Applied Mathematics and Computation 148 (2004) 207–223 www.elsevier.com/locate/amc
On uniform decay of the solution for a damped nonlinear coupled system of wave equations with nonlinear boundary damping and memory term Jeong Ja Bae Department of Mathematics, Pusan National University, Pusan 609-735, South Korea
Abstract In this paper we are concerned with the existence and energy decay of the solution to the initial boundary value problem for the nonlinear coupled wave equations with nonlinear boundary damping and memory term. Ó 2002 Elsevier Inc. All rights reserved. Keywords: Existence of solution; Uniform decay; Wave equation; Boundary value problem; A priori estimates
1. Introduction In this paper, we are concerned with the existence and uniform decay of the solution to the initial boundary value problem for the nonlinear coupled wave equations with nonlinear boundary damping and memory term of the form: u00 þ D2 u þ av þ g1 ðu0 Þ ¼ 0 v00 Dv þ au þ g2 ðv0 Þ ¼ 0 u¼
ou ¼0 om
on C ð0; 1Þ
on Q ¼ X ð0; 1Þ; on Q ¼ X ð0; 1Þ; with
C ¼ C0 [ C1 ;
E-mail address:
[email protected] (J.J. Bae). 0096-3003/$ - see front matter Ó 2002 Elsevier Inc. All rights reserved. doi:10.1016/S0096-3003(02)00838-X
ð1:1Þ ð1:2Þ ð1:3Þ
208
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
v¼0
on R1 ¼ C1 ð0; 1Þ;
ð1:4Þ
ou þ v þ v0 þ gðtÞjv0 jq v0 ¼ g jvjc v om
on R0 ¼ C0 ð0; 1Þ;
uðx; 0Þ ¼ u0 ðxÞ;
u0 ðx; 0Þ ¼ u1 ðxÞ;
vðx; 0Þ ¼ v0 ðxÞ;
v0 ðx; 0Þ ¼ v1 ðxÞ on x 2 X;
ð1:5Þ ð1:6Þ
where X is a bounded domain in Rn with C 2 boundary C :¼ oX such that C0 , C1 have positive measures, g u ¼ RCt ¼ C0 [ C1 , C0 \ C1 ¼ ;n and gðt rÞuðrÞ dr, Du ¼ Ri¼1 ðo2 u=ox2i Þ and m denotes the unit outer normal 0 vector pointing towards X. Assuming the kernel g provides a damping effect, we prove existence of strong solution u ¼ uðx; tÞ. Moreover, when q ¼ c, the uniform decay of the energy 1 1 1 1 2 2 2 2 EðtÞ ¼ ku0 ðtÞk þ kDuðtÞk þ kv0 ðtÞk þ krvðtÞk 2 2 Z 2 2 1 2 þ kvðtÞkC0 þ auðtÞvðtÞ dx 2 X is proved. There exists a large body of literature regarding viscoelastic problems with the memory term acting in the domain. Among the numerous works in this direction, we can cite Jiang and Munoz Rivera [7]. Related to blow up of the solutions of equations with nonlinear damping and source term acting in the domain we can cite the work of Georgiev and Todorova [5]. Guesmia [6] investigated the existence and asymptotic behavior of solutions of (1.1)–(1.3) with Dirichlet boundary conditions. Cavalcanti [4] considered the existence and uniform decay of solutions of wave equation of the form: Kðx; tÞu00 þ K2 u0 Du ¼ 0 on Q ¼ X ð0; 1Þ; u¼0
on R1 ¼ C1 ð0; 1Þ;
ou c þ u þ u0 þ gðtÞju0 jq u0 ¼ g juj u om uðx; 0Þ ¼ u0 ðxÞ;
u0 ðx; 0Þ ¼ u1 ðxÞ
on R0 ¼ C0 ð0; 1Þ;
on x 2 X:
Authors [8,9] have studied the existence and uniform decay of strong solutions of Kirchhoff type wave equations with nonlinear boundary conditions (1.5). For the existence of solutions of Kirchhoff type wave equations with Dirichlet boundary conditions, see [2,3]. In this paper, we will study the existence and uniform decay of solutions of coupled wave equations with nonlinear boundary damping and memory source term. It is important to observe that as far as we are concerned it has never
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
209
been considered nonlinear memory terms acting in the boundary in the literature. To obtain the existence of solutions we make use of Faedo–GalerkinÕs approximation and also to show the uniform stabilization we use the perturbed energy method. Our paper is organized as follows: In Section 2, we give some notations, assumptions and main result. In Section 3, we prove the existence of solutions of the problems (1.1)–(1.6) and the uniform decay of energy is given in Section 4.
