On univalence of two integral operators

On univalence of two integral operators

Applied Mathematics Letters 23 (2010) 1407–1411 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier...

241KB Sizes 3 Downloads 85 Views

Applied Mathematics Letters 23 (2010) 1407–1411

Contents lists available at ScienceDirect

Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml

On univalence of two integral operators Virgil Pescar a , Nicoleta Breaz b,∗ a

Department of Mathematics, ‘‘Transilvania’’ University of Braşov, Faculty of Mathematics and Computer Science, 500091 Braşov, Romania

b

Department of Mathematics, ‘‘1 Decembrie 1918’’ University of Alba Iulia, Faculty of Science, 510009 Alba Iulia, Romania

article

abstract

info

Article history: Received 26 April 2010 Accepted 21 July 2010

In this work we consider two integral operators. The integral operators were constructed on the basis of the fact that the number of functions from the composition of the operators is the entire part of a complex number modulus. © 2010 Elsevier Ltd. All rights reserved.

Keywords: Integral operator Univalence Integer part Modulus

1. Introduction Let us consider the open unit disk U and let A be the class of analytic functions defined by f (z ) = z + a2 z 2 + · · ·. We denote by S the class of univalent functions. Theorem 1.1 ([1]). If the function f belongs to the class S , then for any complex number γ , |γ | ≤ Fγ (z ) =

Z z

f (t ) t

0

1 , 4

the function

γ dt

is in the class S . Theorem 1.2 ([2]). If the function f is regular in the open unit disk U, f (z ) = z + a2 z 2 + · · · and

 zf 00 (z ) ≤ 1, 1 − |z |2 0 f (z )



for all z ∈ U, then the function f is univalent in U. Theorem 1.3 ([3]). Let α be a complex number, Re α > 0 and f (z ) = z + a2 z 2 + · · · be a regular function in U. If 1 − |z |2Re α zf 00 (z )

f 0 (z ) ≤ 1,

Re α

for all z ∈ U, then for any complex number β , Re β ≥ Re α , the function z

 Z

Fβ (z ) = β

t β−1 f 0 (t )dt

 β1

0

is in the class S .



Corresponding author. Fax: +40 258812630. E-mail addresses: [email protected] (V. Pescar), [email protected], [email protected] (N. Breaz).

0893-9659/$ – see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2010.07.007

1408

V. Pescar, N. Breaz / Applied Mathematics Letters 23 (2010) 1407–1411

Theorem 1.4 ([4]). If the function g is regular in U and |g (z )| < 1 in U, then for all ξ ∈ U, the following inequalities hold:

g (ξ ) − g (z ) ξ − z ≤ 1 − g (z )g (ξ ) 1 − z ξ

(1.1)

and

0 1 − |g (z )|2 g (z ) ≤ , 1 − |z |2 u and the equalities hold in the case g (z ) =  1z++uz , where || = 1 and |u| < 1.

Remark 1.5 ([4]). For z = 0, from inequality (1.1) we obtain for every ξ ∈ U,

g (ξ ) − g (0) 1 − g (0)g (ξ ) ≤ |ξ | and hence,

|ξ | + |g (0)|

|g (ξ )| ≤

1 + g (0)g (ξ )

.

Considering g (0) = a and ξ = z, then

|z | + |a|

|g (z )| ≤

1 + |a| |z |

,

for all z ∈ U. Theorem 1.6 ([5]). Let γ ∈ C, f ∈ S , f (z ) = z + a2 z 2 + · · ·. If

0 zf (z ) − f (z ) ≤ 1, zf (z )

∀z∈U

and 1

|γ | ≤ max

h

2

1 − |z |



· |z | ·

|z |≤1

|z |+|a2 | 1+|a2 ||z |

i,

then Fγ (z ) =

Z z

f (t )

γ dt

t

0

is in the class S . Theorem 1.7 ([5]). Let α, β, γ ∈ C, f ∈ S , f (z ) = z + a2 z 2 + · · ·. If

0 zf (z ) − f (z ) ≤ 1, zf (z )

∀ z ∈ U,

Re β ≥ Re α > 0 and 1

|γ | ≤ max

h

|z |≤1

1−|z |2Re α Re α

· |z | ·

|z |+|a2 | 1+|a2 ||z |

i,

then

 Z z  γ  β1 β−1 f (t ) Gβ,γ (z ) = β t dt t

0

is in the class S . We consider the following two general integral operators: F[|δ|] (z ) =

