

l1 < l1 ð0Þe2ð1e1 ÞFðsÞ ; l2 < l2 ð0Þe2ð1e2 ÞGðsÞ :

ð69Þ

The hypotheses (66)4 and (66)5, are verified by

l1 ¼

 1 w þ u2 2 ; 1  u1

l2 ¼



1  u1 w þ u2

12 :

ð70Þ

With this choice, the energy EðsÞ given by (19) has to satisfy

dE 1 <  2ðe1 u1 Þ l1 u2 þ 2ðe2 u2 Þ l2 v 2 þ U; ds 2

ð71Þ

with U given by (20). Setting

h2 ¼ 2 minððe1 u1 Þ ; ðe2 u2 Þ Þ;

ð72Þ

one obtains

dE < h2 E þ U: ds

ð73Þ

The boundedness of w; ui (i ¼ 1; 2), implies that

pffiffiffi 3 M0 2 2 jUj 6 M ðu þ v Þðuv Þ 6 ðu þ v 2 Þ2 ; 2

ð74Þ

M0 ¼ maxðjl1 j; jwl2 jÞ:

ð75Þ

0

with

6876

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

Hence, starting form (73) one obtains: 3 1 dE 6 d01 E þ d02 E2 ¼ Eðd01 þ d02 E2 Þ; ds

ð76Þ

with

d01 ¼

h2 ð> 0Þ; m3

pffiffiffi M0 2

d02 ¼ 1

3

ð> 0Þ:

ð77Þ

2m22

d0

Then the assumption E20 < d10 implies, by recursive argument, that: 2

0

E 6 E0 ed s ;

1

d0 ¼ d01  d02 E20 ð> 0Þ:

ð78Þ

Moreover, by virtue of (27), E and W ¼ ðu2 þ v 2 Þ are equivalent and in particular (119)–(121) are satisfied. Now, since all the hypotheses of the Liapunov (asymptotic) stability theorem are satisfied (cfr. Appendix A, (ii)), the null solution of (15) is nonlinearly, asymptotically, exponentially, locally stable. h Remark 9. We observe that (i) (66)3 is necessary for the consistence of (67), while (67) guarantees the consistence of (66)4 and (66)5; (ii) Theorem 3 does not require necessarily

ðu1 Þ > 0;

ðu2 Þ > 0;

ð79Þ

but can hold also if

u1 u2 < 0; 8s > 0; A > 0:

ð80Þ

In fact, let

(

u1 ¼ u2 ½uðsÞ þ 1; u2 < 0; u > 0; e1 ¼ 12 ; e2 ¼  12 ; A > 0:

ð81Þ

Then

ð1  e1 Þu1 þ ð1  e2 Þu2 ¼ 

uþ1 2

3 2

u2 þ u2 > 0;

ð82Þ

is verified by

u > 2; 8s > 0:

ð83Þ

Theorem 4. Let (10)–(12) hold and suppose that (46) hold by virtue of

ðu1 Þ > 0;

ðu2 Þ > 0:

ð84Þ

On assuming that

ð1  u1 Þ ðw þ u2 Þ < ðu1 Þ ðu2 Þ ;

ð85Þ

the zero solution of (15) is nonlinearly (locally) asymptotically exponentially stable. Proof. Choosing

l1

 1 ðw þ u2 Þ 2 ¼ ; ð1  u1 Þ

l2 ¼



ð1  u1 Þ ðw þ u2 Þ

12 ;

ð86Þ

it follows that



dE 6 u1 l1 u2  u2 l2 v 2 þ l1 ð1  u1 Þ þ l2 ðw þ u2 Þ uv þ U: ds

ð87Þ

In view of (85) and (86) one obtains

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi dE 6 ðu1 Þ l1 u2  ðu2 Þ l2 v 2 þ 2 ð1  u1 Þ ðw þ u2 Þ uv þ U: ds

