Optimum Design of Distributed Mass and Stiffness Structural Systems Under Constraints

Optimum Design of Distributed Mass and Stiffness Structural Systems Under Constraints

OPTIMUM DESIGN OF DISTRIBUTED MASS AND STIFFNESS STRUCTURAL SYSTEMS UNDER CONSTRAINTS R. A. Rand* and C . N . Shen Rensselaer Polytechnic Institute, T...

5MB Sizes 0 Downloads 10 Views

OPTIMUM DESIGN OF DISTRIBUTED MASS AND STIFFNESS STRUCTURAL SYSTEMS UNDER CONSTRAINTS R. A. Rand* and C . N . Shen Rensselaer Polytechnic Institute, Troy, New York, USA ABSTRACT S h e l l s t r u c t u r e s a r e c l a s s i c examples o f d i s t r i b u t e d parameter systems. I n t h i s paper an approach i s developed t o o b t a i n t h e optimum (minimum w e i g h t ) c o n f i g u r a t i o n o f a g e n e r a l s h e l l s t r u c t u r e s u b j e c t e d t o simultaneous frequency and s t r e s s c o n s t r a i n t s . The c o n s t r a i n e d frequenc i e s a r e determined by d i s c r e t i z i n g t h e s h e l l u s i n g a f i n i t e - e l e m e n t t e c h n i q u e and t h e n m i n i m i z i n g s p e c i a l R a y l e i g h q u o t i e n t s d e f i n e d f o r t h e f i n i t e - e l e m e n t model. The optimum c o n f i g u r a t i o n i s determined by o p t i m a l d e c i s i o n o f a v e c t o r o f m a t e r i a l and geometric d e s i g n parameters u s i n g a m o d i f i e d Complex technique. The approach i s demonstrated by a p p l i c a t i o n t o a c o n i c a l s h e l l o f e l l i p t i c a l c r o s s - s e c t i o n s u b j e c t e d t o i n e r t i a l and e x t e r n a l l y a p p l i e d l o a d i n g s . An a n a l y t i c a l s o l u t i o n t o t h i s problem, o b t a i n e d u s i n g l e a s t squares techniques and Lagrange m u l t i p l i e r s , i s presented f o r comparison. INTRODUCTION Continuous s t r u c t u r a l systems a r e c l a s s i c examples o f d i s t r i b u t e d parameter systems. H i s t o r i c a l l y , t h e dynamic response o f such systems has been determined by f o r m u l a t i o n and s o l u t i o n o f a s e t o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s . I n g e n e r a l , t h i s s e t o f e q u a t i o n s i s so comp l e x t h a t numerical methods a r e r e q u i r e d t o o b t a i n t h e s o l u t i o n . For example, c o n s i d e r a s h e l l s t r u c t u r e o f general shape. The e q u a t i o n s governing t h e dynamic response o f t h e s h e l l a r e f o r m u l a t e d by f i r s t c o n s i d e r i n g t h e response o f a d i f f e r e n t i a l element, as shown i n F i g . 1.

5,,c2 r,

= meridmmal CoordiMtes

-

"0-1

cmrdinate

VF =

F i g . 1.

FIBER WW4E

F i g . 2. D e f i n i t i o n o f l a m i n a t e parameters a , tL, v

D i f f e r e n t i a l s h e l l element

The response o f t h i s element i s d e s c r i b e d by a s e t o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s c o n s i s t i n g of f i v e e q u i l i b r i u m e q u a t i o n s , s i x f o r c e - s t r a i n r e l a t i o n s , and s i x s t r a i n - d i s p l a c e m e n t r e l a t i o n s . A complete d e r i v a t i o n o f these e q u a t i o n s i s g i v e n by Kraus ( 1 ) . The response o f t h e complete s h e l l s t r u c t u r e i s o b t a i n e d by i n t e g r a t i n g t h i s s e t o f e q u a t i o n s o v e r t h e e n t i r e s h e l l surface and a p p l y i n g a p p r o p r i a t e i n i t i a l and boundary c o n d i t i o n s . The r e s u l t i n o e q u a t i o n s a r e solved, f o r a p a r t i c u l a r c o n f i g u r a t i o n and l o a d i n g , e i t h e r by f i n i t e - d i f f e r e n c e techniaues o r by d i r e c t numerical i n t e g r a t i o n .

