On the statistics of an ensemble of oscillators under excitation. IV. Evaluation of the time for kinetic excitation into the quasicontinuum based on Kramers' theory

On the statistics of an ensemble of oscillators under excitation. IV. Evaluation of the time for kinetic excitation into the quasicontinuum based on Kramers' theory

Chemical Physics 76 (1983) 2 5 - 2 9 North-HoUand P u b h s h m g Conapany ON THE STATISTICS OF AN ENSEMBLE OF OSCILLATORS UNDER EXCITATION. IV. EVAL...

242KB Sizes 1 Downloads 7 Views

Chemical Physics 76 (1983) 2 5 - 2 9 North-HoUand P u b h s h m g Conapany

ON THE STATISTICS OF AN ENSEMBLE OF OSCILLATORS UNDER EXCITATION. IV. EVALUATION OF THE TIME FOR KINETIC EXCITATION INTO THE QUASICONTINUUM BASED ON KRAMERS" THEORY V . N . S A Z O N O V a n d I.E. K H R O M O V Department o f Theoretical Physics. P N. Lebedev PhyMcal Institute, Leninsk) Prospect 53, 3losco*~ I 1 7924, L'SSR Received 6 Jul~r 1982, in final i c r m 2 December 1982

We consider the model with kineuc excltatton into tile quasicontanuum (KEQ) t'or resonant p o l y a t o m i c molecules which a b s o r b laser radmtion and are s u r r o u n d e d by b u f f e r molecules KEQ takes place w h e n the resonant molecules m the loxser part o f the energ3 s p e c t r u m interact weakly with the laser r a d m n o n , b u t the molecules m the q u a s i c o n t i n u u m are rapidly excited to still higher energy and dissociate. Under these conditions the colhsions ol the r e s o n a n t and buffer molecules lead to excitation o f resonant molecules i n t o the q u a s i c o n t i n u u m because the p o p u l a t i o n o f the quasicontinuunl is mucla less Illdn its llleImod)heroical equilibrium value It is found~ xiaal the smaller ihe V - - T relaxation time u'y-1-, the larger the rate o f KEQ and the dissociation rate (if onl~ ~'VT is n o t too small) T h u s if we change the e x p e r i m e m a l c a n d y n o n s and decrease r V T (tar instance, by passing from the heavy buffer gas Xe to tile hght buffer gas tte). for some resonant molecules we may observe that the probability o f dlssocmtion increases