ð88Þ

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

Since

6877

l1 ¼ l1 2 it turns out that 8  > < ð1  u1 Þ ðw þ u2 Þ < ðu1 Þ ðu2 Þ ¼ l1 ðu1 Þ l2 ðu2 Þ ; ð1  u1 Þ ðw þ u2 Þ ¼ g2 l1 ðu1 Þ l2 ðu2 Þ ; > : pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ð1  u1 Þ ðw þ u2 Þ uv 6 gðl1 ðu1 Þ u2 þ l2 ðu2 Þ v 2 Þ;

ð89Þ

with 0 < g ¼ const: < 1. Then (88) becomes



dE 6 ð1  gÞ ðu1 Þ l1 u2 þ l2 ðu2 Þ v 2 þ U; ds

ð90Þ

and hence

dE 6 h3 E þ U; ds

ð91Þ

h3 ¼ 2ð1  gÞ minððu1 Þ ; ðu2 Þ Þ:

ð92Þ

with

Following the same procedure used in Theorem 3, the thesis is hold. h Theorem 5. Let (10)–(12) hold together with (46) by virtue of

ðu1 Þ > 0;

ðu2 Þ > 0;

ð93Þ

and

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1  u1 Þ þ ðw þ u2 Þ < 2 ðu1 Þ ðu2 Þ :

ð94Þ

Then the null solution of system (15) is nonlinearly (locally) asymptotically exponentially stable. Proof. Choosing

l1 ¼ l2 ¼ 1, from (19) it follows that

dE 1 ¼ 2u1 u2  2u2 v 2 þ 2ðu1  1 þ u2 þ wÞuv þ U ds 2 6 ðu1 Þ u2  ðu2 Þ v 2 þ ðð1  u1 Þ þ ðw þ u2 Þ Þuv þ U:

ð95Þ

From (94), 9g ¼ const: 20; 1½ such that

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1  u1 Þ þ ðw þ u2 Þ ¼ 2g ðu1 Þ ðu2 Þ :

ð96Þ

Hence

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi dE 6 ðu1 Þ u2  ðu2 Þ v 2 þ 2g ðu1 Þ ðu2 Þ uv þ U 6 h4 ð1  gÞðu2 þ v 2 Þ þ U; ds

ð97Þ

with h4 ¼ minððu1 Þ ; ðu2 Þ Þ. Then following the same procedure used in Theorem 3, the thesis is hold. h Theorem 6. Let (10)–(12) hold. Let us suppose that

A > 0;

I  0;

ð98Þ

together with (iii) or (iv) of Lemma 2. Then if

dA 6 0 8s 2 Rþ ; ds

ð99Þ

or if

  dA ~ ¼ k; ds

~ ¼ const: > 0; k

then the null solution of (15) is nonlinearly (locally) asymptotically, exponentially, stable.

ð100Þ

6878

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

Proof. From (17), by virtue of (98), one immediately obtains that V is positive definite. Moreover, from (22), on taking into account (ii) or (iv) of Lemma 2, it follows that

dV 6 hðu2 þ v 2 Þ þ jWj: ds Adopting the same procedure followed in Theorem 1, the thesis is hold.

h

Remark 10. When u1 ¼ u2 ¼ 0, (9) becomes

(

dX ds dY ds

¼ ð1  YÞX; ¼ wð1 þ XÞY;

that is a nonautonomous Lotka–Volterra model which has been analyzed by Rionero [21].

