Opthalmic glass particularly photochromic glass

Opthalmic glass particularly photochromic glass

Journal of Non-Crystalline Solids 47, 1 (1982) 69-86 North-llolland Publishing Company OPTIIALMIC GLASS PARTICULARLY 69 PHOTOCHROMIC GLASS R. J...

499KB Sizes 0 Downloads 74 Views

Journal of Non-Crystalline Solids 47, 1 (1982) 69-86 North-llolland Publishing Company

OPTIIALMIC GLASS

PARTICULARLY

69

PHOTOCHROMIC

GLASS

R. J. A r a u j o Research

and D e v e l o p m e n t L a b o r a t o r i e s C o r n i n g Glass Works Corning, N e w York 14831

P h o t o l y s i s of c e r t a i n g l a s s e s c o n t a i n i n g minute silver h a l i d e d r o p l e t s leads to v i s i b l e absorption° The t e m p e r a t u r e d e p e n d e n c e of the i n d u c e d a b s o r p t i o n is s t r o n g l y c o r r e l a t e d w i t h the rate at w h i c h the glass r e v e r t s to its c l e a r state upon the c e s s a t i o n of r a d i a t i o n . The factors w h i c h i n f l u e n c e the c o m p r o m i s e s in fade rates and t e m p e r a t u r e d e p e n d e n c e will be discussed. I. S U N G L A S S

SPECIFICATIONS

A p p r o x i m a t e l y o n e - h u n d r e d m i l l i o n pairs of s u n g l a s s e s are sold in the U n i t e d States every year. ~ Not o n l y is the use of s u n g l a s s e s a w i d e s p r e a d p r a c t i c e , it is a v e r y old p r a c t i c e . Tuberville, a B r i t i s h o p h t h a l m o l o g i s t , p r e s c r i b e d silk v e i l s for p o s t - o p e r a t i v e p a t i e n t s c o m p l a i n i n g of p h o t o p h o b i a in the f i f t e e n t h century. ~ The c u r r e n t p o p u l a r i t y of s u n g l a s s e s is p r o b a b l y due l a r g e l y to a s u b j e c t i v e f e e l i n g of c o m f o r t on the part of the w e a r e r but, in addition, there are c i r c u m s t a n c e s u n d e r w h i c h s u n g l a s s e s improve vision. ~ I m p r o v e d v i s i o n i n c l u d e s i m p r o v e d c o n t r a s t d i s c r i m i n a t i o n , i m p r o v e d r e s o l u t i o n and c e r t a i n l y s h o r t e r a d a p t a t i o n times. In the range from 300 c a n d e l a s / m e t e r 2 (very g o o d r o o m light) to 3000 c a n d e l a s / m e t e r 2 (moderate o u t d o o r lighting) for the a v e r a g e p e r s o n the sense of c o n t r a s t stays the same and s u n g l a s s e s are not h e l p f u l and, not s u r p r i s i n g l y , are not n o r m a l l y worn. In the range from 3000 to 30,000 c a n d e l a s / m e t e r 2, c o n t r a s t d i s c r i m i n a t i o n dec l i n e s w i t h i n c r e a s i n g i n t e n s i t y . ~ The r e a s o n for this may be related to the f i n d i n g that g r e a t e r noise is g e n e r a t e d in the retinal c i r c u i t r y at h i g h - l i g h t levels, s In the same range of light intensities, r e s o l u t i o n d e c r e a s e s w i t h i n c r e a s e d i l l u m i n a t i o n . This is p r o b a b l y r e l a t e d to the f l u o r e s c e n c e (530 nm peak) of the human lens w h i c h acts as a noise source. 4 The i m p o r t a n c e of this e f f e c t in y o u n g p e o p l e is c o n t r o v e r s i a l but in o l d e r p e o p l e (>50 years) inc r e a s e d f l u o r e s c e n s e and d r a m a t i c a l l y i n c r e a s e d i n t r a o c u l a r light s c a t t e r i n g m a g n i f y the e f f e c t v e r y s i g n i f i c a n t l y . The s h o r t e n i n g of a d a p t a t i o n times is a b e n e f i t of s u n g l a s s e s that is b e y o n d c o n t r o v e r s y . A w h o l e day at the b e a c h w i t h o u t s u n g l a s s e s will r e d u c e the eye s e n s i t i v i t y at d u s k by a l m o s t fifty percent. ~ This e f f e c t can be c u m u l a t i v e . S t u d i e s on l i f e g u a r d s who spent two w e e k s at the b e a c h w i t h o u t s u n g l a s s e s found that they did not r e g a i n their n o r m a l d a r k - a d a p t e d s e n s i t i v i t y in a full day.