1. I n t r o d u c t i o n a n d d e s c r i p t i o n o f p h y s i c a l s i t u a t i o n 1.1. I n t h i s p a p e r w e c o n s i d e r t h e case w h e n p o l y a t o m m m o l e c u l e s w i t h w b r a t t o n a l energ~ E a b o v e s o m e t h r e s h o l d e n e r g y E c are r a p i d l y e x c i t e d b y l a s e r r a d i a t i o n t o still h i g h e r e n e r ~ , . S u c h a ph2¢sical s i t u a t i o n arises w h e n t h e a b s o r p t i o n c r o s s s e c t i o n o i n c r e a s e s w i t h i n c r e a s i n g w b r a t i o n a l q u a n t u m n u m b e r ( o r e n e r g y E ) L e t t h e laser freq u e n c y co t b e s m a l l e r t h a n co01, t h e f r e q u e n c y o f t h e m a x i m u m o f t h e h n e a r a b s o r p n o n s p e c t r u m I f co01 -- co t = ( 1 0 - 3 0 ) c m - 1 . t h e n co e is set o u t s i d e t h e v i b r a t i o n a l - r o t a t i o n a l b a n d . In t l u s case t'or s m a l l v t h e c r o s s s e c n o n ot,(coe) is v e r y s m a l l t o o ( n m c h s m a l l e r t h a n 1 0 - 1 9 _ 10 - 2 0 c n t 2 ) . W h e n o i n c r e a s e s , t h e t r a n s i t x o n f r e q u e n c y ¢°o.v+ 1 d e c r e a s e s d u e t o n o n - h n e a r l t y , a n d t h e b a n d o f r e s o n a n t f r e q u e n c i e s m o v e s t o t h e l e f t . S o . f o r h i g h e r levels, one must e x p e c t that o o increases up to 1 0 - 1 7 - 1 0 - 1 8 cm z b o t h for two-atomic and p o l y a t o m i c molecules. B u t f o r t w o - a t o m i c m o l e c u l e s o o a g a i n b e c o m e s v e r y s m a l l , ff o is large e n o u g h a n d coo.v+ 1 -- co~ < - - ( 1 0 - - 3 0 ) c m - 1 . F o r p o l y a t o m i e m o l e c u l e s w h e n o i n c r e a s e s w e get i n t o t h e q u a s i c o n t m u u m , a n d t h e c r o s s s e c t i o n o o c o u l d n o t b e c o m e v e r y s m a l l . P r o b a b l y 0 o d e c r e a s e s in t h e q u a s i c o n t i n u u m t o s o m e e x t e n t (see fig. 1). b u t t y p i c a l v a l u e s o f o o i n t h e q u a s i c o n t i n u u m are 1 0 - 1 9 - 1 0 - 2 0 c m 2, i.e. m u c h l a r g e r t h a n 0 u f o r s m a l l o. R e l a x a t m n c a u s e d b y c o l h s i o n s o f r e s o n a n t m o l e c u l e s w l t h b u f f e r m o l e c u l e s in a gas m i x t u r e , h i n d e r s t h e exci110-~

0

"~

0301-0104/83/0000-0000/$

l~

"~

03.00 © 1983 North-Holland

Fig 1 Dots schemaucall.x shot, tile relaxation rate v v. The dashed line schematicalb show s tile exaltation rate **v = °v J, x~here J is the p h o t o n flux for a Its o-atomic molecule or for an individual ~ibrationai mode in a pol.x atomic molecule. The solid line schematicall~ shox~ s i,t, for a pol.x atomic molecule x, ith quasicontinuum at E > Eqc. Sohd and dashed lines coincide for E < Eqc.

V.N. ~azono),, LE. Khromov/Stattstics o f an ensemble o f o%cdlator% under excitation I V

26

tation caused b y laser radiation. We assume that the relaxation rate uo is larger than the excitation rate w o f f o < oe (E < Ec) , and t,u < w o ff o > oc (E > Ec). Generally speaking, the threshold o f the q u a s i c o n t i n u u m Eqc differs from E~ But E e depends on the laser frequency we, the intensity I, and the buffer gas pressure p. We imply that u n d e r the g~ven conditions E c ~ Eqc and treat the quas~continuum as a resonant part o f the energy spectrum 1.2. Under the action o f radiation, the molecules in the q u a s i c o n t i n u u m are rapidly excited and dissocmte or enter some other chemical reactions [ 1,2]. Because o f this, the q u a s i c o n t i n u u m is quickly depleted. The molecules in the lower part o f the energy spectrum interact weakly w~th the radmtion These molecules are excited into the quas~continuum kinetlcally, i.e. because o f collisions with buffer molecules. Owmg to these colhsions the population o f the q u a s i c o n t m u u m tries to increase to its t h e r m o d y n a m i c a l e q u d l b r m m value. In the present paper we consider the mare features o f this kinetic excitation into the q u a s i c o n t m u u m (KEQ). KEQ has n o t been m e n t i o n e d previously in the literature, though the physical situation is absolutely realistic KEQ must take place for m a n y polyatomic molecules u n d e r proper conditions, i.e. ~01 -- w~ = (10--30) cm - 1 , I >~ 109 W/era 2, p ~ 300 Torr (see section 3 below). 1.3. To deduce the ttrne o f KEQ, we use a theoretical scheme which is sinular to Kramers" theory of chemical kinetics [3] (see, for example, s o m e r e c e n t papers [ 4 - 8 ] ) . We make an a t t e m p t to use Kramers' ideas m the case o f a discrete variable q u a n t u m numbfir o We could n o t find any a t t e m p t o f this kind m the hterature.