4. Instability criteria Instability criteria can be obtained, of course, by means either of the Liapunov function (17) or the function (16). We here recall – for the sake of completeness – the instability theorem obtained in [21] by the function (17) (cfr. Theorems 7–10) and concentrated ourselves on the instability theorems obtained by using the function (16). Theorem 7. Let (10)–(12), (41), (45) hold together with (i) of Lemma 2. Then the null solution of (15) is unstable. Theorem 8. Let (10)–(12), (53), (45) and (i) of Lemma 2 hold. Then the null solution of (15) is unstable. Theorem 9. Let

I  0;

ð101Þ

and (i) of Lemma 2 hold. Then if

  dA ~ ¼ const > 0; Pk ds 

ð102Þ

the null solution of (15) is unstable. Theorem 10. Let (10)–(12) hold. If

A  0;

ð103Þ

and (ii) of Lemma 2 hold, then the null solution of (15) is (Cetaev) unstable. Theorem 11. Let (41) hold by virtue of

u1 6 h1 ; u2 6 h2 ;

ð104Þ

with hi (i ¼ 1; 2) positive constants. Then

(

w þ u2 > ðw þ u2 Þs¼0 e2ðh1 eÞs ;

u1 < 1  ð1  u1 Þs¼0 e2ðh2 eÞs ;

ð105Þ

with 0 < e < infðh1 ; h2 Þ guarantee the instability of the null solution of (15). Proof. Choosing

l1 ¼ w þ u2 ; l2 ¼ 1  u1 ;

ð106Þ

it follows that



1 ðw þ u2 Þu2 þ ð1  u1 Þv 2 ; 2

ð107Þ

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

6879

is positive definite and

dE 1 ¼ ds 2



    dðw þ u2 Þ dð1  u1 Þ  2u1 ðw þ u2 Þ u2 þ  2u2 ð1  u1 Þ v 2 ; ds ds

ð108Þ

where we have disregarded the contribution of U. Then (12)2 and (105) guarantee that

( dðwþu

2Þ 2 ds dð1u1 Þ  2 ds

u1 ðw þ u2 Þ > 2eðw þ u2 Þ > 0; u2 ð1  u1 Þ > 2eð1  u1 Þ > 0:

ð109Þ

Hence all the hypotheses of the instability Liapunov theorem (cfr. Appendix A) are verified. h Theorem 12. Let (10)–(12) and (53) hold by virtue of

ju 2 j 6 h2 ;

ðu1 Þ P h1 ;

ð110Þ

with hi (i ¼ 1; 2) positive constants such that h1 > h2 . Then

(

w þ u2 > ðw þ u2 Þ0 e2ðeþh2 Þs ;

u1 > 1 þ ðu1  1Þ0 e2ðeh1 Þs ;

ð111Þ

imply the instability of the null solution of (15). Proof. Since (53) hold, we have to require

u1 u2 < ðu1  1Þðw þ u2 Þ þ A ; 8s 2 Rþ :

ð112Þ

In fact, if h1 > h2 it follows that

u1 þ u2 P h1  ju2 j P h1  h2 > 0; and hence I < 0. Choosing

l1 ¼ u1  1; l2 ¼ w þ u2 ;

ð113Þ

one has



1 ðu1  1Þu2 þ ðw þ u2 Þv 2 ; 2

ð114Þ

and

dE 1 ¼ ds 2





 h i du1 dðw þ u2 Þ  2u1 ðu1  1Þ u2 þ  2u2 ðw þ u2 Þ v 2 þ 2 ðu1  1Þ2 þ ðw þ u2 Þ2 uv ; ds ds

ð115Þ

where we have disregarded the contribution of U. Hence

dE 1 P ds 2

 

 dðu1  1Þ dðw þ u2 Þ  2u1 ðu1  1Þ u2 þ  2u2 ðw þ u2 Þ v 2 ; ds ds

ð116Þ

and the conditions (111) guarantee that

( dðu

u1 ðu1  1Þ > 2eðu1  1Þ > 0; u2 ðw þ u2 Þ > 2eðw þ u2 Þ > 0:

1 1Þ 2 ds dðwþu2 Þ 2 ds

ð117Þ

Hence E satisfies all the hypotheses of the Cetaev instability theorem (Appendix A). h

5. Final remarks (i) A class of generalized non-autonomous bidimensional Lotka–Volterra model of binary O.D.Es is introduced; (ii) The existence of biological meaningful equilibrium state is guaranteed together with the growing up of the preys in the absence of predators and predators decreasing in the absence of preys; (iii) The nonlinear stability of the equilibrium state is studied.