Z z 0

f1 ( t ) t

α1

· ... ·



f[|δ|] (t ) t

α[|δ|]

dt ,

V. Pescar, N. Breaz / Applied Mathematics Letters 23 (2010) 1407–1411

1409

where δ ∈ C, |δ| 6∈ [0, 1), αi ∈ C, fi ∈ A, i = 1, [|δ|] and

  α1 α  γ1  Z z f[|γ |] (t ) [|γ |] γ −1 f1 (t ) · ... · t dt G[|γ |] (z ) = γ , t

0

t

γ ∈ C, |γ | 6∈ [0, 1), αi ∈ C, fi ∈ A, i = 1, [|γ |]. 2. Main results Theorem 2.1. Let δ ∈ C, |δ| ∈ 6 [0, 1), αi ∈ C, for i = 1, [|δ|], Re α1 · . . . · Re α[|δ|] = Re δ , 0 < Re δ ≤ 1. If fi ∈ A, i 2 fi (z ) = z + a2 z + · · · for i = 1, [|δ|] and

0 zfi (z ) − fi (z ) ≤ 1, ∀i = 1, [|δ|], z ∈ U, zfi (z ) |α1 | + · · · + α[|δ|] ≤ 1, α1 · . . . · α[|δ|] 1 α1 · . . . · α[|δ|] ≤ i, h |z |+|c | 1−|z |2Re δ | | max · z · Re δ 1+|c ||z |

(2.1)

(2.2)

(2.3)

|z |≤1

where

1 [|δ|] α1 a2 + · · · + α[|δ|] a2 |c | = , α1 · . . . · α[|δ|] then F[|δ|] (z ) =

Z z

f1 (t )

α1

t

0

· ... ·



f[|δ|] (t )

α[|δ|] dt

t

is in the class S . Proof. We have fi ∈ A, for all i = 1, [|δ|] and Let g be the function g (z ) =



f1 (z ) z

α1

fi (z ) 0, for all z α[|δ|] f[|δ|] (z )

· ... ·

6=





z

i = 1, [|δ|].

, z ∈ U. We have g (0) = 1.

Let us consider the function F 00 (z ) · [0|δ|] , α1 · . . . · α[|δ|] F[|δ|] (z )

h( z ) =

1

z ∈ U.

This function has the form 1

[|δ|] X

α1 · . . . · α[|δ|]

i=1

1

[|δ|] X

α1 · . . . · α[|δ|]

i=1

h( z ) =

αi

zfi0 (z ) − fi (z ) zfi (z )

.

Also, h(0) =

αi ai2 .

By using the relations (2.1) and (2.2) we obtain that |h(z )| < 1 and

1 [|δ|] α1 a2 + · · · + α[|δ|] a2 |h(0)| = = |c | . α1 · . . . · α[|δ|] Applying Remark 1.5 for the function h we obtain

F 00 (z ) |z | + |c | [|δ|] · ≤ , α1 · . . . · α[|δ|] F[0|δ|] (z ) 1 + |c | |z | 1

∀z ∈ U

1410

V. Pescar, N. Breaz / Applied Mathematics Letters 23 (2010) 1407–1411

and

1 − |z |2Re δ 1 − |z |2Re δ F[00|δ|] (z ) |z | + |c | ·z· 0 · |z | · , ≤ α1 · . . . · α[|δ|] Re δ F[|δ|] (z ) Re δ 1 + |c | |z |

∀z ∈ U.

(2.4)

Let us consider the function H : [0, 1] → R defined by 1 − x2Re δ

H (x) =

Re δ

·x·

x + |c | 1 + |c | x

x = |z | .

;

We have

  H

1

> 0 ⇒ max H (x) > 0. x∈[0,1]

2

Using this result, from (2.4) we have

  1 − |z |2Re δ F[00|δ|] (z ) |z | + |c | 1 − |z |2Re δ | | · z · · z · , ≤ α · . . . · α · max [|δ|] 1 Re δ |z |<1 F[0|δ|] (z ) Re δ 1 + |c | |z |

∀z ∈ U.