2. Assumptions and main result Throughout this paper we define 1
V ¼ fu 2 H ðXÞ; u ¼ 0 ðu; vÞC0 ¼
on C1 g;
Z uðxÞvðxÞ dC; C0
kuk ¼ kukL2 ðXÞ
and
ðu; vÞ ¼
p
kukp;C0 ¼
Z
Z uðxÞvðxÞ dx; X p
juðxÞj dx;
C0
kuk1 ¼ kukL1 ðXÞ :
The variational formulation associated with problems (1.1)–(1.6) are given by, respectively, ðu00 ; wÞ þ ðDu; DwÞ þ ðav; wÞ þ ðg1 ðu0 Þ; wÞ ¼ 0; 00
0
w 2 H02 ðXÞ;
ð2:1Þ
0
ðv ; wÞ þ ðrv; rwÞ þ ðau; wÞ þ ðg2 ðv Þ; wÞ þ ðv; wÞC0 þ ðv ; wÞC0 q
þ ðgðtÞjv0 j v0 ; wÞC0 Z t c ¼ gðt rÞðjvðrÞj vðrÞ; wÞC0 dr;
w2V:
ð2:2Þ
0
(A1 ) Let us consider g 2 W 1;1 ð0; 1Þ \ W 1;1 ð0; 1Þ; gðtÞ P 0, 8 t P 0 verifying m0 gðtÞ 6 g0 ðtÞ 6 m1 gðtÞ 8t P t0 ; gð0Þ ¼ 0; jg0 ðtÞj 6 m2 gðtÞ
8t 2 ½0; t0
R1 for some m0 , m1 , m2 > 0 and l ¼ 1 0 gðrÞ dr > 0. (A2 ) The functions gi , i ¼ 1; 2 are nondecreasing C 1 functions and gi ð0Þ ¼ 0. Furthermore, there exists positive constants ai such that a1 jxj 6 jgi ðxÞj 6 a2 jxj 8 x 2 R;
i ¼ 1; 2:
pffiffiffiffiffiffi (A3 ) The function a belongs to L1 ðXÞ and kakL1 ðXÞ < 1= kl; where k is a pos2 2 itive number such that kuk 6 kkruk 8u 2 H01 ðXÞ and l is a positive number such that kuk2 6 lkDuk2 8u 2 H02 ðXÞ.
210
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
Remark 1. Note that the energy is nonnegative. In fact, we have Z Z auv dx P kakL1 ðXÞ uv dx X X pffiffiffiffiffiffi P klkakL1 ðXÞ kDukkrvk pffiffiffiffiffiffi kl 2 2 kakL1 ðXÞ ðkDuk þ krvk Þ: P 2 (2.3) and assumption ðA3 Þ imply 1 1 1 1 2 2 2 2 EðtÞ ¼ ku0 ðtÞk þ kDuðtÞk þ kv0 ðtÞk þ krvðtÞk 2 2 Z 2 2 1 2 þ kvðtÞkC0 þ auðtÞvðtÞ dx 2 X 1 0 1 1 1 2 2 2 2 P ku ðtÞk þ kDuðtÞk þ ku0 ðtÞk þ krvðtÞk 2 2 pffiffiffiffiffiffi 2 2 kl 1 kakL1 ðXÞ ðkDuðtÞk2 þ krvðtÞk2 Þ þ kvðtÞk2C0 2 2 pffiffiffiffiffiffi 1 1 ¼ ku0 ðtÞk2 þ ð1 klkakL1 ðXÞ ÞðkDuðtÞk2 þ krvðtÞk2 Þ 2 2 1 0 1 2 þ kv ðtÞk þ kvðtÞk2C0 P 0: 2 2
ð2:3Þ
Now we are in position to state our main result. Theorem 2.1. Let us consider u0 , u1 2 H02 ðXÞ and v0 , v1 2 H01 ðXÞ \ H 2 ðXÞ satisfy ðov0 =omÞ þ v0 þ v1 ¼ 0 on C0 . Under the assumptions ðA1 Þ–ðA3 Þ, suppose that c, m1 1 q satisfy 0 < c < q 6 ðn2 Þ if n P 3; or c; q > 0 if n ¼ 1; 2 and ðcþ2 Þ > 2. Then 2 problems (1.1)–(1.6) have a unique solution ðu; vÞ : X X ! R such that ðu; vÞ 2 L1 ð0; 1; H02 ðXÞÞ L1 ð0; 1; H01 ðXÞÞ, ðu0 ; v0 Þ 2 L1 ð0; 1; H02 ðXÞÞ L1 ð0; 1; H01 ðXÞÞ, ðu00 ; v00 Þ 2 L2 ð0; 1; L2 ðXÞÞ L2 ð0; 1; L2 ðXÞÞ. Moreover, if q ¼ c, then there exist positive constants C1 and C2 such that EðtÞ 6 C1 Eð0Þ expðC2 tÞ:
3. Proof of Theorem 2.1 In this section we are going to show the existence of solution of problems (1.1)–(1.6) using Faedo–GalerkinÕs approximation. For this end we represent by fwj gj2N a basis in H02 ðXÞ which is orthonormal in L2 ðXÞ, by VmP the subspace of H02 ðXÞ generated by the first m vectors. Next we define um ðtÞ ¼ mj¼1 gjm ðtÞwj , where ðum ðtÞ; vm ðtÞÞ is a solution of the following Cauchy problems: ðu00m ; wÞ þ ðDum ; DwÞ þ ðavm ; wÞ þ ðg1 ðu0m Þ; wÞ ¼ 0;
