0020-7225193$6.00+ 0.00 Copyright @ 1993PergamonPressLtd
1~. 1. EngngSci. Vol. 31. No. 10, pp. 1425-1433,1993 Printedin GreatBritain.All rightsreserved
ON TRANSVERSELY ISOTROPIC, ORTHOTROPIC AND RELATIVE ISOTROPIC FUNCTIONS OF SYMMETRIC TENSORS, SKEW-SYMMETRIC TENSORS AND VECTORS. PART III: THE IRREDUCIBILITY OF THE REPRESENTATIONS FOR THREE DIMENSIONAL TRANSVERSELY ISOTROPIC FUNCTIONS Q.-S. ZHENG Department of Civil Engineering, Jiangxi Polytechnic University, Nanchang, Jiangxi 330029, P.R. China (Communicated
by A. J. M. SPENCER)
Abstract-In this part we prove the irreducibility of the representations derived in Part II for three dimensional transversely isotropic scalar-valued, vector-valued, symmetric tensor-valued and skewsymmetric tensor-valued functions of symmetric tensors, skew-symmetric tensors and vectors.
1. INTRODUCTIONt
The complete and irreducible representations for transversely isotropic tensor functions constitute a rational basis for a consistent mathematical modelling of the complex behavior of tranversely isotropic materials. The completeness of the representations derived in Part II for tranversely isotropic tensor functions is actually also proved in Part II due to the derivation procedure of the representations. In the present part we prove the irreducibility of the representations obtained in Part II by employing the procedure developed by Pennisi and Trovato [l], who prove+ in [l] the irreducibility of the representations for isotropic tensor functions derived by Smith [2] and sharpened by Boehler [3]. Let {e,, e2, e3} denote a three dimensional orthonormal basis. The symmetric tensors , , E6 and the skew-symmetric tensors a,, Q2, Q3, which are defined in (11.2.1)s and El, E2, . . (11.2.2) respectively, are employed. The following identities are very useful in order to simplify the proof of the irreducibility.
(&EI%,
Q&z&,
(Q2E1Q2,
Q2E2Q2,.
W3E1Q3,
Q332Q3,
. . . 9 QJVW
=
(‘4
-E3,
. . , Q2&Q2)
=
t--E39
0,
. . . 9 fl3bJ23)
=
C-E21
--El,
-E2,
JL
-El,
0,
to,
(Q2E,P3 + Q3E1P2, . . . 7Q2Ec5523
+
fi3bQ2)
=
(EJ,
(Q&IQ, + QtE&
...
+
WeQ3)
=
(0,
(Q,E,Q2 + &E,Qi,
...,
+
Q2W-V
=
((40,
, Q3W-h
Q&Q2
(4%
Es,
0,
0)s
Et,),
0, 0, 2E,, J%,
0,
&,
-Es,
-Ee,
2E2,
-Es,
-Ed,
--Ed,
--J&j,
2E3):
(1.1)
t&e Parts I and II, preceding in this issue, for references. *By using Line 36 in Table 1 of [l], Pennisi and Trovato fail to prove the irreducibility of the invariant tr AW’BW in the representation for isotropic scalar-valued functions because tr AW’BW - 0 for any W if A = B. #The prefixed “II” means Part II. 1425
1426
Q.-S. ZHENG
and
EiEl = El,
E2E2
E4E4 = I - El,
E5E5=I-E2,
E&3 = Es E6E6=I-E3,
S2,Ql=El-I,
Q2Q2=E2-I,
S&&,=E,--I;
&Es f EJEz = O/O,
E3E1fE1E3=0/0,
E,E2fE2E,=0/0,
E5E6 f E6E5 = E4/-Q1,
E6E4fE4E6=E5/--Q2,