0022-3093/82/0000 0000/$02.75 © 1982 North-Holland

R. Arau/o / Photochromic Glass

70

Table

I

Condition

Light Level

Effect of Increasing

300 candelas/m 2

Very good room light

1

3000 candelas/m 2

Moderate

outdoor

J

3000 candelas/m 2

Moderate light

outdoor

30,000

Bright outdoor light

candelas/m 2

Table

i) Diminishing contrast discrimination 2) Diminishing resolution 3) Increasing adaptation time

II

RecoF~ended for long time in very bright surroundings

10-20%

Recommended

20-30%

Range of sunglasses

>50%

NONE

Circumstance

Transmittance

1%

light

Intensity

Doubtful

for normal

benefit

sunlight

protection

sold in greatest

other

than cosmetic

numbers

R. Arau/o / Photochromic Glass

71

To r e n d e r b e n e f i t s in c o m f o r t and i m p r o v e d vision, s u n g l a s s e s should have t r a n s m i t t a n c e s b e t w e e n ten and t w e n t y percent. 3 R e s e a r c h e r s u n a n i m o u s l y a g r e e that g l a s s e s h a v i n g t r a n s m i t t a n c e s g r e a t e r than fifty p e r c e n t are g o o d for p r o t e c t i n g the eye from d u s t p a r t i c l e s . 8 P e o p l e s p e n d i n g s e v e r a l hours u n d e r v e r y bright, o u t d o o r c o n d i t i o n s p r o b a b l y s h o u l d w e a r g l a s s e s h a v i n g one p e r c e n t t r a n s m i t t a n c e . 9 It s h o u l d be e m p h a s i z e d that the p u p i l l a r y m e c h a n i s m does not o p e r a t e as an a u t o m a t i c sunglass. The pupil goes from m a x i m u m d i l a t i o n to s l i g h t l y less than 3 mm in d i a m e t e r o v e r an i l l u m i n a t i o n range from i0 -~ lumens (dark night) to 10 lumens (poorly l i g h t e d room). From I0 lumens to 10,000 lumens (very b r i g h t day) the pupil s h r i n k s to about 2 mm, less than a factor of two d i f f e r e n c e in area. It s h o u l d be p o i n t e d out that the a v e r a g e p e r s o n will e x p e r i e n c e no d i f f i c u l t y s e e i n g t h r o u g h g l a s s e s h a v i n g one p e r c e n t t r a n s m i t t a n c e even at light levels as low as 300 c a n d e l a s / m e t e r 2. Such dark glasse: are not popular, however, p r o b a b l y for c o s m e t i c reasons. W i t h such dark g l a s s e s the eyes of the w e a r e r can be o b s c u r e d to an o b s e r v e r and the o b s e r v e r w i l l see r e f l e c t i o n s . W e a r e r s a p p e a r to be more s e n s i t i v e to the n e g a t i v e c o m m e n t s of o b s e r v e r s than to the d e l e t e r i o u s a c t i o n of i n t e n s e sunlight. F u r t h e r m o r e , g l a s s e s t r a n s m i t t i n g less than five p e r c e n t have been d i s c o u r a g e d by some c o m m i t t e e s on s t a n d a r d s and even b a n n e d by some governments. The r e a s o n s for this are not clear. S u n g l a s s e s h a v i n g a t r a n s m i t t a n c e in the range b e t w e e n t w e n t y p e r c e n t and t h i r t y p e r c e n t c o m p r i s e a v e r y large f r a c t i o n of all the sung l a s s e s sold and to the A m e r i c a n c o n s u m e r t h e y a p p a r e n t l y r e p r e s e n t an a c c e p t a b l e c o m p r o m i s e b e t w e e n f u n c t i o n and c o s m e t i c s . Sunglasses w h i c h t r a n s m i t m o r e than fifty p e r c e n t of the i n c i d e n t light p r o b a b l y are used o n l y for c o s m e t i c effect. The i n t u i t i v e b e l i e f that s u n g l a s s w e a r e r s w o u l d p r e f e r not to look t h r o u g h d a r k g l a s s e s i n d o o r s a p p a r e n t l y p r o v i d e d m o t i v a t i o n for the d e v e l o p m e n t of p h o t o c h r o m i c glasses, i.e., g l a s s e s w h i c h d a r k e n in s u n l i g h t and a u t o m a t i c a l l y r e v e r t to the c l e a r state in the a b s e n c e of sunlight. F r o m the f o r e g o i n g d i s c u s s i o n , it is o b v i o u s that a s t e a d y - s t a t e t r a n s m i t t a n c e of 20% (in sunlight) is a r e a s o n a b l e target for a p h o t o c h r o m i c s u n g l a s s but there is little i n f o r m a t i o n w h i c h is u s e f u l in the s e l e c t i o n of a t a r g e t for f a d i n g rate e x c e p t p e r h a p s an i n t u i t i v e f e e l i n g that f a s t e r is better. W h e n it was r e c o g n i z e d that the s t e a d y - s t a t e t r a n s m i t t a n c e of the glass u n d e r a given level of i r r a d i a t i o n was a f u n c t i o n of t e m p e r a t u r e and that this t e m p e r a ture d e p e n d e n c e was c o r r e l a t e d w i t h the f a d i n g rate, s e t t i n g t a r g e t s became even more difficult. The f o l l o w i n g s e c t i o n is a brief d i s c u s s i o n of the p h y s i c s of p h o t o c h r o m i c glass to s u p p l y a b a s i s for u n d e r s t a n d i n g the i n t e r d e p e n d e n c e of the v a r i o u s p e r f o r m a n c e c h a r a c t e r i s t i c s w h i c h w i l l be d i s c u s s e d in the t h i r d section. The final s e c t i o n is c o m p r i s e d of a v e r y brief r e v i e w of the p e r f o r m a n c e c h a r a c t e r i s t i c s of one of the g l a s s e s a v a i l a b l e c o m m e r c i a l l y and an a t t e m p t to p r e d i c t how the c h a r a c t e r istics of p h o t o c h r o m i c g l a s s e s may e v o l v e in the future.

