Optical properties of polyparaphenyl thin films from oligomers to polymers

Optical properties of polyparaphenyl thin films from oligomers to polymers

ELSEVIER Synthdic Metals 84 (1997) 287-288 Optical properties of polyparaphenyl thin films fi-om oligomers to polymers L. AtJ~ouel%~, J. WCrya,B...

206KB Sizes 0 Downloads 24 Views

ELSEVIER

Synthdic

Metals

84 (1997)

287-288

Optical properties of polyparaphenyl thin films fi-om oligomers to polymers L. AtJ~ouel%~, J. WCrya,B. Duliet?, J. Bullo?, J.P. Buisson’andG. Froyerqb aLaboratoire de Physique Cristalline, Institut desMat&iaux de Nantes, Universitb de Nantes 2 rue de la Houssinikre, 44072 Nantes CIdex 03 (France) bDt+partement Science et Genie desMat+iaux, Institut Universitaire de Technologie de Nantes La Chantrerie, Rue Christian Pauc, C.P. 3023, 44087 Nantes cldex 03 (France) Abstract

Parasexiphenyland paraoctiphenylwere recentlysynthesizedby an electrochemical methodusingmonobrominated compoundsand purified by sublimation.Moreover theseoligomerscan be processedby vacuum sublimationand high purity films were obtained whateverthe substrate.Various characterizationmethodsare allowedwhich facilited the understandingof the electronicand optical propertiesof the polyparaphenyls. Keywords: Infrared andRamanspectroscopy; Photoluminescence, UV-Vis-NIR absorption;Other conjugatedand/orconductingpolymers

1.

762.8cm-’ : out-of-plane vibrations of C-H on monosubstituted rings 810cm-’ : out-of-plane vibrations of C-H on parasubstituted rings.

Introduction

The studyof oligomersis a promisingway to understandat best conductingpolymer propertiesand may help to enhance performancesof electronic devices such as light emitting diodes[I]. PPP oligomers such as parasexiphenyl and paraoctiphenylhave high enoughmolecularweight to present properties close to those of PPP. This paper presentsthe experimentalresultsaboutthe spectroscopic characterizationsof PPPoligomersfrom biphenyl to principally paraoctiphenyland polymer : IN-visible and JR absorptionspectroscopies, Raman scatteringspectroscopy andphotoluminescence at 77 K. 2.

Experimental

Paraoctiphenyl,08, wassynthesizedby electroreductionof monobromoquaterphenyl in the presenceof a zero-valentnickel catalyst,similar electrochemical methodusedfor parasexiphenyl synthesis[2]. Purification of the paraoctiphenylpowder was carried out by sublimationat 690K and condensationat about 570K in a presettemperaturegradientundera residualpressure of IF5 Pa. @a thin &IS were then obtained on various substrates(glass,silicon dioxyde, monocrystallinesilicon) by sublimationat about 620K under a secondaryvacuumsystem [3]. The used depositionrate was 3.1U2nm.sS1, the substrate temperature420 K andthe film thickness250 nm. The oligomer thin films were then characterizedby various spectroscopic methods and the results are compared with those of parasexiphenylandpolyparaphenylene. 3.

Results and discussion

3.1,

IR absorption

spectrosco~

Figure la. showsthe main 1Rabsorptionsof pure @8 thin films which are assignedasfollows : 0379-6779/97/$17.00 SO379-6779(96)04010-6

PII

0 1997

Elsevier

Science

%A.

All

rights

#served

700

800

900

1000

1100

200

250

300

350

400

450

Wavenumber(cm-l) Wavelength(run) Fig. 1. IR and W-visible absorptionof paraoctiphenylthin film Thesevibrationsare the only onesto be sensitiveto the polymerization degree variations. The energiesand relative intensitiesof the @aabsorptionsare in good agreementwith thoseof the oligophenylenefamily. The different values from biphenyl to PPP (Yamamoto and Kovacic) are reported in Table 1 : Table 1 Out-of-planevibrationsof C-H for the oligophenylenefamily CD2

parasubstituted rings(cm-‘) monosubstituted728 rings(cm-‘) ImonosudIparasub

* Reference[4]

-

03

a4

@5

Q6

Q3

PPP*

839

826.5

818.7

815

810

805(K) 807(Y)

745

754.1

759.1

761

762.8

766

1.57

1.19

1.08

0.98

0.63

0.18(K) 0.35(Y)