2. Model and mathematics

2.1. To clear up the mare features o f KEQ we consider a sLrnple model, namely an ensemble of q u a n t u m nonlinear one-dimensional oscillators; the oscdlators are placed m a heat bath and are non-coherently excited b y laser radiation (in previous papers [9--11 ] we have considered coherent excitation). Let Pv be the p o p u l a t i o n o f level o. The dynamics o f p o is defined b y the well-known rate equations (o = 0, I, ...) IJo = - w o ( P o - Po+ l ) + Vo+l(Po+l -- e v P , ) + W o - l ( P , _ 1 - P , ) -- uo(p,-- % _ l P v - 1 ) - - ~[vPv ,

(1)

where w v = J o o is the rate o f excitation from o to o + 1 , J =l/hcoe is the p h o t o n f l u x ; vo Is the rate of V--T r e l a x a t i o n from v to v -- l , e o = exp [--(Et,+l - Ev)]T], T i s the temperature o f the buffer gas, which is the heat bath, ~'o is the rate o f dissociation from level o. In eqs. ( 1 ) , p , = )vz = 0 l f i = - 1 , vi = 0 lfz = 0. If at t = 0 we have Y'oPv = 1, t h e n f ( t ) = 1 - Z o P o ( O Is the probability o f dissociation at time t T o describe in our model the physical sltuatlon, we assume ~[v = 0

if o < od ,

ov = 0

If o < o c ,

w v = J ° o >~ ~'v+ 1

ff o >/v c .

(2)

The dissociation threshold od exceeds oc. Rate equations were successfully applied to the descripuon o f excitation and relaxation o f p o l y a t o m l c molecules b o t h at lower levels [ 12,13] and in q u a s i c o n t i n u u m [14] (see also references m r e f . [15]). 2.2. Let the action o f the laser radiation begin at t = 0, i.e. at t < 0 we have J = w o = 70 = 0 and Pv obeys the Gibbs d i s t r i b u t i o n Pu = A exp ( - E o / T ) , where A is a constant. If eo '< 1 (v = 0, 1,2 .... ), then almost all the population is in ground level o = 0. At t > 0 we assume the dissociation rates 7t, to be very large 0 f o >/Od, then 70 ~ wo, vo) and c o n s e q u e n t l y we p u t Po ~ 0 if o/> 0 d. There ts n o stationary solution o f (1) with this condition The population o f the lower levels will be transferred to the q u a s i c o n t i n u u m and to the dissociation region o > / o d. We want to esttmate the decrease ttme ~- o f the p o p u l a t i o n P0 in the ground level.

V.N. Sazonov, LE. Khromov[Statistics o f an ensemble o f oscillators under exctmtion I V 2.3.

27

We rewrite e q . ( I ) for v < v d in t h e f o l l o w i n g f o r m

Po =

-/~+t

(3)

+/o,

where ]o Is equal to iv = B ' v - 1 0 9 o - I -- P v ) - - P v ( P v - - e v - l P v -

(4)

l) "

],, must be treated as a current According to (4) we have

IV Pv- I

Wv-- l + IJv

Vu

W o - I -I- eo_ l

Wv-

Pu = bv + auPv -

l + e o - l Vv

A f t e r K -- I r e c u r r e n c e s w e get

Pv-K = bv-K+l

N o w we p u t v

P0

=

h

x-,

Vd

Vlff0

~-I v ~ az + P v ~ a, . i=v-K+t i=v-K+l

]Q

~-

1

~Vc

1

Wt _

17I

- + z_J

. . . . . vc -

]I

b~

(5)