R. Arau/o / Photochromic Glass

72

II. P H Y S I C A L

MODEL

P h o t o c h r o m i c g l a s s e s can be v i e w e d as a c o l l e c t i o n of small (~100k) s i l v e r h a l i d e d r o p l e t s d o p e d w i t h c u p r o u s ions and s u s p e n d e d in an inert glass matrix. E x c i t a t i o n by UV g e n e r a t e s e l e c t r o n - h o l e pairs. The e l e c t r o n s are t r a p p e d and lead to the f o r m a t i o n of tiny anisotropic silver specks in a m a n n e r a n a l o g o u s to image f u n c t i o n in photo g r a p h i c films. C u p r o u s ions trap the holes and are t h e r e b y converte6 to c u p r i c ions. il See F i g u r e i. For r e a s o n s that w i l l be m a d e cleal

0

xE

x2

Schematic representation of silver speck and copper ions in a silver halide eryst allite. X 1 represents m a x i m u m distance at which hole trapping is possible. X 2 r e p r ~ n t ~ distance within which tunnelling is probable. The silver speck is the origin of the coordinate system.

FIGURE SCHEmaTIC

i

R E P R E S E N T A T I O N OF S I L V E R SPECK AND C O P P E R IONS IN A S I L V E R H A L I D E D R O P L E T

the p r o b a b i l i t y of hole t r a p p i n g by c u p r o u s ions d e c r e a s e s r a p i d l y w i t h d i s t a n c e from the s i l v e r speck w h i c h is g e n e r a t e d . B l e a c h i n g o] f a d i n g is a f f e c t e d by an e l e c t r o n t u n n e l i n g from the silver speck to a n e a r b y c u p r i c ion. D i f f u s i o n m a i n t a i n s a s u p p l y of c u p r i c ions in a r e g i o n close e n o u g h to the s i l v e r speck to a l l o w t u n n e l i n g . 12 D i f f u s i o n is, of course, a t e m p e r a t u r e - d e p e n d e n t process. The popul a t i o n of e l e c t r o n s h a v i n g the e n e r g y r e q u i r e d to tunnel to the cupr~ ions (see F i g u r e 2) obeys the Fermi Dirac d i s t r i b u t i o n and so the t u n n e l i n g rate is a l s o t e m p e r a t u r e d e p e n d e n t . The c o m p l e x i t y of the s y s t e m is i n c r e a s e d f u r t h e r by the fact that the Fermi Level, itself~ moves d u r i n g the d a r k e n i n g and f a d i n g process. As F i g u r e 3 indicate~ the l o c a l i z e d states a s s o c i a t e d w i t h c u p r o u s ions lie b e l o w the Fermi Level and, t h e r e f o r e , t e n d to raise it, w h i l e states a s s o c i a t e d w i t h c u p r i c ions lie above the Fermi Level and, t h e r e f o r e , tend to depres~ it. 13 This v a r i a t i o n in the Fermi Level i n f l u e n c e s the t u n n e l i n g rate and, t h e r e f o r e , the fading rate b e c a u s e it c h a n g e s the e n e r g y r e q u i r e d for t u n n e l i n g by an electron. F u r t h e r m o r e , it has the add i t i o n a l i n f l u e n c e of c h a n g i n g the rate of hole t r a p p i n g (without w h i c h d a r k e n i n g c a n n o t occur). This e f f e c t p e r h a p s r e q u i r e s f u r t h e r

