On the structure of the quasicrystalline T phase in Al86Mn14 alloy

On the structure of the quasicrystalline T phase in Al86Mn14 alloy

Scripta METALLURGICA ON THE Vol. 20, pp. 4 0 1 - 4 0 5 , 1986 P r i n t e d in the U . S . A . STRUCTURE OF THE IN A186 P e r g a m o n P r e ...

456KB Sizes 4 Downloads 63 Views

Scripta

METALLURGICA

ON THE

Vol. 20, pp. 4 0 1 - 4 0 5 , 1986 P r i n t e d in the U . S . A .

STRUCTURE

OF

THE

IN A186

P e r g a m o n P r e s s Ltd. All rights reserved

QUASICRYSTALLINE Mnl4

T PHASE

ALLOY

R.

+

On

leave

from

P~rez-Campos, J.G. P~rez-Rom~rez + A G6mez R. H e r r e r o and M. J o s ~ - Y o c a m 6 n I n s t i t u t o de F i s i c o , U . N . A . M . P. O. Box 2 0 - 3 6 4 , 0 1 0 0 0 M 6 x i c o , O.P. M~xico the ESFM, IPN, M ~ x i c o . (Received

I .-

December

9,

1985)

Introduction

Recent s t u d i e s of p h a s e f o r m a t i o n in r a p i d l y s o l i d i f i e d A I - M n a l l o y s hove shown the e x i s t e n c e of o p h a s e w i t h l o n g - r a n g e o r i e n t a t i o n o l o r d e r and i c o s o h e drol point g r o u p s y m m e t r y (m3S) (I). T h e s e new t y p e s of q u o s i p e r i o d i c structures ore a l r e a d y k n o w n as " q u a s i c r y s t o l s " (2). S t u d i e s of p h a s e f o r m a t i o n at s l o w e r s o l i d i f i c a t i o n rotes h o v e s h o w n that the i c o s a h e d r o l p h a s e is r e p l a c e d by the so-called T p h a s e (3). This p h a s e is a q u a s i c r y s t a l w i t h one-dimensional periodicity and planar quasiperiodicity in the o t h e r two d i m e n s i o n s (3) (4). The i c o s o h e d r o l and T p h a s e s ore c l o s e l y r e l a t e d in s t r u c t u r a l characteristics. For e x a m p l e , the d i f f r a c t i o n p a t t e r n s f r o m both s t r u c t u r e s h a v e s t r o n g s i m i l a r i ties (3). The i c o s o h e d r o l p h a s e of A I - 6 M n . has r e c e i v e d c o n s i d e r a b l e a t t e n t i o n in the literature, however, t h e r e ~ a v e 1 ~ e e n v e r y few i n v e s t i g a t i o n s on the structural c h a r a c t e r i s t i c s of the T p h a s e . In this c o m m u n i c a t i o n we r e p o r t on i n v e s t i g a t i o n on the s t r u c t u r e of the T p h a s e . This s t u d y was c a r r i e d out u s i n g different techniques such as: c o n v e n t i o n a l and high-resolution transmission electron microscopy, microdiffroction and i m a g e p r o c e s s i n g . The methods of sample p r e p a r a t i o n and c h a r a c t e r i z a t i o n by A u g e r s c a n n i n g m i c r o s c o p y and other m e t h o d s will be r e p o r t e d e l s e w h e r e . 2.-