*Now w i t h General E l e c t r i c N u c l e a r Energy D i v i s i o n , San Jose, C a l i f o r n i a , U.S.A. 511

R. A . Rand and C . N .

Shen

An a l t e r n a t i v e t o t h i s c l a s s i c a l approach has e v o l v e d o v e r t h e p a s t s e v e r a l y e a r s . Before f o r m u l a t i o n o f t h e g o v e r n i n g e q u a t i o n s t h e c o n t i n u o u s s t r u c t u r e , w h i c h i n t h e c l a s s i c a l app r o a c h has an i n f i n i t e number o f degrees o f freedom, i s i d e a l i z e d as an assembly o f d i s c r e t e elements, o f f i n i t e dimension, w i t h assumed response c h a r a c t e r i s t i c s . These elements a r e i n t e r c o n n e c t e d a t a f i n i t e number o f nodal p o i n t s . The d i s p l a c e m e n t components o f t h e nodal p o i n t s become t h e degrees o f freedom f o r t h e s t r u c t u r e . The response of t h e s t r u c t u r e i s obt a i n e d by combining t h e response o f t h e d i s c r e t e elements such t h a t e q u i l i b r i u m and compatib i l i t y c o n d i t i o n s a r e s a t i s f i e d a t a l l nodal p o i n t s . However, s i n c e t h e s i z e of t h e elements remains f i x e d and t h e number o f degrees o f freedom i s f i n i t e , i n t e g r a t i o n s o v e r t h e e n t i r e s t r u c t u r e a r e r e p l a c e d by f i n i t e summations and t h e p a r t i a l d i f f e r e n t i a l e q u a t i o n s o f t h e cont i n u o u s s t r u c t u r e a r e r e p l a c e d by a system o f o r d i n a r y d i f f e r e n t i a l e q u a t i o n s o f l a r g e dimens i o n , w h i c h a r e i d e a l l y s u i t e d f o r s o l u t i o n on l a r g e s c a l e d i g i t a l computers. The m a j o r d i f f e r e n c e between t h i s new approach, now commonly r e f e r r e d t o as t h e f i n i t e - e l e m e n t method, and t h e c l a s s i c a l approach i s t h a t a p p r o x i m a t i o n s a r e i n t r o d u c e d i n t h e f o r m u l a t i o n o f t h e g o v e r n i n g e q u a t i o n s , r a t h e r t h a n i n t h e i r s o l u t i o n . The f i n i t e - e l e m e n t method has been a p p l i e d t o v a r i o u s t y p e s o f s t r u c t u r e s w i t h e x c e l l e n t r e s u l t s ( R e f s . 2,3). There i s c o n s i d e r a b l e i n t e r e s t i n d e v e l o p i n g automated t o o l s f o r s e e k i n g optimum s t r u c t u r a l c o n f i g u r a t i o n s ( R e f . 