R. Arau/o / Photochromic Glass

73

'//////k /////////////////// CONDUCTION BAND ELECTRON ENERGY LEVEL REQUIRED FOR TUNNELLING

Cu * ENERGY LEVEL FERMI LEVEL

VALENCE BAND

FIGURE ENERGY

DIAGRAM

//

///

FOR

I //

2

THE

/ / / / /

///////////

Ag-AgCl

/ //

INTERFACE

/ / / / /

// ///

////

/ /'/,

/ /

/ / /,," / Eo

- - E 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ef

Ev

FIGURE STATES

OF

CUPROUS

3 AND

CUPRIC

IONS

R. Arau]o / Photochromic Glass

74

clarification. If the hole is not t r a p p e d it w i l l q u i c k l y r e c o m b i n e w i t h the t r a p p e d e l e c t r o n and d a r k e n i n g does not occur. W h e n a hole is t r a p p e d by a c u p r o u s ion, the r e s u l t i n g i n c r e a s e in p o s i t i v e charg, causes a l a t t i c e r e l a x a t i o n w h i c h r a i s e s the e n e r g y level a s s o c i a t e d w i t h the c o p p e r f r o m a value of El to a value of E2 (both shown in F i g u r e 3). This e f f e c t is v e r y important, for w i t h o u t it the hole w o u l d t u n n e l from one c o p p e r site to a n o t h e r until it r e c o m b i n e d w i t h the e l e c t r o n a g a i n p r e v e n t i n g d a r k e n i n g . L a t t i c e r e l a x a t i o n is a slow process, however, and w o u l d not o c c u r b e f o r e the h o l e - e l e c t r o n r e c o m b i n a t i o n o c c u r r e d if it w e r e not for the final e f f e c t to be d e s c r i b e d in this p r e s e n t a t i o n . A p o s i t i v e c h a r g e p l a c e d near the silver speck induces in the speck a n e g a t i v e image (analogous to an i n d u c e d dipole) w h i c h raises the e n e r g y of the site. W h e n the e n e r g y of the u n r e l a x e d c o p p e r site is above the Fermi Level b e c a u s e of this image p o t e n t i a l , the m o b i l i t y of the hole b e c o m e s low e n o u g h to a l l o w l a t t i c e r e l a x a t i o n to occur. Thus, the p r o b a b i l i t y of hole t r a p p i n g is h i g h o n l y for c o p p e r ions quite near the s i l v e r speck. As the Fermi Level is d e p r e s s e d for any reason, it i n t e r s e c t s the image p o t e n t i a l at larger d i s t a n c e s from the silver. Thus, the total h o l e - t r a p p i n g rate is i n c r e a s e d and, c o n s e q u e n t l y , so is the d a r k e n i n g rate. See F i g u r e s 4 and 5.

Ag

Ag CI

Ec

....................... E~ {RELAXED COPPER LEVELS)

(UNRELAXED COPPER LEVELS) Ef

~G(×))O--+

FIGURE EFFECT

OF IMAGE

G(x)=O

-

-

4

POTENTIAL

ON D O N O R

LEVELS

R. Arau/o /Photochromic Glass

75

I0

o=10 lq= L

A0-10 A,q~ 9

A0=5 A.q: I

T=O° C

I

55

60

65

7O

x (~,)

FIGURE DISTANCE

DEPENDENCE

5 OF HOLE T R A P P I N G

R a i s i n g the Fermi Level is the m o s t e f f e c t i v e way to i n c r e a s e the fading rate of a p h o t o c h r o m i c glass. Of course, r a i s i n g the fade rate has an i n d i r e c t e f f e c t on d i m i n i s h i n g the d e g r e e of d a r k e n i n g . M o r e o v e r , in this s y s t e m the d a r k e n i n g rate, itself, is d i m i n i s h e d by r a i s i n g the F e r m i Level. A n y t h i n g that raises the Fermi Level i n c l u d i n g r a i s i n g the t e m p e r a t u r e , not o n l y i n c r e a s e s the fade rate but it d e c r e a s e s the d a r k e n i n g rate and has a d o u b l e i n f l u e n c e on d i m i n i s h i n g the s t e a d y - s t a t e d a r k e n i n g . It c a n n o t be e m p h a s i z e d too s t r o n g l y that the fading rate and the t e m p e r a t u r e d e p e n d e n c e of the s t e a d y - s t a t e d a r k e n i n g are u n u s u a l l y s t r o n g l y c o u p l e d in this system. III.