0 , K = v d and eq. (5) gives

=

l fw~=0(i=0.1

P0

£=v-K+2

= Od,Pvd

w0+e0v

=--

+

~ = 2 w £ _ 1 + v l t e ~ _ 1 z=t

1

wi_ 1 +v/e/_ 1

l) andiv i>~v~+l(i=v c ..... vd]£

+ ~__25

°d

=_ ~lte0ffl...eQ_ l

+

+ Vt

(6)

l).then

]e

E

Q=uc+l W ~ _ l

(7)

A c c o r d i n g to Kramers" w o r k [3] b o t h m t h e case o f c o n t m u o u s and discrete variables the p o p u l a t i o n f l o w d e p e n d s w e a k l y o n t h e variable o u t s i d e t h e b o t t o m o f a p o t e n t i a l well, w h e r e a h n o s t all the p o p u l a n o n is s i t u a t e d ( m o u r case levels w~th v = 0, 1 . . . . . v~ - 1 m a y be t r e a t e d as t h e p o t e n n a ! well. and v = 0 is the b o t t o m o f the well) I n d e e d , t h e r e is n o source for c u r r e n t af t h e p o p u l a t m n is small, g o : - e c a n p u t in eq_ (7) i e ~ ] (~ = 1 . 2 . . . . ). I f t h e relaxan o n rate % increases w i t h v so rapidly that vi e l - 1 >~ v~_ 1 •

(8)

then a c c o r d i n g to ( 7 ) P O ~']/Vl CO. I f the r e l a x a t i o n rate % increases n o t ve W rapidb" and v~ez_t < v z - t

,

(9)

then ]

P0 ~

VVceO e l ---euc - l

] exp [(E c --

=

Eo)IT ]

vv c

When v = 0, eq. (3) gives/J0 = - ] I = - ] - N o w in the case (8) we have ~" = --Po/tSO = ( I / V l ) e x p [ ( E 1 - E o ) / T ] .

(10)

In the case (9) we have "r = -Po]l~ 0 = ( l / w e ) e x p [(Eve - E o ) / T ] .

(1 1)

We b e h e v e t h e case (9), ( 1 1 ) to b e m o r e reahstic and c o n s i d e r this case b e l o w . E x p r e s s i o n (1 1) c a n b e o b t a i n e d b y simpler c o n s i d e r a t i o n s . But t h e range o f v a h d i t y o f (1 1) can o n l y b e o b t a i n e d b y e x a c t c a l c u l a t i o n s [ c o m p a r e (8), ( 1 0 ) w l t h (9), ( 1 1 ) ] .

28

V.N. Sazonov, I.E. Khrornov/Statlstics o f an ensemble o f oscillators under excztation. I V

2.4. Our calculations are valid only i f ~ ' i s so large t h a t rvv >> 1 ( v = ] . . . . . Vd) and rwt, >> 1 ( o = o e . . . . . v d -- 1). Thus the ensemble has no stationary state, b u t has a statistical distribution f u n c t i o n , whose tmae variation is c o m p a r a t i v e l y slow. PO ~ e - t / r

P l = e - t i t wO + eOVl -- l / z •

w 0 + l,, l

Po = e-rl'~{ °~I1 "i + e,"i+l z=O

Pv "~0

l"dz + i)z+l

1

T

]

¢v_l+Vv

,

+

=

I-]

Wi+Vz+lK=t

. . . . .

W K + V K + 1 /11

(o = 2 .....

od -

1),

(V>lVd).

We neglect e o everywhere• ff possible. In this a p p r o x i m a t i o n P0 (t = 0) = 1.