(2.5)

Applying the condition (2.3) in the form (2.5) we obtain that 1 − |z |2Re δ Re δ

F 00 (z ) [|δ|] · z · 0 ≤ 1, F[|δ|] (z )

∀z ∈ U,

and from Theorem 1.3 for β = 1, we obtain that F[|δ|] ∈ S .



Theorem 2.2. Let γ , δ ∈ C, |γ | 6∈ [0, 1), αi ∈ C, for i = 1, [|γ |], Re α1 · . . . · Re α[|γ |] = Re γ . If fi ∈ A, fi (z ) = z + ai2 z 2 + · · ·, for i = 1, [|γ |] and

0 zfi (z ) − fi (z ) ≤ 1, ∀i = 1, [|γ |], z ∈ U, zfi (z ) |α1 | + · · · + α[|γ |] ≤ 1, α1 · . . . · α[|γ |] Re γ ≥ Re δ > 0, 1 α1 · . . . · α[|γ |] ≤ i, h |z |+|c | 1−|z |2Re δ | | max · z · Re δ 1+|c ||z | |z |≤1

where

1 [|γ |] α1 a2 + · · · + α[|γ |] a2 |c | = , α1 · . . . · α[|γ |] then

 Z z  α1  α  γ1 f[|γ |] (t ) [|γ |] γ −1 f1 (t ) G[|γ |] (z ) = γ t · ... · dt t

0

t

is in the class S . Proof. We consider the function h(z ) =

Z z 0

f1 (t )

α1

t

· ... ·



f[|γ |] (t )

α[|γ |]

t

Let us have the function h00 (z ) · , α1 · . . . · α[|γ |] h0 (z )

p(z ) =

1

z ∈ U.

dt .

(2.6)

(2.7)

(2.8)

V. Pescar, N. Breaz / Applied Mathematics Letters 23 (2010) 1407–1411

1411

The function p(z ) has the form 1

[|γ |] X

α1 · . . . · α[|γ |]

i =1

p(z ) =

αi

zfi0 (z ) − fi (z ) zfi (z )

.

By using the relations (2.6) and (2.7) we obtain |p(z )| < 1 and

1 [|γ |] α1 a2 + · · · + α[|γ |] a2 |p(0)| = = |c | . α1 · . . . · α[|γ |] Applying Remark 1.5 for the function h we obtain

00 h (z ) ≤ |z | + |c | , · α1 · . . . · α[|γ |] h0 (z ) 1 + |c | |z | 1

∀z ∈ U

and

2Re δ 1 − |z |2Re δ |z | + |c | h00 (z ) ≤ α1 · . . . · α[|γ |] 1 − |z | · z · · |z | · , Re δ 0 h (z ) Re δ 1 + |c | |z |

∀z ∈ U.

(2.9)

Let us consider the function Q : [0, 1] → R defined by Q (x) =

1 − x2Re δ Re δ

·x·

x + |c | 1 + |c | x

;

x = |z | .

We have Q 12 > 0 ⇒ maxx∈[0,1] Q (x) > 0. Using this result in (2.9), we have



1 − |z |2Re δ zh00 (z ) Re δ

  2Re δ |z | + |c | ≤ α1 · . . . · α[|γ |] · max 1 − |z | | | , · z · h0 (z ) |z |<1 Re δ 1 + |c | |z |

∀z ∈ U.

(2.10)

Applying the condition (2.8) in the relation (2.10), we obtain that 1 − |z |2Re δ zh00 (z ) Re δ

h0 (z ) ≤ 1,

∀z ∈ U

and from Theorem 1.3, we obtain that G[|γ |] ∈ S .



References [1] Y.J. Kim, E.P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math. J. 12 (2) (1972) 249–253. [2] J. Becker, Lownersche Differntialgleichung und quasikonform fortsetzbare schichte Functionen, J. Reine Angew. Math. 255 (1972) 23–43. [3] N.N. Pascu, An improvement of Becker’s univalence criterion, in: Proceedings of the Commemorative Session Simion Stoilow, University of Braşov, 1987, pp. 43–48. [4] G.M. Goluzin, Geometriceskaia teoria funktii kompleksnogo peremenogo, Moscova, 1966. [5] V. Pescar, On some integral operations which preserve the univalence, J. Math. XXX (1997) 1–10. (Punjab University).