PECULIAR

EFFECTS

OBSERVED

IN P H O T O C H R O M I C

GLASSES

Since the p o s i t i o n of the Fermi Level is i n f l u e n c e d by the ratio of c u p r o u s to c u p r i c ions, one can e x p e c t that c h a n g i n g the c o p p e r content of a p h o t o c h r o m i c glas's will have s i g n i f i c a n t c o n s e q u e n c e s . S p e c i f i c a l l y , F i g u r e 6 shows the s u r p r i s i n g p r e d i c t i o n that w h e n g l a s s e s are d a r k e n e d at low t e m p e r a t u r e s , a glass c o n t a i n i n g a high level of c o p p e r d a r k e n s m o r e than a s i m i l a r glass c o n t a i n i n g less c o p p e r but w h e n the g l a s s e s are d a r k e n e d at high t e m p e r a t u r e , the o p p o s i t e b e h a v i o r is o b s e r v e d . F i g u r e 7 shows the e x p e r i m e n t a l v e r i f i c a t i o n of this effect. The price in h i g h e r t e m p e r a t u r e dep e n d e n c e one pays for i n c r e a s i n g the fade rate by i n c r e a s i n g the c o p p e r is, thus, d r a m a t i c a l l y i l l u s t r a t e d .

76

R. Araujo / Photochromic Glass

Aeq

5 .....

-20

x\\

0

i

20 40 T (°C)

FIGURE THEORETICAL

60

80

6

COPPER

CROSSOVER

20

16 Cu = . 12

12 E o

4

-80

I

I

I

-60

-40

-20

TEMP,

FIGURE EXPERIMENTAL

I 0

I 20

°C

7

COPPER

CROSSOVER

40

R. Araujo / Photochromic Glass

77

The i n t e r p l a y of the m a n y e f f e c t s i n v o l v e d c a u s e an i n d i v i d u a l glass to r e s p o n d in s t r a n g e ways to c h a n g e s in t e m p e r a t u r e and intensity. F i g u r e 8 shows the p r e d i c t e d d e p e n d e n c e of the s t e a d y - s t a t e a b s o r p tion (Aeq) on the i n t e n s i t y of UV at c o n s t a n t t e m p e r a t u r e . Note the s y s t e m does not e x h i b i t the a s s y m p t o t i c b e h a v i o r that one i g n o r a n t of

I t

I

/ /

2

3 4 5 6 7 kdI ~ (15000)

8

9

Aeq VS

I

I0

E, : Ef ( [ c ~ ] / [c,~])

FIGURE THEORETICAL the m o v i n g Fermi Level shows Aeq as a f u n c t i o n b e c a u s e o b s e r v a t i o n at m a k e o b s e r v a t i o n s as a decreases exponentially d e p e n d e n c e is v e r i f i e d

8

i n t u i t i v e l y w o u l d have expected. Figure 9 of d i s t a n c e from the i r r a d i a t e d s u r f a c e a range of d i s t a n c e s is a c o n v e n i e n t way to f u n c t i o n of intensity, since the i n t e n s i t y w i t h d e p t h into the glass. The p r e d i c t e d completely.

The solid line in F i g u r e i0 shows the p r e d i c t e d d e p e n d e n c e of Aeq on t e m p e r a t u r e at c o n s t a n t UV intensity. The e x p e r i m e n t a l p o i n t s fail to v e r i f y the p r e d i c t e d s i g m o i d a l curve b e c a u s e at such low t e m p e r atures, the d a r k e n i n g rate b e c o m e s so slow that true s t e a d y state c a n n o t be a c h i e v e d in a v a i l a b l e times. To test this p r e d i c t i o n further, a v e r y slow f a d i n g glass w i t h a p r e d i c t e d m a x i m u m in A e q at h i g h e r t e m p e r a t u r e s is required. F i g u r e ii shows that the p r e d i c t e d e f f e c t is o b s e r v e d in an e x p e r i m e n t a l glass, GBH.

R. Araujo / Photochromic Glass

78

E o <

I/I 05

L

_

A

L

_

I 2 Z 4 DISTANCE FROM FRONT EDGE

_l 5 (ram)

J

._

FIGURE 9 EXP Ae~~ VS I

,o F

- 5Ci~

0

25--

,5~o ~

.o'o~o

o~

~o

~o

TEMP °C

ca]tu]at~.d A,. xel~n, T.

The eitel~,s

are

.,xpelinlt,nta] ])llhlts foI" Blass A~X.