ð3:1Þ
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
211
ðv00m ; wÞ þ ðrvm ; rw Þ þ ðaum ; wÞ þ ðg2 ðv0m Þ; wÞ þ ðvm ; wÞC0 þ ðv0m ; wÞC0 þ ðgðtÞjv0m jq v0m ; wÞC0 Z t c ¼ gðt rÞðjvm ðrÞj vm ðrÞ; wÞC0 dr;
w 2 H02 ðXÞ
ð3:2Þ
0
with the initial conditions, m X um ð0Þ ¼ u0m ¼ ðu0 ; wj Þwj ! u0
in H02 ;
j¼1
vm ð0Þ ¼ v0m
m X ¼ ðv0 ; wj Þwj ! u0
u0m ð0Þ ¼ u1m ¼
j¼1 m X
in H01 ðXÞ \ H 2 ðXÞ; ð3:3Þ
ðu1 ; wj Þwj ! u1
in H02 ðXÞ;
m X ¼ ðv1 ; wj Þwj ! u1
in H01 ðXÞ:
j¼1
v0m ð0Þ ¼ v1m
j¼1
Note that we can solve the system (3.1)–(3.3) by PicardÕs iteration method. In fact, the system (3.1)–(3.3) have a unique solution on some interval ½0; Tm Þ. The extension of the solution to the whole interval ½0; 1Þ is a consequence of the first estimate which we are going to prove below. 3.1. A priori estimate I Replacing w by u0m ðtÞ in (3.1) and by v0m ðtÞ in (3.2), respectively and adding the results, assumption ðA1 Þ yield Z t d 1 cþ2 cþ2 Em ðtÞ þ gðtÞkvm ðtÞkcþ2;C0 þ gðt rÞkvm ðrÞkcþ2;C0 dr dt cþ2 0 2 qþ2 þ kv0m ðtÞkC0 þ gðtÞkv0m ðtÞkqþ2;C0 þ ðg1 ðu0m ðtÞÞ; u0m ðtÞÞ þ ðg2 ðv0m ðtÞÞ; v0m ðtÞÞ Z t 1 c cþ2 g0 ðtÞkvm ðtÞkcþ2;C0 gðt rÞðjvm ðrÞj vm ðrÞ; v0m ðtÞÞC0 dr þ ¼ c þ 2 0 Z t c cþ2 þ gðtÞðjvm ðtÞj vm ðtÞ; v0m ðtÞÞC0 þ g0 ðt rÞkvm ðrÞkcþ2;C0 dr 0 Z t m2 c cþ2 6 gðtÞkvm ðtÞkcþ2;C0 gðt rÞðjvm ðrÞj vm ðrÞ; v0m ðtÞÞC0 dr þ c þ2 0 Z t þ gðtÞðjvm ðtÞjc vm ðtÞ; v0m ðtÞÞC0 þ m2 gðt rÞkvm ðrÞkcþ2 ð3:4Þ cþ2;C0 dr; 0
where 1 1 1 1 1 Em ðtÞ ¼ ku0m ðtÞk2 þ kDum ðtÞk2 þ kv0m ðtÞk2 þ krvm ðtÞk2 þ kvm ðtÞk2C0 2 2 2 2 2 Z þ aum ðtÞvm ðtÞ dx: X
212
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
Note that H€ olderÕs inequality and YoungÕs inequality [1] give us c
cþ1
ðjvm ðrÞj vm ðrÞ; v0m ðtÞÞC0 6 kvm ðrÞkcþ2;C0 kv0m ðtÞkcþ2;C0 cþ2
cþ2
6 C1 ðgÞkvm ðrÞkcþ2;C0 þ gkv0m ðtÞkcþ2;C0 :
ð3:5Þ
Thus we have Z t Z t c cþ2 0 gðt rÞðjvm ðrÞj vm ðrÞ; vm ðtÞÞC0 dr 6 C1 ðgÞ gðt rÞkvm ðrÞkcþ2;C0 dr 0 0 Z t cþ2 0 þ gkvm ðtÞkcþ2;C0 gðrÞ dr: ð3:6Þ 0
qþ2
cþ2
ðC0 Þ,!L ðC0 Þ and therefore we can obtain Z t Z t Z t cþ2 qþ2 gðrÞ dr 6 C2 ðgÞ gðrÞ dr þ g gðrÞ drkv0m ðtÞkqþ2;C0 : gkv0m ðtÞkcþ2;C0
Since q P c, L
0
0
0
ð3:7Þ Therefore (3.6) and (3.7) yield Z t Z t c cþ2 gðt rÞðjvm ðrÞj vm ðrÞ; v0m ðtÞÞC0 dr 6 C1 ðgÞ gðt rÞkvm ðrÞkcþ2;C0 dr 0 0 Z t Z t qþ2 0 þ C2 ðgÞ gðrÞ dr þ g gðrÞ drkvm ðtÞkqþ2;C0 : ð3:8Þ 0
0
Similarly applying H€ olderÕs inequality, YoungÕs inequality and the result Lqþ2 ðC0 Þ,!Lcþ2 ðC0 Þ, we have c
cþ1
gðtÞðjvm ðtÞj vm ðtÞ; v0m ðtÞÞC0 6 gðtÞkvm ðtÞkcþ2;C0 kv0m ðtÞkcþ2;C0 cþ2 6 C3 ðgÞgðtÞkvm ðtÞkcþ2;C þ ggðtÞkv0m ðtÞkcþ2 cþ2;C0 0 cþ2
qþ2