Experimental

Results

The identification of the T p h a s e was c a r r i e d out using selected area diffraction p a t t e r n s (SAOP) f r o m the s u s p e c t e d a r e a s in the specimens. These p a t t e r n s w e r e o b t a i n e d for d i f f e r e n t o r i e n t a t i o n s . In o r d e r to a s s u r e that the entire groin hod long range o r i e n t o t i o n o l o r d e r and therefore that apparent quosiperiodicity was not p r o d u c e d by m u l t i p l e t w i n n i n g of o small c r y s t o l l i t e s , microdiffroction p a t t e r n s (with b e a m size ~ 20nm) w e r e o b t a i n e d from different r e g i o n s in the g i v e n g r o i n . T h e s e r e s u l t s ore i l l u s t r a t e d in Figs. 1o, b and c w h i c h show SADP w h i c h c o r r e s p o n d to the t e n - f o l d , t h r e e - f o l d and t w o - f o l d o r i e n tations. These p a t t e r n s s h o w o spot d i s t r i b u t i o n f o l l o w i n g the F i b o n o c c i seq u e n c e in two d i r e c t i o n s and o n o r m a l p e r i o d i c i t y in one d i r e c t i o n . It is i m p o r t a n t to n o t i c e the p r o n o u n c e d s t r e a k i n g in these diffraction patterns. Fig. 2o, b s h o w SADP and m i c r o d i f f r o c t i o n p a t t e r n s o b t a i n e d from the some area in the s p e c i m e n . As it is i l l u s t r a t e d in the figure) both d i f f r a c t i o n p a t t e r n s ore s i m i l a r . The some b e h a v i o r has been o b s e r v e d in microdiffroction patterns from o t h e r a r e a s . This shows that the f i v e - f o l d s i m m e t r y is not the r e s u l t of m u l t i p l e t w i n i n g of s e v e r a l c r y s t o l l i t e s . Most of the q u a s i c r y s t a l i n e a r e a s (T phase) f o u n d in our s p e c i m e n s show o characteristic s t r i o t e c o n t r a s t u n d e r b r i g h t or d a r k f i e l d i m a g i n g . This controst has been found to depend strongly on t h e t i l t i n g of the specimen. Thus, for example, Fig. 30 s h o w s on image B r i g h t F i e l d (BF) w i t h this pronounced c o n t r o s t ~ h o w e v e r , Fig. 3b s h o w s the some area in a n o t h e r o r i e n t a t i o n , in this

401 0 0 3 6 - 9 7 4 8 / 8 6 $ 3 . 0 0 + .00 C o p y r i g h t (c) 1986 P e r g a m o n P r e s s

Ltd.

402

QUASICRYSTALLINE

T PHASE

IN AI M n

Vol.

20, No.

3

case the above mentioned contrast has almost dissapeared. This contrast is similar to the one reported before for the icosahedral phase (5) and it has been associated with local strain fields in the phase. It should be n o t e d ~ h o w e v e r , that the observed contrast is more pronounced with respect to that found in conventional bright field images of strained crystals. A more detailed examination of this effect is necessary in ord~r to understand its origin. High resolution images [HREM) w e r e o b t a i n e d with an incident beam parallel to a two-fold zone axis. This orientation makes an angle o f 90 ° w i t h the fivefold axis. Most of the o r i g i n a l i m a g e s s h o w p o o r c o n t r a s t and we decided to c a r r y out an image p r o c e s s i n g a p p r o a c h on t h e s e m i c r o g r a p h s . Figs. 4a and b show an image and its c o r r e s p o n d i n g Fourier transform. The f i r s t i n t e r e s t i n g point to note from H R E M i m a g e s is the c o n t r a s t w h i c h c l e a r l y s u g g e s t s on arrangement of linear c h a i n s w h i c h a p p e a r to be p e r i o d i c a l l y twisted forming a kind of spiral s t r u c t u r e . The e x i s t e n c e of t h e s e t w i s t e d c h a i n s is a l s o supported from the SADP's (Fig. I) w h i c h c l e a r l y s h o w the p r e s e n c e of s h e e t s of i n t e n s i t y in r e c i p r o c a l space. This is o c o m m o n e f f e c t o b t a i n e d in the d i f f r a c t i o n of Xrays by chain m o l e c u l e s (6). This b e h a v i o r can a l s o be seen in the Fourier transform of the d i g i t i z e d i m a g e s h o w n in Fig. 40. This is a l s o s u p p o r t e d by the fact that in the p a t t e r n s the s p o t s ore not p e r f e c t l y o l l i g n e d a l o n g o row of i n t e n s i t y . The r e p e a t d i s t a n c e a l o n g the p e r i o d i c d i r e c t i o n was f o u n d to be 0 . 8 0 6 n m in a g r e e m e n t w i t h Ref. (4). The i m a g e s i n d i c a t e that the chains ore t w i s t e d over a l e n g t h of ~ 4 . 2 nm. Weak beam dark field images (WDF) w e r e o b t a i n e d for the T phase with the incident beam p a ' r a l l e l to a three-fold zone axis. The main reflection used for these i m a g e s was those in the corners of the 3-fold diffraction pattern shown in Fig. 5b. H o w e v e r , it is i m p o r t a n t to m e n t i o n that m o r e than one r e f l e c t i o n along o row was a l l o w e d to pass t h r o u g h the objective aperture. The same p r o c e s s i n g a p p r o a c h a b o v e m e n t i o n e d w a s a p p l i e d to t h e s e dark f i e l d m i c r o g r o p h s . Fig. 5 shows one of the r e c o n s t r u c t e d images. In this c a s e the f r i n g e s c o r r e s pond to the i n t e r f e r e n c e b e t w e e n s p o t s a l o n g o row. T h e r e f o r e , the b r i n g e s run p e r p e n d i c u l a r to the c h a i n d i r e c t i o n . T h e r e f o r e , this k i n d of image con p r o v i d e information a b o u t the F i b u n o c c i m o d u l a t i o n a l o n g the rows of i n t e n s i t y o b s e r v e d on t h e p a t t e r n s . The bringes hove a wavy a~pearance and many times ore shifted. Also extra lines produce a dislocation-like contrast (see arrow on t h e figure). These k i n d o f e f f e c t s might be d u e t o a t h i c k n e s s modulation or to a true defect structure along the chain boundaries.