4 ) . The s t r u c t u r a l o p t i m i z a t i o n problem i s g e n e r a l l y posed as t h a t o f d e t e r m i n i n g t h e v a l u e o f a s e t o f v a r i a b l e d e s i g n parameters such t h a t an o b j e c t i v e f u n c t i o n i s n ~ i n i m i z e d( o r maximized) s u b j e c t t o a p p r o p r i a t e d e s i o n c o n s t r a i n t s . The o b j e c t i v e f u n c t i o n i s d e f i n e d i n such a way t h a t i t i s a measure o f t h e "goodness" o f t h e s t r u c t u r e under c o n s i d e r a tion. Because o f t h e i r h i g h s t r u c t u r a l e f f i c i e n c y , d i s t r i b u t e d parameter s h e l l s t r u c t u r e s a r e used i n h i g h performance a p p l i c a t i o n s where w e i g h t i s most o f t e n t h e p r i m e measure o f t h e "goodness" o f t h e d e s i g n . O t h e r measures such as f a b r i c a t i o n c o s t s and r e f u r b i s h a b i l i t y c o u l d a l s o e n t e r i n t o t h e e v a l u a t i o n o f t h e d e s i g n , b u t i n t h i s s t u d y o n l y t h e s t r u c t u r a l w e i g h t w i l l be i n c l u d ed i n t h e o b j e c t i v e f u n c t i o n and t h e terms "minimum w e i g h t d e s i g n " and "optimum d e s i g n " w i l l be used i n t e r c h a n g e a b l y . To f u r t h e r i n c r e a s e t h e s t r u c t u r a l e f f i c i e n c y , s h e l l s t r u c t u r e s a r e o f t e n c o n s t r u c t e d o f a f i b e r - r e i n f o r c e d composite. Composite m a t e r i a l s have been employed w i t h e v e r - i n c r e a s i n g f r e quency i n r e c e n t y e a r s , e s p e c i a l l y i n h i g h performance s h e l l s t r u c t u r e s . A l t h o u g h a composite m a t e r i a l i s , i n g e n e r a l , d e f i n e d as a m a t e r i a l system composed of a m i x t u r e o r c o m b i n a t i o n of two o r more c o n s t i t u e n t s t h a t d i f f e r i n f o r m a n d / o r c o m p o s i t i o n and t h a t a r e e s s e n t i a l l y i n s o l u b l e i n one a n o t h e r , t h i s d i s c u s s i o n d e a l s e x c l u s i v e l y w i t h h i g h performance f i b e r comp o s i t e s , i . e . composite m a t e r i a l s i n w h i c h h i g h s t r e n g t h f i b e r s a r e embedded w i t h p r e f e r r e d o r i e n t a t i o n s i n a ( r e l a t i v e l y ) l o w s t r e n g t h m a t r i x . Such composites a r e f a b r i c a t e d by s t a c k i n g l a m i n a e c o n s i s t i n g o f s t i f f f i b e r s embedded i n a s o f t m a t r i x , as shown s c h e m a t i c a l l y i n F i g . 2. The f i b e r o r i e n t a t i o n a n g l e a , l a m i n a t h i c k n e s s tL, and f i b e r volume f r a c t i o n v F f o r each lami n a a r e ( m a t e r i a l ) d e s i g n parameters. However, i n h i g h performance a p p l i c a t i o n s t h e s h e l l s a r e l i k e l y t o be s u b j e c t e d t o e x t e r n a l e x c i t a t i o n s . To a v o i d h a r m f u l resonance e f f e c t s , t h e s h e l l s must be designed s u b j e c t t o cons t r a i n t s on t h e i r n a t u r a l f r e q u e n c i e s ( R e f s . 5, 6, 7 ) . These c o n s t r a i n t s a r e u s u a l l y o f t h e form