E4E5fEsE4=E6/-P3,
RzQ3f R&
&&fSZ&=E5/-R2,
Q,Q2~.2P,=E6/-R3;
JGE~fE~E2=Ed-L E2EsfEsE2=0/0,
E3E‘,fE4E3=E4/-S&,
ElEsfESE1=E5/-QZ, E~E~fE&=Ed-L
EzEcjfE6E2=E6/-S&,
E&fE5E3=EJQ2, E,E,c,fE,E,=O/O;
ElS21TPlEl=0/0,
E2&
E,P1TS2,E3= -E4/Ql,
Elt22TQ2E1=-E5/P2,
E2S22TQ2E2=0/0,
W2
EJ&~Q~E~=I%/Qs
E4223TQ3E2= -E6/Q3,
E3P3TQ3E3=0/0;
E4QlTP1E4=2E3-2EJ0,
E&T@Es=
E681TS21E6=ES/-P2,
E&TPzE4=E6/-Q3,
E5P2FQ2E5=2E1-2EJ0, E5Q~5:Q3E5=E4/-LZ1,
= Ed/--Q,,
E,E4fE.,E1=0/0,
E4R3TQ3E4= -Es/--Q,,
=
r
E2,
Q&2
=
Ed-b,
-Ed-Q3,
‘F
Q2E3
=
WQ2,
E,P2TQ2E6=-E4/-S'&, E&TFP3E6=2E2-2E,/O. 0.2)
In (1.2), the EIEs f E5E1 = Es/-Q2 means EIEs+ EsEl= E5 and E1E5- EsE,= -P2, E,& T Q3E6 = 2E2- 2EJO means E6Q3- &Ed = 2E2 - 2E1 and E,& + R3E6= 0,and so on. In order to prove the irreducibility of the representations derived in Part II, we use Tables l-15 in the same sense as we used Tables 1.2-1.8 or Tables l-4 of [l].
2. THE IRREDUCIBILITY
OF THE
REPRESENTATIONS
UNDER
T,
Let S be the skew-symmetric tensor associated with the privileged direction t of the symmetry group T1. Denoting e, = z, so that Q = Q1, we only need to prove the irreducibility of the functions bases given in (11.3.1)-(11.3.3). From Tables 1-3, there follows the irreducibility of (11.3.1)-(11.3.3), or equivalently, the irreducibility of the representations (11.3.4)-(11.3.7) for transversely isotropic functions under c.
3. THE IRREDUCIBILITY
OF THE
REPRESENTATIONS
Let t = e,. We construct Tables 4-7 in order to prove the irreducibility (11.4.1)-(11.4.4) for transversely isotropic functions under T2.
4. THE IRREDUCIBILITY Let
R = 8,.
representations 5. THE
We construct (11.5.1)-(115.4) IRREDUCIBILITY
OF THE
REPRESENTATIONS
UNDER
T2
of the representations
UNDER
T3
Tables 8-11 in order to prove the irreducibility for transversely isotropic functions under T3. OF THE
REPRESENTATIONS
Let t = e,. We can construct Tables 12-15 so that the irreducibility (11.6.1)-(11.6.4) for transversely isotropic functions under T4 is proved.
UNDER
of the
T4
of the representations
Tensors and vectors--Part
6. THE
IRREDUCIBILITY
OF THE
1427
III
REPRESENTATIONS
UNDER
T5
Comparing the lists (11.7.1)-(11.7.3) of the invariants under G with the lists (11.4.1). (11.4.3) and (11.4.4) or lists (11.6.1), (11.6.3) and (11.6.4) of the invariants under T2 or T4, we see that by the use of the values of the variables as the same as that given in Tables 4, 6 and 7 or Tables 12, 14 and 15, the irreducibility of (11.7.1)-(11.7.3), so that of (11.7.4)-(11.7.7), is proved. Acknowledgements-This paper was written during a visit to the Department of Theoretical Mechanics at the University of Nottingham under a Royal Society Fellowship. The author is grateful to Professor A. J. M. Spencer for his helpful comments and his hospitality.