6 C3 ðgÞgðtÞkvm ðtÞkcþ2;C0 þ gðtÞC4 ðgÞ þ ggðtÞkv0m ðtÞkqþ2;C0 :
ð3:9Þ
Therefore (3.4), (3.8) and (3.9) give Z t d 1 cþ2 cþ2 Em ðtÞ þ gðtÞkvm ðtÞkcþ2;C0 þ gðt rÞkvm ðrÞkcþ2;C0 dr dt cþ2 0 2
þ ðg1 ðu0m ðtÞÞ; u0m ðtÞÞ þ ðg2 ðv0m ðtÞÞ; v0m ðtÞ þ kv0m ðtÞkC0 qþ2
þ ðð1 gÞgðtÞ gkgkL1 ð0;1Þ Þkv0m ðtÞkqþ2;C0 Z t m2 6 ðC1 ðgÞ þ m2 Þ gðt rÞkvm ðrÞkcþ2 dr þ C ðgÞ þ 3 cþ2;C0 cþ2 0 Z t cþ2 þ C4 ðgÞgðtÞ þ C2 ðgÞ gðrÞ dr: gðtÞkvm ðtÞkcþ2;C 0 0
ð3:10Þ
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
213
Note that we can choose g > 0 sufficiently small such that ð1 gÞgðtÞ gkgkL1 ð0;1Þ > C0 gðtÞ for some constant C0 , which can be from assumption ðA1 Þ. Moreover, since g1 and g2 are nondecreasing and g1 ð0Þ ¼ g2 ð0Þ ¼ 0, ðg1 ðu0m ðtÞÞ; u0m ðtÞÞ þ ðg2 ðv0m ðtÞÞ; v0m ðtÞÞ P 0. Integrating it over ½0; t, choosing g > 0 sufficiently small and employing GronwallÕs lemma we obtain the first estimate: Z t 1 cþ2 cþ2 gðtÞkvm ðtÞkcþ2;C0 þ gðt rÞkvm ðrÞkcþ2;C0 dr cþ2 0 Z t Z t 2 0 þ kvm ðrÞkC0 dr þ C0 gðrÞkv0m ðrÞkqþ2 qþ2;C0 dr 6 L1 ;
Em ðtÞ þ
0
0
where L1 > 0 is a constant independent of m; that is, we get 1 0 1 1 1 1 kum ðtÞk2 þ kDum ðtÞk2 þ kv0m ðtÞk2 þ krvm ðtÞk2 þ kvm ðtÞk2C0 2 2 2 2 2 Z Z t 1 cþ2 2 gðtÞkvm ðtÞkcþ2;C0 þ þ aum ðtÞvm ðtÞ dx þ kv0m ðrÞkC0 dr c þ 2 X 0 Z t Z t cþ2 þ gðt rÞkvm ðrÞkcþ2;C0 dr þ C0 gðrÞkv0m ðrÞkqþ2 qþ2;C0 dr 6 L1 : 0
ð3:11Þ
0
3.2. A priori estimate II First of all we are estimating v00m ð0Þ in the L2 -norm. Considering w ¼ v00m ð0Þ in (3.2), from Green theorem ov0 00 2 00 00 ; v ð0Þ þ ðau0 ; v00m ð0ÞÞ þ ðg2 ðv1 Þ; v00m ð0ÞÞ kvm ð0Þk ðDv0 ; vm ð0ÞÞ om m þ ðv0 ; v00m ð0ÞÞC0 þ ðv1 ; v00m ð0ÞÞC0 ¼ 0 Since
ov0 om
in H01 ðXÞ \ H 2 ðXÞ:
þ v0 þ v1 ¼ 0 on C0 ,
kv00m ð0Þk2 ðDv0 ; v00m ð0ÞÞ þ ðau0 ; v00m ð0ÞÞ þ ðg2 ðv1 Þ; v00m ð0ÞÞ ¼ 0: Assumption ðA2 Þ and SchwarzÕs inequalities imply kv00m ð0Þk2 6 kDv0 kkv00m ð0Þk þ and so kv00m ð0Þk 6 L2 ;
pffiffiffi lkakL1 ðXÞ kDu0 kkv00m ð0Þk þ a2 kv1 kkv00m ð0Þk
214
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
where L2 is a positive constant independent of m. Now, differentiating (3.1) and (3.2), substituting w by u00m ðtÞ and v00m ðtÞ, respectively and then adding the results, assumption ðA1 Þ yields d 2 2 2 Fm ðtÞ þ ðg10 ðu0m ðtÞÞ; ju00m ðtÞj Þ þ ðg20 ðv0m ðtÞÞ; jv00m ðtÞj Þ þ kv00m ðtÞkC0 dt q 2 þ ðq þ 1ÞgðtÞðjv0m ðtÞj ; jv00m ðtÞj ÞC0 Z t q 0 c 0 0 00 ¼ g ðtÞðjvm ðtÞj vm ðtÞ; vm ðtÞÞC0 þ g0 ðt rÞðjvm ðrÞj vm ðrÞ; v00m ðtÞÞC0 dr 0 Z t c 6 m2 gðt rÞðjvm ðrÞj vm ðrÞ; v00m ðtÞÞC0 dr 0
q
þ m0 gðtÞðjv0m ðtÞj v0m ðtÞ; v00m ðtÞÞC0 ;
ð3:12Þ
where 1 1 1 1 2 2 2 2 Fm ðtÞ ¼ ku00m ðtÞk þ kDu0m ðtÞk þ kv00m ðtÞk þ krv0m ðtÞk 2 2 2 2 Z 1 þ au0m ðtÞv0m ðtÞ dx þ kv0m ðtÞk2C0 : 2 X Now, SchwarzÕs inequality, YoungÕs inequality and first estimate give us q