6880

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

Acknowledgments This paper has been performed under the auspices of the G.N.F.M. of I.N.d.A.M. and Programma F.A.R.O. (Finanziamenti per l’ Avvio di Ricerche Originali, III tornata) ‘‘Controllo e stabilità di processi diffusivi nell’ambiente’’, Polo delle Scienze e Tecnologie, Università degli Studi di Napoli Federico II. Appendix A. Essential ingredients of the Liapunov Direct Method for non autonomous binary systems of O.D.Es We recall here the essential ingredients of the Liapunov Direct Method for nonautonomous binary systems of O.D.Es. (cfr [25, pp. 221–228]). Let Vðx; y; tÞ be a real single valued function – depending explicitly on t – defined in the space–time domain

Dðt0 ; rÞ : ðt; x; yÞ 2 D  ft P t 0 ; x2 þ y2 6 rg;

ð118Þ

where t0 and r are constants such that ðt0 P 0; r > 0Þ. If – for a sufficiently large t 0 and a sufficiently small r – exists (an independent of t) function Wðx; yÞ, positive in Dðt0 ; rÞ, such that



Vð0; 0; tÞ ¼ 0;

8t P t 0 ;

Vðx; y; tÞ P Wðx; yÞ;

ð119Þ

ðV P Wðx; yÞÞ;

then V is said to be positive (negative) definite. V is said to be positive (negative) semidefinite if has only positive (negative) sign in D but can become zero at some point other than the origin. A function Vðx; y; tÞ said to admit an infinitely small upper limit if exists a t0 P 0 and r > 0 such that

jVj < Wðx; yÞ in Dðt 0 ; lÞ; 2

ð120Þ 2

with W definite in the disk x þ y 6 r and such that

lim Wðx; yÞ ¼ 0:

ð121Þ

x2 þy2 !0

The main stability theorems of the Direct Method for non autonomous systems can be summarized as follows Liapunov stability theorems: The existence of a positive function V implies (i) stability of the null solution if the time derivative of V along the solutions is negative semidefinite; (ii) asymptotic stability if V admits an upper bound which is infinitely small at the origin and V_ is negative definite. The main instability theorems for nonautonomous systems (cfr [25, pp. 226–227]) are Liapunov instability theorem: If exists a function V such that has an infinitely small upper limit and its time derivative V_ along the solutions is definite and also if for t P t 0 (with arbitrarily large t0 ) the function V can have the same sign as V_ in a neighborhood of the origin, then the null solution is unstable. Cetaev instability theorem: If for any disk D of the phase space centered at the origin, there exist a function V and an open subset H  D, such that 8t P t 0 (i) (ii) (iii) (iv)



V is bounded in H and assumes positive values in H \ D,  V vanishes on @ H \ D, the time derivative of V, along the solution, is positive definite in H, 0 2 @ H,

then the null solution is unstable. References [1] H.N. Comins, D.W.E. Blatt, Prey predator models in spatially heterogeneous environments, J. Theor. Biol. 48 (1974) 75–83. [2] R. Dutt, P.K. Glosh, Nonlinear correction to Lotka Volterra oscillations in a prey predator system, Math. Biosci. 27 (1975) 9–16. [3] R. Dutt, P.K. Glosh, B.B. Karmaker, Application of perturbation theory to the nonlinear Volterra Gause Witt model for prey predator interaction, Bull. Math. Biol. 37 (1975) 139–146. [4] H.I. Freedman, P. Waltman, Perturbation of two dimensional predator prey equations, SIAM J. Appl. Math. 28 (1975) 1–10. [5] H.I. Freedman, P. Waltman, Periodic solutions of perturbed Lotka Volterra systems, in: H.A. Antosiewicz (Ed.), International Conference on Differential Equations, Academic Press, New York, 1975, pp. 312–316. [6] H.I. Freedman, P. Waltman, Perturbation of two dimensional predator prey equations with an unperturbed critical point, SIAM J. Appl. Math. 29 (1975) 719–733. [7] P. Fergola, A.H. Nayfeh, Application of the method of multiple scales to perturbed Lotka Volterra models, in: S. Giambó (Ed.), Proceedings of Vth International Conference ‘‘Waves and Stability in Continuous Media’’, Editel, Cosenza, 1987. [8] P. Fergola, S. Rionero, C. Tenneriello, Asymptotic stability of a perturbed Lotka Volterra system, in: Proceedings of Vth International Conference ‘‘Waves and Stability in Continuous Media’’, Ser. Adv. Math. Appl. Sci. 4 (1990).