n a t u r a l frequency o f t h e s h e l l i n q u e s t i o n and w A , w a r e d e s i g n conwhere w i s t h e ith 'i s t r a i n t $ d e t e r m i n e d from t h e f r e q u e n c i e s o f t h e e x t e r n a l e x c i t a t i o n s . 7 C o n s t r a i n t s o f t h e f o r m ( I ) , ( 2 ) a r e imposed on t h e n a t u r a l f r e q u e n c i e s t o m a i n t a i n s t r u c t u r a l i n t e g r i t y under t h e time-dependent l o a d i n g s . To i n s u r e s t r u c t u r a l i n t e g r i t y under any t i m e independent l o a d i n g s , s t r e s s c o n s t r a i n t s o f t h e f o r m

where oi i s t h e a p p l i e d s t r e s s and si imposed.

i s t h e l a m i n a t e s t r e n g t h i n t h e ith direction, are also

Distributed Mass and Stiffness Structural Systems

I n l i Y i h ~O T tile above d i s c u s s i o n , t h e o b j e c t i v e s of t h i s s t u d y were t o develop a t e c h n i o u e t o determine t h e n a t u r a l frequencies o f g e n e r a l composite s h e l l s ; develop a t e c h n i q u e t o o p t i m i z e such s h e l l s s u b j e c t t o n a t u r a l frequency and s t r e s s c o n s t r a i n t s ; and demonstrate t h e techniques by a p p l i c a t i o n t o a t y p i c a l problem. To accomplish these o b j e c t i v e s , a frequency c a l c u l a t i o n method c o u p l i n g t h e f i n i t e - e l e m e n t t e c h n i q u e f o r d i s c r e t i z a t i o n of c o n t i n u o u s s t r u c t u r a l systems w i t h a s p e c i a l R a y l e i g h q u o t i e n t t e c h n i q u e i s developed. A m i n i m i z a t i o n t e c h n i q u e der i v e d by m o d i f y i n g t h e "Complex Method" o f Box(8) i s a l s o developed. T h i s m i n i m i z a t i o n techn i q u e i s c o m p a t i b l e w i t h t h e frequency c a l c u l a t i o n techniaue. A s o l u t i o n i s p r e s e n t e d i n which t h e optimum c o n f i g u r a t i o n f o r a d i s t r i b u t e d parameter s h e l l s t r u c t u r e i s o b t a i n e d t h r o u g h o p t i m a l d e c i s i o n o f a v e c t o r o f d e s i g n parameters which j n c l u d e s b o t h m a t e r i a l and geometric v a r i a b l e s . The s h e l l i s s u b j e c t e d t o simultaneous frequency and s t r e s s c o n s t r a i n t s . T h i s paper d e a l s p r i m a r i l y w i t h t h e frequency c a l c u l a t i o n technique. The o p t i m i z a t i o n p o r t i o n o f the study i s described i n less d e t a i l . ANALYSIS Problem D e f i n i t i o n A d i s t r i b u t e d parameter system c o n s i s t i n g o f a s l e n d e r c o n i c a l s h e l l o f e l l i p t i c a l c r o s s s e c t i o n w i t h a m e t a l l i c end r i n g i s r i g i d l y a t t a c h e d t o a f o u n d a t i o n and s u b j e c t e d t o i n e r t i a l l o a d i n g a l o n g i t s a x i s and p e r i o d i c t r a n s v e r s e ( e x t e r n a l ) l o a d i n g normal t o i t s a x i s and p a r a l l e l t o t h e m i n o r e l l i p t i c a l a x i s , as shown s c h e m a t i c a l l y i n F i g . 3. Such l o a d i n g s would o c c u r on a s h e l l used as t h e p r i m a r y s t r u c t u r a l member o f a h e l i c o p t e r r o t o r blade, as shown schema t i c a l l y i n F i g . 4.

C~

al shell structure ( s c h m t ~ c l

TRALqTRSF (E.TlTRWl mAII

----

RIV;

, b) ring g-tv and load on d l f f e m t l a l c l m t

',

FAIRIV;

('XXSTRIPXlR4J.I FOUNIY\TI(K'

F i g . 3.

S h e l l s t r u c t u r e and l o a d i n g

F i g . 4. A p p l i c a t i o n o f t a p e r e d e l l i p t i c a l s h e l l as p r i m a r y s t r u c t u r a l member o f r o t o r b l a d e (schematic)