FIGURE i0 THEORETICAL AND EXPERIMENTAL Aeq VS T FOR GLASS ABN

R. Araujo /Photochromic Glass

79

r £;~;', °C EquiliLril.n al~.pti,m

hi exp~'r'imenlal ula~- GL{H t - a ~rl{t.~nl ,d l , . U . ' l a r t ~ r ,

FIGURE

ii

EXP Aeq VS T F O R GLASS

GBH

The fade rate, as well as Aeq , r e s p o n d s in s t r a n g e ways to c h a n g e s in t e m p e r a t u r e and i n t e n s i t y . F i g u r e 12 shows the p r e d i c t e d i n i t i a l fade rate vis d a r k e n i n g i n t e n s i t y of a glass d a r k e n e d to s t e a d y state, The data in F i g u r e 13 shows that the fade rate does, indeed, c h a n g e w i t h the i n t e n s i t y of the d a r k e n i n g source. A l t h o u g h the c a l c u l a t i o n of fade rate from a glass d a r k e n e d o n l y for finite times is p r o h i b i t i v e l y tedious, c o n s i d e r a t i o n of the m o d e l s u g g e s t s that the initial fade rate of g l a s s e s d a r k e n e d at high i n t e n s i t y s h o u l d show a m a x i m u m at i n t e r m e d i a t e d a r k e n i n g times. F i g u r e 14 shows that in a glass sold c o m m e r c i a l l y u n d e r the t r a d e m a r k " P h o t o s u n R'' the e f f e c t is quite d r a m a t i c and s i m i l a r to that shown in the t h e o r e t i c a l curve in F i g u r e ii. F i g u r e 15 shows a p e c u l i a r e f f e c t that can be o b s e r v e d if fade rates are m e a s u r e d at c e r t a i n p a r t i c u l a r t e m p e r a t u r e s . The initial fade rate is faster at the lower t e m p e r a t u r e but at l o n g e r times, the a v e r a g e fade rate is h i g h e r at the h i g h e r t e m p e r a t u r e . F i g u r e 16 shows the e f f e c t for two e x p e r i m e n t a l glasses. In use as a sunglass, the g l a s s w i l l o f t e n be d a r k e n e d at one temp e r a t u r e and faded w h i l e the t e m p e r a t u r e is c h a n g i n g . Such a situation o c c u r s w h e n a user steps from the cold o u t d o o r s into a h e a t e d building. F i g u r e 17 shows the p r e d i c t e d b e h a v i o r of a glass under such c o n d i t i o n s . F i g u r e 18 v e r i f i e s the p r e d i c t i o n . In m o s t glasses, This, of course, not be d i s c u s s e d

long w a v e l e n g t h i r r a d i a t i o n c a u s e s o p t i c a l b l e a c h i n g f u r t h e r c o m p l i c a t e s all the above e f f e c t s but will here.

The c o m p l e x i t y of the e f f e c t s i n v o l v e d in this s y s t e m m a k e s the c h a r a c t e r i z a t i o n of glass p e r f o r m a n c e very d i f f i c u l t . Disagreements

R. Arau/o / Photochromic Glass

80

AEQ 30 47q I

I

790 •

1445 ]

"

iooo

_

]_ 3000

I

o

q

2000

1

....

4000

14 93

J

5000

Iuv(ARBITRARY UNITS)

PREDICTED

FADE

FIGURE

12

RATE

FROM

Aeq

VS

I,

Aeq

,o< IMAX/ IO

i L__

I

__

L. . . . .

20

io

]

___

FROM

Aeq

50



40

.._

TiME { m i n u t e s }

FIGURE EXPERIMENTAL

FADE

13

RATE

VS

I

"

50

R. Arau/o / Photochromic Glass

81

FADERATEVSABSORPTIONFORPHOTOSUN

I oF

/

"O ¥

./,,-

o+

./"

i ~./e

I__ 5

IO

FIGURE EXPERIMENTAL

INITIAL

2C

14 FADE

1

FIGURE

15

A(cm~)

RATE

.

VS

Ama x

0

~

15

PREDICTED CROSSOVER IN FADING AT TWO TEMPERATURES

I

o w

,,~

--50°C ~. 200C

0.5-

i

1

I

I

i

r

2

5

TIME, MIN

t 4

I 5

R. Arau/o / Photochromic Glass

82

10C

8C

_~ 6O ~E

~

40

/

23°C

X

16a 20

80oc/" OFF

I

5

I

I0

I

I

15 20 TIME (MIN)

1

25

I

i

3O

5

1.0~ FIGURE

16

EXPERIMENTAL CROSSOVER IN FADING AT TWO TEMPERATURES 0.9

O~

• o.7

I I

F 2

TIME, MIN

(b) 16b

(b) erossing in fading curves tot gb.ss ABX.