REFERENCES [l] S. PENNISI and M. TROVATO, ht. I. Engng Sci. 25, 1059-1065 (1987). [2] G. F. SMITH, ht. J. Engng Sci. 9, 899-916 (1971). [3] J. P. BOEHLER, ZAMM 57,323-327 (1977). (Received 6 August 1992; accepted 23 November 1992)
APPENDIX Tables l-15 Table 1. (Q = Q,) V
V’
1 A = E, + (Es + E,)/V6 - 2E, 2 A=E,/d2 3 A=E,-E,+E, 4 A=E,-E, 5 6
7 8
-A = E, + (E, + E,)/V6 - 2E, A=E,
tr tr tr tr tr tr tr tr
A A2 A3 AQ2 A2Q2 A2P2AP W2 WP
-A=E,, B=E, -A=E,, B=E,+E, A=E,+E,, -B=E, -A=E,, B=E, -A=E,-E,, B=E,+E, A=E,+E,, -B=E,-E, A=E,-E,+E,-2E,, B=I-E,+E,-E, -A=E,-E,, W=51, A=E,, -W=Q, A=E,, -W=sL, -A=E,, W=R, W=R,, -v=n, w=Il,, -v=n,
tr tr tr tr tr tr tr
AB
tr tr tr tr tr tr
AW2 AWR AWQ’ AW’Q WV WVP
-A=E,-E3+Eg -A=E,-E, A=& -A=&-E,+E,+E, w=n, -w=n
A=E,
A=E,-E,+E,+E, w=o w=n
9 A=E,, B=E, 10 A=E,, B=E,+E, 11 A=E,+E,, B=E, 12 A=E,, B=E, 13 A=E,-E,, B=E,+E, 14 A=E,+E,, B=E,-E, 1.5 A=E,-E2+E3-2Es, B=I+E,+E,+E, 16 A=E,-E3, W=Q, 17 A=E,, W=8, 18 A=E,, W=0, 19 A=E,, W=P, 20 w=n,,v=n, 21 W=SL,,V=R,
Table 2. (Q = Q,) 1 A=E, 2 A=E, 3 4 5 6 7 8 9 10 11 12
A=E, A=E, A=E, A=E, A=E,+E, A=E,+E, w=n, W=R, W=R, w=n,
I 512 A A2 AIL-RA A% - RA2 RAQ QAR’ - Q2AQ W2 RW-kWQ Q2W - WR2 QW2 - w%I
AB2
A2B
ABQ AB’Q A2BSI AQ2BQ
1428
Q.-S. ZHENG Table 3. (Q = Q,) 1 A=E,
R
2 3 4 5
AR+PA AQ= - Q=A w RW-WR
A=E, A=E, w=n, w=n,
Table 4. (z=e,,&=rc@x-xx%) V
V’
A=E,+E,+E,-(7/6)E, A=E.,+E, A=E,-E,+E, A=E,-E, A=E., W=P,+Q, W=P, x=0 x=e,
-A = E, + E, + E6 - (7/6)E, A=E, -A=E,-E3+Eg -A=E,-E, A=E, w=sL, w=n, x = e2 x = e,
tr A tr A= tr A'
-A=E,-E,+E,,B=E,-E,+E, -A=E,-E3+E4,B=Es+E6 A=E,+E,, -B=E,-E,+E, -A= E, - E, - (E5 - E,)/v2, B = E, - E, + (E, + E,)/v2 A=E,-E,, W=Q, A=E,+E,,W=Q2 A=E,+E,, -W=S& A=E,+E,, -W=IR,+Q, A=E,+E,, -W=51, A=E,-E,+v2E.,, -W=Q,+Q, W=Q,, -v=n, w=n,-n,, -v=n,+n, -w=Q,-~‘,v=P,+Q,+P, w=n,+n,+n,, -v=n2-Q’
tr tr tr t.