jm0 gðtÞðjv0m ðtÞj v0m ðtÞ; v00m ðtÞÞC0 j 6 m0 gðtÞ
Z
q
q
þ1
jv0m ðtÞj2 jv0m ðtÞj2 jv00m ðtÞj dC
C0
m2 q 2 0 00 6 0 gðtÞkv0m ðtÞkqþ2 qþ2;C0 þ ggðtÞðjvm ðtÞj ; jvm ðtÞj ÞC0 : 4g
ð3:13Þ
Now, taking into account that ððc þ 1Þ=ð2c þ 2ÞÞ þ ð1=2Þ ¼ 1, using the generalized H€ older inequality and the continuity of the trace operator c0 : H 1 ðXÞ ,! L2 ðCÞ for 1 6 q 6 ðð2n 2Þ=ðn 2ÞÞ, we obtain c
00
ðjvm ðrÞj vm ðrÞ; v ðtÞÞC0 dr 6
Z
jvm ðrÞj
2cþ2
cþ1 Z 2cþ2 12 2 00 dC jvm ðtÞj dC
C0
C0
6 CðT ; gÞkrvm ðrÞk 6 CðT ; gÞð2L1 Þ
cþ1
2cþ2
2
þ gkv00m ðtÞkC0 2
þ gkv00m ðtÞkC0 : ð3:14Þ
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
215
Thus from (3.14), we get Z t c m2 gðt rÞðjvm ðrÞj vm ðrÞ; v00m ðtÞÞC0 dr 0 Z t cþ1 2 6 m2 gðt rÞðCðT ; gÞð2L1 Þ þ gkv00m ðtÞkC0 Þ dr 0
6 m2 CðT ; gÞð2L1 Þcþ1 kgkL1 ð0;1Þ þ gm2 kv00m ðtÞk2C0 kgkL1 ð0;1Þ :
ð3:15Þ
Combining the estimates (3.13) and (3.15), we get d Fm ðtÞ þ kv00m ðtÞk2C0 þ ðq þ 1 gÞgðtÞðjv0m ðtÞjq ; jv00m ðtÞj2 ÞC0 dt m2 qþ2 cþ1 2 6 0 gðtÞkv0m ðtÞkqþ2;C0 þ ðm2 CðT ; gÞð2L1 Þ þ gm2 kv00m ðtÞkC0 ÞkgkL1 ð0;1Þ ; 4g ð3:16Þ 2
2
where we have used the fact that ðg10 ðu0m ðtÞÞ; ju00m ðtÞj Þ þ ðg20 ðv0m ðtÞÞ; jv00m ðtÞj Þ P 0 since gi , i ¼ 1; 2 are nondecreasing. Integrating (3.16) over ½0; t, choosing g > 0 sufficiently small and employing (3.11) and GronwallÕs lemma we obtain the second estimate: Z t 2 kv00m ðsÞkC0 ds 6 L3 ; Fm ðtÞ þ 0
where L3 > 0 is independent of m, that is, 1 00 1 1 1 1 ku ðtÞk2 þ kDu0m ðtÞk2 þ kv00m ðtÞk2 þ krv0m ðtÞk2 þ kv0m ðtÞk2C0 2 m 2 2 2 2 Z Z t 2 þ au0m ðtÞv0m ðtÞ dx þ kv00m ðsÞkC0 ds 6 L3 :
ð3:17Þ
0
X
The estimates above are sufficient to pass to the limit in the linear terms of problems (3.1) and (3.2). Next we are going to consider the nonlinear ones of the problem (3.2). Analysis of the nonlinear terms. From the above estimates we have that 1
ðvm Þ is bounded in L2 ð0; T ; H 2 ðC0 ÞÞ; 1
ð3:18Þ
ðv0m Þ is bounded in L2 ð0; T ; H 2 ðC0 ÞÞ;
ð3:19Þ
ðv00m Þ is bounded in L2 ð0; T ; L2 ðC0 ÞÞ:
ð3:20Þ
From (3.18)–(3.20), taking into consideration that the immersion 1 H 2 ðCÞ ,! L2 ðCÞ is continuous and compact and using Aubin compactness theorem, we can extract a subsequence ðvl Þ of ðvm Þ such that vl ! v a:e: on R0
and
v0l ! v0 a:e: on R0
ð3:21Þ
216
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
and therefore c
c
q
q
jv0l j v0l ! jv0 j v0 a:e: on R0 :
jvl j vl ! jvj v;
ð3:22Þ
On the other hand, from the first and second estimate we obtain ðg jvl jc vl Þ is bounded in L2 ðR0 Þ;
ð3:23Þ
ðgjv0l jq v0l Þ is bounded in L2 ðR0 Þ:
ð3:24Þ
Combining (3.22)–(3.24), we deduce that c
c
g jvl j vl ! g jvj v weakly in L2 ðR0 Þ; q
q
gjv0l j v0l ! gjv0 j v0 weakly in L2 ðR0 Þ: The last convergences are sufficient to pass to the limit in the nonlinear terms of problem (3.2).