I 3

R. Arau/o /Photochromic Glass

I0 r

83

~1~ _ _ . _ _ ~

b~

3) 2~ '|~-

I

l

I

]___~__L

I

2

3

4

J_

5

6

7

_J 8

TIME (MINUTES)

PREDICTED

CROSSOVER

FOR

FIGURE

17

FADING

AT

!•[ i

i

i

VARIABLE

i

i

1

L

1

9~2A-~I

FIGURE EXPERIMENTAL

18 CROSSOVER

TEMPERATURES

,

R. Araujo /Photochromic Glass

84

b e t w e e n m e a s u r e m e n t s on the same glass is no i n d i c a t i o n of error or dishonesty. The c h a r a c t e r i z a t i o n of p e r f o r m a n c e is m e a n i n g f u l o n l y for the exact c o n d i t i o n s under w h i c h the c h a r a c t e r i z a t i o n was done. A m e a s u r e m e n t of the fade rate, for example, is i n f l u e n c e d by the i n t e n s i t y of the d a r k e n i n g light source, by the length of time d a r k e n i n g , by the t e m p e r a t u r e at w h i c h the glass was darkened, by the t e m p e r a t u r e at w h i c h the glass is faded and by the i n t e n s i t y of v i s u a l light i n c i d e n t on the glass d u r i n g d a r k e n i n g and fading. IV. P H O T O C H R O M I C

PRODUCT

PERFOR}LAi~CE S P E C I F I C A T I O N S

S e t t i n g p e r f o r m a n c e t r a g e t s for p r o d u c t s m a d e from such a c o m p l i c a t e d glass is o b v i o u s l y not a t r i v i a l job. Communicating performance s t a n d a r d s to a p o t e n t i a l c u s t o m e r is e x t r e m e l y d i f f i c u l t . The a p p r o a c h t a k e n by the C o r n i n g Glass W o r k s will be d i s c u s s e d simply b e c a u s e it serves as an e x a m p l e and the o n l y e x a m p l e w i t h w h i c h the p r e s e n t a u t h o r is t o t a l l y familiar. The t e m p e r a t u r e of g l a s s e s w o r n on the face in hot w e a t h e r has been found to e x c e e d a m b i e n t t e m p e r a t u r e s by as m u c h as five c e n t i g r a d e degrees. S u n g l a s s e s w o r n in the summer or in v e r y w a r m c o u n t r i e s can be e x p e c t e d to r e a c h t e m p e r a t u r e s of 40°C quite c o m m o n l y . Hence, the s t e a d y - s t a t e t r a n s m i t t a n c e at 40°C is a v e r y i m p o r t a n t c h a r a c teristic. Since some c o u n t r i e s ban g l a s s e s w h i c h t r a n s m i t less than some s p e c i f i e d lower limit, it is i m p o r t a n t to a s c e r t a i n the d a r k e s t level the glass w i l l a c h i e v e u n d e r any n o r m a l l y a c h i e v a b l e c o n d i t i o n s of t e m p e r a t u r e and i n t e n s i t y . Since fading is m o s t o f t e n done indoors, m e a s u r e m e n t of the fading rate at 20 to 22°C is a r e a s o n a b l e characterization. M o r e o v e r , since the s l o w e s t fade rates that can p o s s i b l y be o b s e r v e d at 20°C are those m e a s u r e d in g l a s s e s h a v i n g been d a r k e n e d for v e r y long times at high t e m p e r a t u r e s , those are the ones that the C o m i n g Glass W o r k s has c h o s e n to p u b l i s h in the l i t e r a t u r e w h i c h d e s c r i b e s their p r o d u c t s .

90 80

BOROSILICATE . GLASS B ~//

~

--. . . . "IS.,1__

!

FIGURE

70

/!

60

/

C O M P A R I S O N OF CANDIDATE GLASSES

50 4C-3O

I°lo

EXTRA

i

19

I

lO

I

20

TEMPERATURE 20oC THICKNESS 2MM

I

I

I0 20 TIME (MIN)