3.-

Conclusions

The m o s t i m p o r t a n t r e s u l t w h i c h con be o b t a i n e d f r o m our i n v e s t i g a t i o n s is that the quasicrystalline T p h a s e of A I ^ . M n . . is m a d e of an arrangement of linear c h a i n s w h i c h ore p e r i o d i c a l l y t w i s t e d . 14 This s t a t e m e n t is b a s e d on the experimental e v i d e n c e of high r e s o l u t i o n and m i c r o d i f f r a c t i o n . This s t r u c t u r e was p r e v i o u s l y s u g g e s t e d by 8 e n d e r s k y (4) on the b a s i s of the p l a n a r intensity on the d i f f r a c t i o n p a t t e r n s . The high r e s o l u t i o n and dark f i e l d i m a g e s r e s u l t s in this work c o n f i r m the c h a i n one d i m e n s i o n a l s t r u c t u r e . 4.-

Acknowledgements

The a u t h o r s ore i n d e b t e d to Dr. L o r e n z o M o r t f n e z a n d J.L. A l b a r r 6 n his team for p r e p a r i n g the a l l o y s . We a l s o t h a n k to Mr. F. R u i z for o b t a i n i n g the high resolution p i c t u r e s and to Mr. Jos6 Reyes, A. S 6 n c h e z and R. Hern6ndez far technical assistance. We w o u l d like to thank for m a n y u s e f u l l c o m m e n t s on image p r o c e s s i n g to Dr. A. S e r r a n o of IAUNAM. This w o r k w a s s u p p o r t e d by the C O N A C Y T t h r o u g h g r a n t Ha. P U T / P Q / N A L / 2 6 5 1 .

Vol.

20,

No.

3

QUASICRYSTALLINE

T PHASE IN A1 Mn

403

1.

O. Shechtmon, I. Blech, D. G r a t i o s and J.W. Cahn Phys. Rev. L e t t . 53, 1951 ( 1 9 8 4 ) . D. L e v i n e and P. S t e i n h a r d t - Phys. Rev. Lett. 53, 2477 ( . 1 9 8 4 ) . k. Bendersky, R.J. Schaefer, F.S. Biancanello, W.J. Boettinger, M.J. Kaufman and D. S h e c h t m a n - S c r i p t a M e t . 19, 909 ( 1 9 8 5 ) . k. B e n d e r s k y - P h y s . R e v . L e t t . 55, 1461 ( 1 9 8 5 ) . K . F . K e l t o n and T.W. Wu - A p p l . Phys. Lett. 46, 1059 ( 1 9 8 5 ) . B.K. Vainshtein, Diffraction of X-rays by chain molecules, Elsevier P u b l i s h i n g Company Amsterdam-London-New York ( 1 9 6 6 ) .

References

2. 3. 4. 5. 6.

O

FIG.

1

S e l e c t e d area d i f f r a c t i o n the T p h a s e in A186 Mn]4 ten

fold,

fold axis.

b)

3-foIa

axis

p a t t e r n of s h o w i n g a) c)

two-

404

QUASICRYSTALLINE

T PHASE

IN AI Mn

Vol.

20, No. 3

m •

i

O

@ ®

Q

O

FIG. Comparison of diffraction Qreo, b) m i c r o d i f f r o c t i o n

p a t t e r n s f r o m t h e some a r e a o f on a r e a o f 20 nm i n s i z e .

FIG.

Bright tilting

2

field images of the o) i n i t i a l position,

o)

selected

3

T-phase showing change of contrast b) a f t e r o few degrees tilt.

with

Vol.

20, No.

3

QUASICRYSTALLINE

T PHASE

FIG.

a) High resolution processing, b) F o u r i e r

image of transform

the of

IN A1 Mn

405

4

T-phase obtained the image.

FIG.

after

image

5

Weak beam d a r k f i e l d of the T phase along fold axis. The i n s e t the conditions for the (processed image).

image a 3shows image