3. Discussion The relaxation rate v u equals v o = T~V)r(V), where rxrr(O ) is t h e V - - T relaxation time o f resonant molecules in level o in the buffer gas. F o r molecules w~thm the laser b e a m the d:ssociatton p r o b a b i l i t y f d u n n g the laser pulse time te is equal to f = t J r = [te/ZVT(Ve)] e x p [ - - ( E c -- E o ) / T ] ,

(12)

see eq. (11). Expression (12) is valid i f the relative p o p u l a t i o n o f the q u a s i c o n t i n u u m before irradiation is m u c h smaller than f In our ease e x c i t a t i o n b y radiation in the q u a s i e o n t i n u u m is large enough to efficiently excite the resonant molecules, t h o u g h these molecules heat the buffer gas in the laser b e a m due to V - - T relaxation [see c o n d i t i o n ( 2 ) ] . The b u f f e r gas is n o t needed for e x c i t a t i o n b y radiation, b u t is n e e d e d for dissociation because initially there is only a very small a m o u n t o f molecules in the q u a s i c o n t i n u u m , which can dissociate wathout b u f f e r gas. O t h e r molecules can dtssoeiate o n l y due to kinetic e x c i t a t i o n into the d e p l e t e d q u a s i c o n t i n u u m ; this e x c i t a t i o n , caused b y the buffer gas, deereases the energy o f the latter. Molecules in the q u a s i c o n t i n u u m absorb laser energy and transmit part o f this energy to the b u f f e r gas because o f V - - T relaxation. I f the laser radiation intensity is large enough (see below), the l a t t e r process is m o r e effective than the former, i.e. the buffer gas is h e a t e d within the laser b e a m . F o r subsequent estimations we p u t T = 500 K (see ref. [16]). This value can be achieved also b y simple thermal heating o f t h e cuvette containing the gas m i x t u r e . The quasicontinuum o f the molecule C18H12 is at an energy E > ~ E q c = (1--2) X 103 cm - 1 [17], where the state density increases rapidly. F o r subsequent estimations we p u t E c = Eqc = 2000 e r a - I . The V - - T relaxation time rVT for e x c i t e d molecules can be e s t i m a t e d as 3 X 10 - 8 s, when the pressure o f the b u f f e r gas is 300 Torr. N o w , if t~ = 10 - 7 s, then according t o eq. (12) we g ~ t f ~ 9 X 10 - 3 . Since f v a l u e s o f ~ 1 0 - 3 are detectable• it should be possible to observe this effect e x p e r i m e n t a l l y . Our simple m o d e l ignores degeneracy o f v i b r a u o n a l levels. It is possible to show that this degeneracy will considerably increase the rate o f KEQ. I n d e e d , let lo be equal to ]o = w o - 1 [t7o-1 - ( g o - 1 / g o ) Po] -- z'o [Po -- e o - l ( g o / g v - 1 ) P v - 1 ] • where go is t h e effective ztatistical weight o f level v. In this ease we get the faetor guclgO in the rhg o f expression (12). It ~s difficult t o obtain a reliable estimate o f this factor; b u t it is clear t h a t it m u s t b e m u c h larger than u n i t y . The c o n d i t i o n (2) o f strong excitation in the q u a s i c o n t i n u u m can be r e w r i t t e n as Pexc > Pth- T h e e x c i t a t i o n p o w e r Pex e is equal t o P e x e =1o. I f / = 109 W]cm 2 and o ( E > ~ E ¢ ) = 2 X 10 - 2 o c m 2, t h e n Pex e = 1012 c m - 1 / s (we

V.N. Sazonov, I.E. Khromov/Statisrics o f an ensemble o f oscdlarors under e_xeltatzon I V