14 15 16 17 18 19 20 21 22 23
A=E,-E3+E4,B=E2-E3+E4 A=&-E3+Eq,B=E5+E6 A=Es+&,B=E2-Ej+Eq A=&--E,-(Es--&)/d2 B=E,-E,+(E,-Ed/v2 A=&-Es, W=Q2 A=E,+E,, W=9, A=E,+E,,W=Q, A=E,+E,,W=Q,+a, A=E,+E,,W=a’ A=E,-E,+q2E,, W=Q,+Q, w=n,.v=n, w=n,-n,,v=n,+n, W=n2-n3,v=n,+n2+n3, W=Q,+Sl,+Q,,V=Q,-Q,
24 25 26 27 28 29
A=E,,x=e, A=E,, x=e2 A=E,+E5,x=q W=P3,x=e2 W=P,+S&,,x=e, x=e,, y=e,
A=E2,x=e3 A= E6, -x=e2 A= E,+ E,, -x=e2 W=Q3, -x=e2 W=Q,+Q,, -x=e2 x = e,, -y=e,
x-Ax t-Ax t.A% t.Wx t-W% x-Y
30 31 32 33 34f 35 36 37 38 39 40 41 42 43 44
A=E,,B=Eh,C=2E2+E3+d2E, A=E,, B-E,,, W=a, A=&, B-Es+&, W=IL, A=E,+&,B=&, W=n, A=t&+E,,B=E,+E,+&,W=Q, A=E,,W=R,,V=U, A=E,,W=Q,,V=R, A=E,,W=Q,,V=Q, w=n,,v=n,,u=n, A=E,,B=E,,x=e, A=E,, W=SZ,,x=e, A=E,. W=Q2,x=e2 W=P,, V=S&x=e, A=E,,x=e2, y=e, W=Q,,x=e,, y=e,
A=E,,B=E,,-C=2E,+E,+d2E, A=E,,B=E,, -W=Q, A=E,,B=E,+E,,-W=Sl, A=E,+E,,B=&, -W=P, A=E2+Es,B=E,+Es+Egr A=E,, -W=Q,,V=Q, A= E,, -w=n,,v=n, A=E.,, W=P,, -V=S& W=Q2, V=Q,, -u=n, A=E,,B=E,, -x=e, A= E,, W=P,, x=e3 A=E,, W=SZ,, -x=e, w=n,,v=n,, -x=q A= E,, -x=%, y=e, W=Q,, -x=q, y=e,
tr ABC tr ABW tr AB’W tr A’BW trAW’BW tr AWV tr AWV’ tr AW’V tr WVU t * (AB - BA)x x*AWx t . (AW + WA)x t.(WV-VW)x x*Ay x.Wy
1 2 3 4 5 6 7 8 9 10 11 12 13
t-At
t-At tr w=
t-wt x*x t-x
AB AB2 A2B ABt
tr AW2 tr A2W2 tr A2W2AW t. AWt t . A’Wt t . WAWt tr WV t*WVt tWV% t . w2vt
-W=Q,
tsubstituting for the incorrect variable sets in Line 36 of Table 1 in [l], we may use the two sets {A= E, + Es, in order to prove the irreducibility B=E,+E5+&,W=P,}and{A=E2+E,,B=E,+E,+E,,W=-a,) of tr AW’bW.