4. Uniform decay We define the energy EðtÞ of the problems (1.1)–(1.6) by 1 1 1 1 EðtÞ ¼ ku0 ðtÞk2 þ kDuðtÞk2 þ kv0 ðtÞk2 þ krvðtÞk2 2 2 2 2 Z 1 2 þ kvðtÞkC0 þ auðtÞvðtÞ dx: 2 X
ð4:1Þ
Then the derivative of the energy is given by 2
E0 ðtÞ ¼ ðg1 ðu0 ðtÞÞ; u0 ðtÞÞ ðg2 ðv0 ðtÞÞ; v0 ðtÞÞ kv0 ðtÞkC0 Z t qþ2 c gðtÞkv0 ðtÞkqþ2;C0 þ gðt rÞðjvðrÞj vðrÞ; v0 ðtÞÞC0 dr:
ð4:2Þ
0
Defining ðg vÞðtÞ :¼
Z
t c
0
2
gðt rÞkvðrÞj vðrÞ vðtÞjC0 dr;
a simple computation gives us
ð4:3Þ
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
ðg vÞ0 ðtÞ ¼
Z
217
t
g0 ðt rÞkvðrÞjc vðrÞ vðtÞj2C0 dr 0 Z t Z t d þ kvðtÞk2C0 gðrÞ dr 2 gðt rÞðjvðrÞjc vðrÞ; v0 ðtÞÞC0 dr dt 0 0 Z t c ¼ ðg0 vÞðtÞ 2 gðt rÞðjvðrÞj vðrÞ; v0 ðtÞÞC0 dr 0 Z t d 2 kvðtÞkC0 gðrÞ dr gðtÞkvðtÞk2C0 : ð4:4Þ þ dt 0
Thus we have Z
t 0
gðt rÞðjvðrÞjc vðrÞ; v0 ðtÞÞC0 dr Z t 1 1 0 1 d 0 2 kvðtÞkC0 ¼ ðg vÞ ðtÞ þ ðg vÞðtÞ þ gðrÞ dr 2 2 2 dt 0 1 gðtÞkvðtÞk2C0 : 2
ð4:5Þ
Define the modified energy by 1 1 1 1 2 2 2 2 eðtÞ ¼ ku0 ðtÞk þ kDuðtÞk þ kv0 ðtÞk þ krvðtÞk 2Z 2 2 2 1 þ auðtÞvðtÞ dx þ ðg vÞðtÞ 2 X Z t 1 1 2 cþ2 þ 1 gðtÞkvðtÞkcþ2;C0 : gðrÞ dr kvðtÞkC0 þ 2 c þ 2 0
ð4:6Þ
Then 2
e0 ðtÞ ¼ ðg1 ðu0 ðtÞÞ; u0 ðtÞÞ ðg2 ðv0 ðtÞÞ; v0 ðtÞÞ kv0 ðtÞkC0 1 g0 ðtÞkvðtÞkcþ2 cþ2;C0 cþ2 1 1 c 2 þ gðtÞðjvðtÞj vðtÞ; v0 ðtÞÞC0 gðtÞkvðtÞkC0 þ ðg0 vÞðtÞ: 2 2 gðtÞkv0 ðtÞkqþ2 qþ2;C0 þ
ð4:7Þ
Considering YoungÕs inequality, we get c
0
gðtÞðjvðtÞj vðtÞ; v ðtÞÞC0 6 gðtÞ 6 ggðtÞkv
0
cþ2 ðtÞkcþ2;C0
þg
Z
1 cþ1
jvðtÞj
cþ2
1 cþ1 Z cþ2 cþ2 cþ2 0 dC jv ðtÞj dC
C0 cþ2 gðtÞkvðtÞkcþ2;C0 :
C0
ð4:8Þ
218
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
Thus for c ¼ q, assumption ðA1 Þ implies 2
e0 ðtÞ 6 ðg1 ðu0 ðtÞÞ; u0 ðtÞÞ ðg2 ðv0 ðtÞÞ; v0 ðtÞÞ kv0 ðtÞkC0 1 m1 qþ2 2 ð1 gÞgðtÞkv0 ðtÞkqþ2;C0 gðtÞkvðtÞkC0 ðg vÞðtÞ 2 2 1 m1 cþ2 cþ1 gðtÞkvðtÞkcþ2;C0 : g cþ2
ð4:9Þ
Choosing g ¼ 2ðcþ1Þ then 1 g > 12 and so 1 e0 ðtÞ 6 ðg1 ðu0 ðtÞÞ; u0 ðtÞÞ ðg2 ðv0 ðtÞÞ; v0 ðtÞÞ kv0 ðtÞk2C0 gðtÞkv0 ðtÞkqþ2 qþ2;C0 2 1 m1 2 ðg vÞðtÞ: ð4:10Þ bgðtÞkvðtÞkcþ2 cþ2;C0 gðtÞkvðtÞkC0 2 2 On the other hand we note that from assumption ðA1 Þ 1 1 1 2 2 2 EðtÞ ¼ ku0 ðtÞk þ kDuðtÞk þ kv0 ðtÞk 2 2 2 Z 1 1 þ krvðtÞk2 þ kvðtÞk2C0 þ auðtÞvðtÞ dx 2 2 X 1 0 1 1 0 1 2 2 2 2 6 ku ðtÞk þ kDuðtÞk þ kv ðtÞk þ krvðtÞk 2 2 2 2 Z t Z 1 2 1 þ gðrÞ dr kvðtÞkC0 þ auðtÞvðtÞ dx 6 l1 eðtÞ 2l X 0
ð4:11Þ
and therefore it is enough to obtain the desired exponential decay for the modified energy eðtÞ which will be done below. For this purpose let k, l be the positive numbers such that 2
2
8 v 2 H02 ðXÞ;
2
2
8 v 2 H01 ðXÞ
kvk 6 lkDvk
kvk 6 kkrvk
and for every > 0 let us define the perturbed modified energy by e ðtÞ ¼ eðtÞ þ wðtÞ; wherewðtÞ ¼ ðu0 ðtÞ; uðtÞÞ þ ðv0 ðtÞ; vðtÞÞ: Proposition 4.1. We have the inequality for each > 0 pffiffiffi pffiffiffi pffiffiffi je ðtÞ eðtÞj 6 maxf k; lgeðtÞ keðtÞ 8 t P 0:
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
219