I

50

~

I 60

R. Arau]~ / Photochromic Glass

85

Figure 19 shows the p e r f o r m a n c e c h a r a c t e r i s t i c s of two g l a s s e s w h i c h were c a n d i d a t e s for use in the p r o d u c t i n t r o d u c e d in 1979 u n d e r the r e g i s t e r e d t r a d e m a r k " P h o t o g r a y Extra R Lenses". The d e c i s i o n was m a d e to m a r k e t the s l o w e r glass b e c a u s e of the lower t r a n s m i t t a n c e at 40°C. A l t h o u g h the r e a s o n s for this c h o i c e are f a i r l y c o m p e l l i n g , as we have a l r e a d y seen, they are, n o n e t h e l e s s , b a s e d on s u b j e c t i v e c r i t e r i a and o t h e r m a n u f a c t u r e r s w o u l d p e r h a p s have c h o s e n differently. V. THE F U T U R E Any c o m m e n t about the future is, at best, a guess. In p a r t i c u l a r , my c o m m e n t s about the future e v o l u t i o n of p h o t o c h r o m i c g l a s s e s represents o n l y my own p e r s o n a l o p i n i o n s on w h a t is d e s i r a b l e and w h a t is possible. U n l e s s g l a s s e s can be m a d e w h i c h fade c o m p l e t e l y in a small n u m b e r of seconds, i m p r o v i n g the fade rate of the g l a s s e s is of l i m i t e d value. I m p r o v i n g the t e m p e r a t u r e d e p e n d e n c e so that g l a s s e s d a r k e n to less than t w e n t y p e r c e n t t r a n s m i t t a n c e at all t e m p e r a t u r e s will be a benefit to eye c o m f o r t and p e r h a p s to i m p r o v e d vision. On the o t h e r h a n d the b e n e f i t may not be p e r c e i v e d by e v e r y o n e as b e i n g w o r t h the problems a s s o c i a t e d w i t h a d d i n g a n o t h e r glass into the d i s t r i b u t i o n system. F u r t h e r m o r e , a l t h o u g h the p a r a m e t e r s in the model are u n d e r stood w e l l e n o u g h so that a glass can, in p r i n c i p l e , be d e s i g n e d w i t h i m p r o v e d t e m p e r a t u r e d e p e n d e n c e and u n c o m p r o m i s e d f a d i n g rates, the s p e c i f i c c h e m i c a l a p p r o a c h to a d j u s t i n g those p a r a m e t e r s is o n l y imperfectly appreciated. C o n s e q u e n t l y , there is no c e r t a i n t y that such a glass can be m a d e in a m a n n e r that is c o m m e r c i a l l y p r o f i t a b l e . My own p e r s o n a l w i s h is for a g l a s s that d a r k e n s to one p e r c e n t transm i t t a n c e at all t e m p e r a t u r e s if f a d i n g b a c k to t w e n t y p e r c e n t can be a c h i e v e d in five m i n u t e s indoors. I s u s p e c t that c o n s i d e r a t i o n s of c o s m e t i c f a c t o r s and g o v e r n m e n t a l r e g u l a t i o n s p r e c l u d e the w i d e spread, e n t h u s i a s t i c r e c e p t i o n of such a product. Furthermore, a c a r e f u l c o n s i d e r a t i o n of the m o d e l c a u s e s me to have some d o u b t s that such a glass can be m a d e in the silver h a l i d e system. N e w p r o d u c t s m a y well r e p r e s e n t slight c h a n g e s in j u d g m e n t of the r e l a t i v e i m p o r t a n c e of the v a r i o u s c h a r a c t e r i s t i c s of p h o t o c h r o m i c glasses, but as far as d r a m a t i c i m p r o v e m e n t s in the p e r f o r m a n c e of silver h a l i d e p h o t o c h r o m i c g l a s s e s go - O s c a r H a m m e r s t e i n a n t i c i p a t e d my f e e l i n g w h e n he said "they've gone about as far as they can go".

REFERENCES i. Cool

Ray,

Inc.,

2. Snyder,

C.

3. Miller,

D.,

4. Miller,

D.,

5. Barlow,

H. B.,

Fact

(1965), (1974), Beth

Book,

Arch.

(1958),

6. Hect, S., Hendley, Am. J. O p t h a l m o l . ,

9068,

Opthalmol.,

Survey

Israel

No.

Cool

Ray,

private

J. P h y s i o l . ,

C. D., Ross, 3_~i, 1573.

S.,

1972.

7_~3, 897.

of O p t h a l m o l o g y ,

Hospital,

U. S. A.,

141,

19,

38.

communication. 337.

and R i c h m o n d ,

P. N.,

(1948),

R. Arau/o / Photochromic Glass

86

7. Peckham, 624. 8. Evans,

R. H. and Harley,

P. Y.,

R. D.,

(1950), Arch. Ophthalmol.,

(1978), Pharmacy Times,

4_44,

June, pg. 44.

9. Wolbarsht, M. L., Departments of Ophthalmology and Biomedical Engineering, Duke University, private communication. 10. Moon, P., (1961), The Scientific Basis of Illuminating Engineering, p. 401, Dover Publications, New York. ii. Araujo,

R. J.,

(1980), Contemp. Phys.,

21, 77.

12. Araujo, R. J., Borrelli, N. F., and Nolan, Mag., 42, 279.

D. A.,

(1979), Phil.

13. Araujo, R. J., Borrelli, N. F., and Nolan, D. A., Mag., 44, 453.

(1981), Phil.