Tensors and vectors-Part
1429
III
Table 5. (z = e,) 1
A=E,+E,+E,+E,
2 3 4 5 6
A=E,+E,+E,+E, A=E,+E,+E,+E, w=n,+n,+ra, w=n,+n,+n, x=e2
7 8 9 10 11
A=E.,, B=ES A=E,, W=Q, w=n,,v=n, A=Eq,x=eZ W=Q,,x=e,
Table 6. (x=e,,
x
(AB - BA)r (AW + WA)r (WV - VW)% Ax wx
Z,,=r@x-x85) I r@r
1 2
A=E,+E, A=E,+E,
3 4 5 6 7 8 9 10 11 12
A=E,+E, A=E,+E, A=E,+E, A=E,+E, w=n,+n, w=n,+sr, w=SL,+n, w=n,+n, x=e2 x=e,
13 14 15 16 17 18 19 20 21 22 23
A=E,-Es, B=E,+E, A=E,+E,-E,+Eg, A=-E,+E,-E,+2E,, A=E,, W=S& W-R,, v=n, w=n,, V=R, W=sk2,V=P, A=Es,x=e2 W=S&, x=e2 W=Q,,x=e, I.= e,, y=e,
A
A2
r@Az+ArBr r@At+A*r@r W2 r@Ws+Wx@r WrQWz w58w%+w*T@w~ X9X r@x+xQz
AB+BA AW-WA WAW’ - W’AW A*W - WA2 wv+vW WV2 - VW w*v - VW2
W=Q, W=sZ,
A-w x@Wx+WxBx W&+&W x@y+y@x
Table 7. (t=e,,&=r@x-x8x) 1 2 3 4 5 6
A=E,+E, A=E,+E, A=E,+E, W=R,+Q, W=R,+P, W=R,+R,
rBAr-AxQs %@A%-AtBr Ar@At-A2~@Ax W rBWs-Wr@r r@W%-W%@r
7
x=e2
&
8 9 10 11 12 13 14 15
A=E,-E3,B=Eq A=E,-E3,B=Es+Eg A=E,+E6,B=&-Es A=&-E,, B=E,+E,+E, A=E,, W=Q, A=E.,, W=S-& w=n,,v=n, A=Eqrx=e2
AB-BA AB2 - B2A A*B - BA2 (ABZOZ} AW+WA AW2 - W*A WV-VW x@Ax-AxQDx
16 17 18
A=Eqrx=e2 W=R,,x=e, x=e2, y=e,
A&+&A W&-&W xQy-yBx
Q.-S. ZHENG
1430
Table 8. (Q = Q,) V
V’
1 9 4
tr A trA2 tr A3 tr AR2 tr A2Q2 tr A2R2AQ tr w2 .trQW X’X x*Qk ’
(as in Table 1) (as in Table 1)
5 6 7 8 9 10 x=eI x = e,
x=0 x=e,
11 12 13 14 15 16 17 (as in Table 1) 18 19 20
(as in Table 1)
tr AB tr AB2 tr A2B tr ABR tr AB’CI tr A’BQ tr AR2B5L tr AW2 tr AWIl tr AWQ2 tr AW’Q tr WV I tr WVQ x-Ax x.A% x*AQx x * QAQ% x . A2Qx
;; 23 24 25 26 27 28
A=E.,,x=++e3 A=Es+E,, x=%+e, A=Es,x=e,+e, A=E,-E,+Eg-2Es,x=e,+e2+e3 A=E,,x=e,+e,
-A=E,,x=e,+e, A=E,+E,,x=e,-e, -A=E,,x=e,+e, A=E,-E2+Ej-2Es,x=e,-e2+e3 A=E,,x=c,-e,
29 30 31 32 33 34 35
W=Q,,x=e, W=S&,x=e,+e, W=LL,,x=e,+e, W=Q2,x=e,+e, x=e,, y=e, x=q,y=e, x=e,+%,y=e,-e,
W=Q2,x=e, W = R,, x = e, - e2 W=SL,,x=e,-e, W = 4, x = e, - e3 -x=e,, y=e, -x=%, y=e, -x=e,+e,,,y=e,-e,