Proof. Applying Cauchy SchwarzÕs inequality pffiffiffi pffiffiffi jwðtÞj 6 lku0 ðtÞkkDuðtÞk þ kkv0 ðtÞkkvðtÞk pffiffiffi pffiffiffi 1 0 1 1 0 1 2 2 2 2 ku ðtÞk þ kDuðtÞk þ kv ðtÞk þ krvðtÞk 6 maxf k; lg 2 2 2 2 pffiffiffi pffiffiffi pffiffiffi 6 maxf k; lgeðtÞ keðtÞ: ð4:12Þ Thus we have
je ðtÞ eðtÞj ¼ jwðtÞj 6
pffiffiffi keðtÞ:
ð4:13Þ
Proposition 4.2. There exist C1 > 0 and 1 such that for 2 ð0; 1 e0 ðtÞ 6 C1 eðtÞ:
Proof. Using the problem (1.1) we have
2
2
2
w0 ðtÞ ¼ ku0 ðtÞk þ kv0 ðtÞk kDuðtÞk 2
Z
auðtÞvðtÞ dx krvðtÞk
2
X
ðg1 ðu0 ðtÞÞ; uðtÞÞ ðg2 ðv0 ðtÞÞ; vðtÞÞ kvðtÞk2C0 ðv0 ðtÞ; vðtÞÞC0 Z t ðgðtÞjv0 ðtÞjq v0 ðtÞ; vðtÞÞC0 þ gðt rÞðjvðrÞjc vðrÞ; vðtÞÞC0 dr 0
3 3 1 1 2 2 2 2 ¼ eðtÞ þ ku0 ðtÞk þ kv0 ðtÞk kDuðtÞk krvðtÞk 2 2 2 2 Z 1 þ ðg vÞðtÞ auðtÞvðtÞ dx ðg1 ðu0 ðtÞÞ; uðtÞÞ ðg2 ðv0 ðtÞÞ; vðtÞÞ 2 X Z t 1 1 1 2 2 cþ2 gðtÞkvðtÞkcþ2;C0 gðrÞ drkvðtÞkC0 þ kvðtÞkC0 2 2 0 cþ2 ðv0 ðtÞ; vðtÞÞC0 ðgðtÞjv0 ðtÞjq v0 ðtÞ; vðtÞÞC0 Z t þ gðt rÞðjvðrÞjc vðrÞ; vðtÞÞC0 dr: 0
ð4:14Þ
220
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
Note that SchwarzÕs inequality implies Z t c gðt rÞðjvðrÞj vðrÞ; vðtÞÞC0 dr 0 Z t Z t c 2 ¼ gðt rÞðjvðrÞj vðrÞ vðtÞ; vðtÞÞC0 dr þ gðt rÞkvðtÞkC0 dr 0 0 Z Z t 1 t 3 c 2 2 6 gðt rÞjjvðrÞj vðrÞ vðtÞjC0 dr þ kvðtÞkC0 gðrÞ dr 2 0 2 0 Z t 1 3 2 ¼ ðg vÞðtÞ þ kvðtÞkC0 gðrÞ dr: ð4:15Þ 2 2 0 Also applying Sobolev imbedding, we have jðvðtÞ; v0 ðtÞÞC0 j 6 kvðtÞkC0 kv0 ðtÞkC0 6 lkrvðtÞkkv0 ðtÞkC0
ð4:16Þ
l2 2 6 gkrvðtÞk þ kv0 ðtÞkC0 ; 4g 2
where l is the positive number such that kvkC0 6 lkrvk; H€ olderÕs inequality and Young inequality imply
8v 2 H01 ðXÞ. Also
jðgðtÞjv0 ðtÞjq v0 ðtÞ; vðtÞÞj 6 gðtÞkv0 ðtÞkqþ1 qþ2;C0 kvðtÞkqþ2;C0 qþ2
qþ2
6 hðgÞgðtÞkv0 ðtÞkqþ2;C0 þ ggðtÞkvðtÞkqþ2;C0
ð4:17Þ
and Z pffiffiffiffiffiffi auðtÞvðtÞ dx 6 klkak 1 kDuðtÞkkrvðtÞk L ðXÞ X pffiffiffiffiffiffi kl 2 2 6 kakL1 ðXÞ ðkDuðtÞk þ krvðtÞk Þ: 2
ð4:18Þ
Also assumption ðA3 Þ implies j ðg1 ðu0 ðtÞÞ; uðtÞÞ ðg2 ðv0 ðtÞÞ; vðtÞÞj Z Z g g l k g1 ðu0 ðtÞÞ2 dx þ g2 ðv0 ðtÞÞ2 dx 6 kuðtÞk2 þ kvðtÞk2 þ l k 4g X 4g X Z ðk þ lÞa2 u0 ðtÞg1 ðu0 ðtÞÞ þ v0 ðtÞg2 ðv0 ðtÞÞ dx 6 gðkDuðtÞk2 þ krvðtÞk2 Þ þ 4g X ðk þ lÞa2 1 2 2 2 qþ2 6 gðkDuðtÞk þ krvðtÞk Þ þ e0 ðtÞ kvðtÞkC0 gðtÞkv0 ðtÞkqþ2;C0 4g 2 1 m1 2 bgðtÞkvðtÞkcþ2 gðtÞkvðtÞk ðg vÞðtÞ ð4:19Þ cþ2;C0 C0 2 2
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
221
and
3 2
Z
2
2
ju0 ðtÞj þ jv0 ðtÞj dx 6 X
3 2a1
Z
u0 ðtÞgðu0 ðtÞÞ þ v0 ðtÞgðv0 ðtÞÞ dx
X
3 1 2 qþ2 cþ2 6 e0 ðtÞ kvðtÞkC0 gðtÞkv0 ðtÞkqþ2;C0 bgðtÞkvðtÞkcþ2;C0 2a1 2 1 m1 2 ð4:20Þ gðtÞkvðtÞkC0 ðg vÞðtÞ : 2 2
Combining these inequalities, we have
1 2 qþ2 e0 ðtÞ þ kvðtÞkC0 þ gðtÞkv0 ðtÞkqþ2;C0 2 1 m1 2 gðtÞkvðtÞk ðg vÞðtÞ þ bgðtÞkvðtÞkcþ2 þ þ cþ2;C0 C0 2 2 pffiffiffiffiffiffi pffiffiffiffiffiffi kl kl 1 1 2 2 kakL1 ðXÞ kDuðtÞk kakL1 ðXÞ krvðtÞk g 2g 2 2 2 2 Z t 1 1 2 2 cþ2 gðtÞkvðtÞkcþ2;C0 þ ðg vÞðtÞ kvðtÞkC0 þ gðrÞ drkvðtÞkC0 þ 2 c þ 2 0
w0 ðtÞ 6 eðtÞ
3 ðk þ lÞa2 þ 4g 2a1