K : Kovacic

Y : Yamamoto

L. Afhout;[ et al. /SyntheticMetals 84 (1997) 287-288

288

The plot of the wavenumbersas a function of the polymerization degree shows that the out-of-plane C-H vibrationsenergiesstronglyevoluteup to n=8 andthen remains almostconstantup to PPPKovacic. Moreoverthe polymerization degreeof the oligomerscan be determinedby the relative absorptionpeaksintensities.The increaseof the aromaticrings number from terphenyl to PPP reveals a decreaseof the IIllOllOS” dpmub ratio. This is in agreement with the increaseof the parasubstitutedrings number comparedwith those of the monosubstituted rings. Figure 1.a. also showsthat the 1000cm-’ band is almost missingcontrary to the 08 powderspectrum[I]. This behaviour is significantof a notable0s chainsorientationas previously observedin parasexiphenylthin films [5]. 3.2. Raman diffusion spectroscopy

On the figure 1.b. the W-visible absorptions of paraoctiphenyland parasexiphenylare shown.Experimentally (Table3) the 0s R+ n* transition(about3.8-3.9eV) seemsto be closeto the 0.6interbandtransition,whereasits opticalgapof 2.97 eV comesin between those of 06 (3.15 eV) and PPP (2.80 eV). 3.4. Photoluminescence

The photoluminescence of @6,08 andPPP(Figure3.) showsan emitting blue light with maxima at : 3.09, 2.93, 2.76 and 2.60eV for 06, 2.94, 2.76, 2.61 and 2.43eV for m.8and 2.85, 2.68, 2.51 and 2.34 eV for PPP. Moreover a red shift is confiied by the @sspectrumwhenthe aromaticringsnumber increases,

Figure2 showsthat a light dispersionappearsin frequency with the conjugaison lengthandwith the excitationwaveenergy. Moreover the relative intensitiesratio I&Ilz80 increaseswith the sameparameters,asshownonthe table2.

-08:422

449.5 416 510

450 500 550 600 650 Wavelength(nm) Fig. 3. Photoluminescence of parasexiphenyl,paraoctiphenyl andPPPat low temperature(77 K) andhexc= 335nm 350

800

1300

1800

Wavenumber(cm-l )

4. Conclusion 800

1300

1800

Wavenumber(cm-l)

Fig. 2. Ramanspectra of parasexiphenyl,paraoctiphenyland PPPat 514.5nm and676.4m-n Table2 Ramanintensitiesratio of the 1220cm-’and 1280cm” peaks _ e 1122d112s0

0’6 08

PPP

h=1064nm 0.81 1.03 1.93

400

h=676.4nm 31=514,5mnh=363nm 0.88 1.06 fluorescence 1.17 1.36 -1.75 2.55 2.60 -2.20

The paraoctiphenyl spectroscopicproperties are in good agreementwith the oligophenylenepropertiesand get more closer to PPP’s than those of parasexiphenyl.Paraoctiphenyl seemsthen to be a good candidatefor a blue-light emitting diode.Moreoverthe resultsobtainedwith the paraoctiphenylare inducedto realizeorientedparaoctiphenylthin films. References [ll

PI 3.3. UY-visible absorption spectroscopy Table3 Interbandtransitionandopticalgapof oligophenyls Absorption Interband Absorption Optical maximum transition bottom gap (eV) (eV) ( 1 ( ) 06 3; 3.875 3E 3.15 08 closeto a)6 3X-3.9 417 2.97 3.2 443 2.8 PPP* 380-400 * references[4] and[G]

131 t41

PI Fl

G. L&sing,

S. Tascb, F. Meghdadi,

Met., (in print) G. Grem, G. Leditiy,

L. AthouBl and G. Froyer,

Synth.

B. Ullrich and G. Leising, Adver. Mater., 4 (1992) 607 G. Froyer, Y. Pelous, E. Dall’arche, C. Chevrot and k Siove, E.P. PatentNo. 467 762 (1992); K. Faid, k Siove, C. Chevrot, M.T. Riou and G. Froyer, J. Chim. Phys.,89(5) (1992) 1305 L. AthouBl, G. Froyer, M.T. Riou and M. Schott, Thin SolidfYlms, 274 (1996) 35 G. Froyer, J.Y. Goblof J.L. Guilbert, F. Maurice and Y. Pelous, J. Phys., Coil. C3, Suppl. No. 6, 44 (1983) 745 S. KrichBne, S. Lefimt, Y. Pelous, G. Froyer, M. Petit, A Digua and J.F. Fauvarque, Synrh.Met,, 17 (1987) 607 L. Athouel, M.T. Riou and G. Froyer, J. Chim. Phys., 89(5) (1992) 1271 J.F. Fauvarque, MA Petit, k Digua, G. Froyer, MakromoKhem., 188 (1987) 1833