x.w% X’QWX x - n2wx x*nw% X’Y x*P x*R %
A=E,, A=E,, W=&, W=Q,,
x.Ay x - (Aa + QA)y x.wy x * (WS2 - QW)y
36 A=Eb,x=ee,,y=e, 37 A=Es,x=e,,y=e, W=&,x=e,,y=e, :: W=&,x=e,,y=e,
-x=e,,y=e, -x=e,, y=e, -x=e,,y=e, -x=e,,y=e,
Table 9. (Q = Q,) 1 x=e,+e, 2 x=e,+c, 3 x=eI +e,
X
4 A=E,,x=e, 5 A=E,,x=e, 6 W=&,x=e, 7 W=S&,x=e,
Ax (Aa + PA)x Wx (WQ - QW)x
zx
Tensors and vectors-Part III
1431
Table 10. (Q=S2,, I:=x@y-y@x) 1 *
‘1
a=
;
4 5 6 7 8 9 10 11 12 13 14 15 16
A (as in Table 2)
x=e,+e, x=e,+e, x=e,+e, x=e,+e,
17 x=e,, 18 x=e,,
AZ AQ-ILA A=Sl- QA= RAR QAQ= - R=AR W= nwtwn n=w - WR2 . nw= - w251 x@x x@Px+Qx@x S-h@Qx QXf8Q%+Q=X~QX
y=e, y=e,
x@yty@x Slz+m
Table 11. (Q=S&, X=xQy-y@x) 1 2 3 (as in Table 3) 4 5 6 x=e, te, 7 x=e,+e,
11 APtQA AQ= - @A W nw-wn x&S-h-Rx@x x@,sL%-sIsr&x
8 x=e,, y=e, 9 x=e,,y=e,
Table 12. (c = e,) V
V’
1 2 3 4 :
(
as in Table 4)
3 9 x=e,
(as in Table 4)
x = e,
10
11 12 13 14 15 16 (as in Table 4) 17 18 19 20 z: 23 24 25 26 27 28 29
A=E,+E,,x=e, A=E,, x=e, A=2E2-2E,+E,-E,,x=e,+e, W=Q,,x=e, W=26L,+Q2+Q3,x=e,+e2 W=Q,tR,-Q,,x=e,te,
‘trA tr A2 tr A3 r*Ar z. A=% tr W2 r-W% .x-x (c * x)2
tr A%
(as in Table 4)
A=E,+E,,x=e, A=Es,x=e, A=2E,-2E3+E,-E,,x=e,+e, W=Q,,x=e, W=2Q,+P2tQ3,x=e,te3 W=Q,+Q,-Q,,x=e,-e,
tr AB2 tr A2B r.ABr tr AW2 tr A2W2 tr A2W2AW z. AWz t - A=Wt t . WAWt tr WV
t-wvt t*wv=t .t*w=vt X.AX
x-A% (x.t)(t.Ax) x*w% (x * t)(t * Wx)
(x * Wt)(t . Wsr)
1432
Q.-S. ZHENG
Table 12-Continued V
V’
30 x=e2,y=e2 31 x = e, + e,, y = e, - e, 32 33 34 35 36 37 38 39 40 41 41 43 44 45 46 47 48 49 50 51 52 53 54 55 56
-
-x = e,, y = e2 -x = e, + e,, y = e, - e2
X’Y (r*x)(r*y)
tr ABC
(as in Table 4)
(as in Table 4)
A=E,, B= Es, x=d2e,+e, A=&, W=P,,x=e,+e, A=E,+E,, W=n,,x=e, A=E,+Es, W=R,,x=e,+e,+e, W=Q,,V=Q,,x=e,+e, W=Q,,V=Q,,x=e,+e, W=SZ,, V=Q,, x=e,+e, A=E,,x=q,y=e, A=E,+E,,x=%,y=e, A=E,-E,+E,-E,, x = e, + e, + e3, y = e, - e3 W=Q,, x=e,, y=e, W=Q,+Sl,,x=e,,y=e, w=n,+n,+n,, x = e, + e2 + es, y = e, - e3 A=E,,B=E6,x==,y=e, A=Es,W=Q,,x=e,,y=e, W=P,,V=Q3,x=ee,,y=e,