l2 0 2 qþ2 qþ2 kv ðtÞkC0 þ hðgÞgðtÞkv0 ðtÞkqþ2;C0 þ ggðtÞkvðtÞkqþ2;C0 4g 3 ðk þ lÞa2 0 1 3 ðk þ lÞa2 2 ¼ eðtÞ þ þ e ðtÞ kvðtÞkC0 þ 4g 4g 2a1 2 2a1 3 ðk þ lÞa2 hðgÞ gðtÞkv0 ðtÞkqþ2 þ qþ2;C0 4a1 8g 3b ðk þ lÞa2 b 1 cþ2 þ gðtÞkvðtÞkcþ2;C0 2a1 4g cþ2 Z t 3 ðk þ lÞa2 2 gðtÞ gðrÞ dr kvðtÞkC0 þ 8g 4a1 0 3m1 ðk þ lÞa2 m1 þ 1 ðg vÞðtÞ 4a1 8g pffiffiffiffiffiffi 1 kl 2 2 2 kakL1 ðXÞ ðkDuðtÞk þ krvðtÞk Þ gkDuðtÞk 2g 2 2 þ
þ
l2 0 2 qþ2 kv ðtÞkC0 þ ggðtÞkvðtÞkqþ2;C0 : 4g
ð4:21Þ
222
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
Combining (4.10) and (4.21) and considering q ¼ c, we get e0 ðtÞ ¼ e0 ðtÞ þ w0 ðtÞ "
# l2 1 2 0 kv ðtÞkC0 hðgÞ kv0 ðtÞkcþ2 6 eðtÞ 1 C1 cþ2;C0 4g 2 Z t 1 1 gðrÞ dr kvðtÞk2C0 g gðtÞkvðtÞkcþ2 gðtÞ cþ2;C0 cþ2 2 0 hm i 1 1 2 ðgvÞðtÞ gkDuðtÞk2 þ C1 kvðtÞkC0 2 2 pffiffiffiffiffiffi 1 kl kakL1 ðXÞ ðkDuðtÞk2 þ krvðtÞk2 Þ; ð4:22Þ 2g 2 2
where C1 ¼ ð3=2a1 Þ þ ððk þ lÞa2 =4gÞ. Defining ( ) 4g 1 cþ2 m1 kgkL1 ð0;1Þ ; ; ; 1 ¼ min ; ; 4gC1 þ l2 2hðgÞ ðc þ 2Þg þ 1 2 2kgkL1 ð0;1Þ choosing 2 ð0; 1 , then e0 ðtÞ 6 C2 eðtÞ for some constant C2 > 0:
ð4:23Þ
n o Continuing the proof of Theorem 2.1. Let 0 ¼ min ð1=2k1=2 Þ; 1 and let us consider 2 ð0; 0 . As we have < ð1=2k1=2 Þ, we conclude from Proposition 4.1 ð1 k1=2 ÞeðtÞ < e ðtÞ < ð1 þ k1=2 ÞeðtÞ and so 1 3 eðtÞ < e ðtÞ < eðtÞ: 2 2
ð4:24Þ
Thus we have 2 e0 ðtÞ 6 C2 e ðtÞ 3 and d 2 e ðtÞ exp C2 t 6 0: dt 3 Integrating (4.25), inequality (4.24) implies 2 eðtÞ 6 3eð0Þ exp C2 t : 3
ð4:25Þ
ð4:26Þ
J.J. Bae / Appl. Math. Comput. 148 (2004) 207–223
Hence from (4.11) and (4.26) we get 2 EðtÞ 6 l1 eðtÞ 6 3eð0Þl1 exp C2 t ; 3 This concludes the proof of Theorem 2.1.
223
t P t0 :
Acknowledgement The work was supported by the Korea Research Foundation Grant.
References [1] R. Bellman, Inequalities, Springer-Verlag, Berlin, 1971. [2] P. Biler, Remark on the decay for damped string and beam equations, Nonlinear Anal., TMA 9 (1984) 839–842. [3] E.H. Brito, Nonlinear initial boundary value problems, Nonlinear Anal., TMA 11 (1) (1987) 125–137. [4] M.M. Cavalcanti, V.N. Domingos Cavalcanti, Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary damping and memory source term, Nonlinear Anal., TMA 38 (1999) 281–294. [5] V. Georgiev, G. Todorova, Existence of a solution of the wave equations with nonlinear damping and source terms, J. Diff. Eqs. 109 (1994) 295–308. [6] A. Guesmia, Energy decay for a damped nonlinear coupled system, J. Math. Anal. Appl. 239 (1999) 38–48. [7] S. Jiang, J.E. Munoz Rivera, A global existence for the Dirichlet problems in nonlinear n-dimensional viscoelasticity, Diff. Int. Eqs. 9 (4) (1996) 791–810. [8] J.Y. Park, J.J. Bae, I.H. Jung, Uniform decay of solution for wave equation of Kirchhoff type with nonlinear boundary damping and memory term, Nonlinear Anal., TMA 50 (2002) 871– 884. [9] J.Y. Park, J.J. Bae, On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term, Appl. Math. Comput. 129 (2002) 87–105.