29

m e a s u r e e n e r g y in u n i t s o f c m - 1 ) . T h e t h e r m a h z a t i o n p o w e r Pth ~s e q u a l to Pflt = A E 7 - 1 w h e r e A E is t h e m e a n e n e r g y passing i n t o t r a n s l a t i o n a l degrees o f f r e e d o m p e r collision, r is t h e t i m e b e t w e e n t h e s e collisions. A c c o r d m g to ref. [ 18] for s t r o n g l y e x c i t e d p o l y a t o m i c m o l e c u l e s A E rs n o m o r e t h a n 3 k c a l / n l o l ; let A E = 2 k c a l / m o l = 7 0 0 c m - 1 . T h e t i m e ~- rs n o less t h a n 3 X 10 - 9 s, t h e n Pill ~ 2 X 1011 c m - 1 / s . S i n c e Pexc > Pflt- the c o n d l t t o n (2) is satisfied T h e specific f e a t u r e s o f K E Q m a y be revealed in t h e f o l l o w i n g w a y . Let us carry o u t a sertes o f e x p e r i m e n t s c l l a n g m g the c h e n d c a l c o m p o s i t i o n o f the b u f f e r gas b u t m a i n t a i n i n g t h e b u f f e r gas pressure and k e e p i n g all o t h e r e x p e r i m e n t a l c o n d i t i o n s f i x e d . In g o i n g f r o m h e a v y b u f f e r gases to light o n e s ( f o r e x a m p l e , m a set Xe, Kr, Ar, N e , He) the t i m e ~'VT is usually d e c r e a s i n g [ 1 9 , 2 0 ] . A c c o r d i n g to t h e K E Q m o d e l [see (12)] x~e e x p e c t an increase o f the d~ssoeiatton rate. T h i s increase c a n n o t be e x p l a i n e d b y r o t a t i o n a l r e l a x a t i o n b e c a u s e the r e l a x a u o n t i m e o f t h e p o p u l a t l o n in r o t a t i o n a l sublevels usually increases o n g o m g f r o m h e a v y to h g h t b u f f e r gases [ 1 9 , 2 0 ] .

References

[ 11 v N. Sazonov. ZhETI- 79 (1980) 39 (English transl So~iet Phys JETP 52 (1980) 19] [2] W. Fuss and K L Kompa, The hnportance of Spectroscopy for Infrared Muir(photon Excitation preprint No 30. MaxPlanek Ge~ellschaft, Garehing (1980) [3l tt.A. Kramers, Phystea 7 (1940) 284. [4] W. Brenlg, H Muller and R. Sedlmeier, Phys Letters S4A (1975) 109 [5] R J D o n n e l y a n d P H Roberts, Proe. Roy. Soc 312A (1969) 519. [6] R Landauer a n d J S~anson, Ph3s Rev. 121 (1961)1668. [7] M Mangel, J. Chem. Phys 72 (1980) 6 6 0 6 . 7 4 ( 1 9 8 1 ) 3 6 3 5 . [ 8] g Reshetnyak. g M Kharehev and L.A. Shelepm, Teor. Mat. l'iz. 49 (1981 ) 13 I. 19l v N. Sazonov and S V. Zatsepin, Chem Phys 52 (1980) 305 [ 10] V N Sazonov and A A. Stuchebrukhov, Chem. Phys 56 (1981) 391. [ 11] V.N. Sazonov. A.A. Stuchebrukhov and S V. Zatsepin, Chem. Phx s 69 (1982) 459 [ 121 M. Tamlr and R.D. Levine, Chem Phys Letters 46 (1977) 208 [13] W Fuss, Chem. Phys 36 (1979) 135. [ 14] E R Grant, M.L Coggiola, Y.T. Lee, P A. Schulz, A S Sudbo and ~ R Shen, Chem Phx ~ Letters 52 (1977) 595 [ 15] V.S. Letokhov and A.A. Makarov, Usp. riz. Nauk 134 (1981) 45 [ 16| R.N. Zitter. D.V. Koster, A. Cantom and A Ringx~elski, Chem. Ph~s 57 {1981) 11. [ 17] A. Amlrav. U. Even and J Jortner, Opt Commun. 32 (1980) 266. [ 18] M Quak and J Troe, m. Gas kmeucs and energx transfer, Vol 2, eds P G A,hmore and R.J. Donox~an {Chem. Soc . London 1977) [ 191 E E Nlkitin. Teoriya elemenrarnyikh atomnomolekulyarn3 ikh protsessox ~ gazakh (Klfimi.x a. Xlo-~cox~. 1970) [20] B F. Gordiets, A I O~ipov and L A Shelepin, Kineticheskie protsessyi ; gazakh i mol~kuly arn.x e lazed e (Nauka Moscoxx, 1980)