A=Eg,B=Es,x=d&-e, A=E,, -W=Q,,x=e,+e, A=E,+E,, -W=Q,,x=e, A=E,+E,,-W=Q,,x=e,+e,+e, -W=Q,,V=Irr,,x=e,+e, -W=P,,V=Q,,x=e,+e, W=S&, -V=Q,,x=e,+e, A = E.,, -x = e2, y = e3 A=Es+Eg,-x=e,,y=e, A=&-E,+E,-E,, x=e,+e,+e,, -y=e,-e3 W=Q,, -x=e,,y=e, W=n,+Q,, -x=q,y=e, w=n,+n,+n,, x=e,+e,+e,, -y=e,-e, A= Es, B=E,, -x=e,?, y=e, A = Es, W = as, --I. = e,, y = e3 W = n,, V = Qs, --I. = e,, y = e3
Table 13. (%= e,) 1 x=e,+e, 2 x=el+e2
;%* x)z
3 A=E,+E,,x=e, 4 A=E,+E,,x=e, 5 A=E.,+E6,x=e2
Ax Al (Ax@r-r@rA)x
6 W=Q,+Q,,x=e, 7 w=n,+n,,x=e, 8 W=Q,+Q,,x=e,
zx (Wr@s+s@rW)x
9 A=E,,B=E,,x=e, lo A=E,, W=Q,,x=e, 11 W=R,V=Q,,x=e,
(AB - BA)x (AW + WA)x (WV-VW)x
tr ABW tr AB=W tr A’BW tr AW’BW tr AWV tr AWV’ tr AW’V tr WVU x*ABx x. AWx x . A’Wx x . WAW% x*WVx x*Wvx x * w2vx X-A X-A 5 x.(AzQr-r@zA)y x*w x-w r, x*(WeQe+t@xW)y x.(AB-BA)y x - (AW + WA)y x.(WV-VW)y
Tensors and vectors-Part
III
1433
Table 14. (r=e,,Z=x@y-y@x)
‘I
r@r
:
A A2
3 4 2
T@AT+ATQT r8A%+A2r@r
(as in Table 6)
W2
7
T@WT+WTBT WT8WT
f 10 11 x=e,+e, 12 x=e,+q 13 14 15 16 17 18 19 20 21 22 23
.wT8w%+w2T@wT 181 (T.1)(T691+1@T) ‘AB+BA AW-WA WAW’ - W’AW A2W - WA2 Wv+vW WV2 - VW ,w%-VW2
(as in Table 6)
A=E,+E,,x=e W=R,,x=e,
xGDAl+Al@x
+ez+e,
W=&,x=e;+~+e~ x=e,+e,y=e,
24 x=e, +e2, y=e, 25 A=E,,x=e,,y=e, 26 W=R,,x=e,,y=e,
Table 15. (r=e,,
l@Wl+WlQl Wx@W%+W1@W1 xQy+yO1 %82kr+ZZ@Z AT-?3 m+zw
Z=xQy-y@x)
‘s@AT-
: 3 4 (as in Table 7) 5 6 7 x=e,+e, 8 8 10 11 12 13 14 15 16 17
AT@S
s@At-A%@T AT’BA~-A=T’BAT
W T@wT-wT@T ,T@wt-w%@T (T-i)(T@i-SCOT) AB-BA AB2 - B2A A2B - BA2
(as in Table 7)
A=E,-E3,x=e2+es A= Es+ E6, x=e2 A=&-Ej,x=e,+e2+e, W = n,, x = e2 + e, :t W=&, x=e,+e, 20 x=e,+e,,y=e, 21 x=e,+q, y=e, 22 A=E,,x=%.y=e, 23 W=S&x=e,,y=e,
{~T@T}
AW+WA AW2 - W2A WV-VW xQAx-AxBx x@Af-A%bx (A(x @ x)(x @ 1)) l@Wl-WXBX l@W%-w'zxox I: T@rT-rT@T Az+zw wz-LW