F. Capone et al. / Applied Mathematics and Computation 219 (2013) 6868–6881

6881

[9] P. Fergola, S. Rionero, C. Tenneriello, On the stability of Lotka Volterra perturbed equations, Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat. 48 (1991) 235–256. [10] H.I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker Inc., New York, 1980. [11] S.A. Levin, Dispersion and population interactions, Am. Nat. 108 (1974) 207–228. [12] P.A. Samuelson, Generalized predator prey oscillations in ecological and economic equilibrium, Proc. Nat. Acad. Sci. USA 68 (1971) 980–983. [13] C. Walter, The global asymptotic stability of prey predator systems with second order dissipation, Bull. Math. Biol. 36 (1974) 215–217. [14] F. Capone, S. Rionero, Attractivity conditions for a perturbed Lotka Volterra model, in: Proceedings of VIth International Conference ‘‘Waves and Stability in Continuous Media’’, Le Matematiche 46 (1991) 55–63. [15] R. De Luca, Nonlinear stability for a class of generalized Lotka–Volterra models, Rend. Accad. Sci. Fis. Mat. Napoli LXXVII (4) (2010) 117–132. [16] R. De Luca, On the long-time dynamics of nonautonomous predator–prey models with mutual interference, Ric. Mat. 61 (2) (2012) 275–290. [17] R. De Luca, On the asymptotic stability of an Hassell predator–prey model with mutual interference, Acta Appl. Math. 122 (1) (2012) 191–204. [18] S. Rionero, Stability–instability criteria for non-autonomous binary systems of O.D.Es and P.D.Es., Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. Lincei (9) Mat. Appl. 20 (2009) 1–21. [19] S. Rionero, L2 stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.Es., Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. Lincei (9) Mat. Appl. 16 (2005) 227–238. [20] S. Rionero, A rigorous reduction of the stability of the solutions to a nonlinear binary reaction-diffusion system of P.D.Es. to the stability of the solutions to a linear binary system of O.D.Es., J. Math. Anal. Appl. 319 (2006) 377–397. [21] S. Rionero, On the nonlinear stability of nonautonomous binary systems, Nonlinear Anal. 75 (2012) 2338–2348. [22] F. Capone, M. Piedisacco, S. Rionero, Nonlinear stability for reaction- diffusion Lotka–Volterra model with Beddington–DeAngelis functional response, Rend. Accad. Sci. Fis. Mat. Napoli LXXIII (4) (2006) 85–97. [23] F. Capone, Nonlinear stability for reaction-diffusion Lotka–Volterra predator–prey model equations with Holling Type 2 functional response, Mathematical Physics Models and Engineering Sciences Societá Nazionale di Scienze, Lettere e Arti in Napoli. Memorie dell’Accademia di Scienze Fisiche e Matematiche, 2008, pp. 73–84. ISBN-13 978-88-207-4057-3. [24] F. Capone, On the dynamics of predator–prey models with the Beddington–DeAngelis functional response, under Robin boundary conditions, Ric. Mat. 57 (2008) 137–157. [25] D.R. Merkin, Introduction to the Theory of Stability, Texts in Applied Mathematics, vol. 24, Springer, 1997.