For t h e case shown i n F i g . 4 t h e i n e r t i a l l o a d i n g a r i s e s due t o t h e r o t a t i o n o f t h e s h e l l about an a x i s normal t o i t s c e n t e r l i n e and t h e t r a n s v e r s e l o a d i n g i s t h e l i f t generated by t h i s r o t a t i o n . The r i n g i s used so t h a t r e a c t i o n s a t t h e attachment p o i n t w i l l n o t r e s u l t i n h i g h l o c a l stresses i n the s h e l l wall. The she:l i s assumed t o be a f i b e r - r e i n f o r c e d l a m i n a t e c o n s t r u c t e d by s t a c k i n g f i b e r g l a s s - e p o x y laminae. The f i b e r o r i e n t a t i o n a n g l e a, t h i c k n e s s t , and f i b e r volume f r a c t i o n v f o r each lamina a r e ( m a t e r i a l ) d e s i g n parameters. F o r a n a l y s \ s purposes we assume t h e l a m i k a t e c o n s i s t s o f f o u r laminae. The v a l u e s o f vF, t and t h e magnitudes of a a r e equal f o r each laminae; t h e s i g n of a v a r i e s such t h a t t h e l a m ~ n a k ei s balanced. The l a m i n a t e geometry i s shown i n F i g . 5. M a t e r i a l p r o p e r t i e s o f t h e f i b e r g l a s s and epoxy c o n s t i t u e n t s o f t h e l a m i n a t e a r e shown i n Table 1 . The s i z e of t h e m e t a l l i c a t t a c h i n g r i n g i s c h a r a c t e r i z e d by a s i z e parameter b, where b i s a ( g e o m e t r i c ) d e s i g n parameter. The geometry o f t h e r i n g i s shown i n F i g . 6. TABLE 1 M a t e r i a l P r o p e r t i e s o f Composite C o n s t i t u e n t s

Fiberglass EPOXY

e 2 ( E l a s t i c modulus, l b / i n )

v (Poissons r a t i o )

(Weight d e n s i t y , l b s / i n 3 )

16.0 X lo6 0 . 5 X lo6

0.20 0.35

.0914 .0500

P

R. A. Rand and C . N. Sllen

F i a . 5.

Laminate geometry

F i g . 6.

A t t a c h i n g r i n g geometry

For t h e h e l i c o p t e r b l a d e a p p l i c a t i o n c o n s i d e r e d i n t h i s problem t h e o v e r a l l s h e l l geometry and l o a d i n g s a r e as shown i n F i g . 7. The a x i a l l o a d i n g f v a r i e s a l o n g t h e l e n g t h o f t h e s h e l l b u t i s assumed t o be independent of t i m e T . The t r a n s v e r s e l o a d i n g n i s assumed t o be u n i f o r m a l o n g t h e l e n g t h of t h e s h e l l and t o c o n s i s t o f a l a r g e time-independent component no due t o t h e l i f t generated by b l a d e r o t a t i o n and a time-dependent component n ' a r i s i n g f r o m unsteady aerodynamics ( f l u t t e r ) . The e x c i t a t i o n f r e q u e n c y o f n ' i s assumed t 8 v a r y randomly between 0 and w ' To a v o i d t h e harmful resonance e f f e c t s o f laPge t i p d e f l e c t i o n s and l a r g e bending s t r e s e e s i n t h e s h e l l which would o c c u r i f t h e s h e l l was e x c i t e d a t c l o s e t o a n a t u r a l frequenc y by n o o ' , t h e fundamental t r a n s v e r s e (bending) frequency wT o f t h e s h e l l i s c o n s t r a i n e d such that

.

where

w 0

= kw' 0

The f a c t o r k i s chosen such t h a t a p p l i c a t i o n o f t h e c o n t r a i n t ( 4 ) w i l l i n s u r e t h a t t h e response o f t h e s h e l l t o n ' w i l l be s m a l l r e l a t i v e t o t h e response t o no. I n o r d e r t o i n s u r e s t r u c t u r a l i n t e g r i t y undep t h e ( t i m e - i n d e p e n d e n t ) l o a d i n g s f, n and t o i n s u r e t h a t t h e r i n g serves i t s purpose o f p r e v e n t i n g h i g h l o c a l s t r e s s e s a t t h e a t t a c h 8 e n t p o i n t , s t r e s s c o n s t r a i n t s o f t h e form

and a s t i f f n e s s c o n s t r a i n t o f t h e form

a r e a l s o imposed. I n e q u a t i o n ( 6 ) uL i s t h e a p p l i e d s t r e s s i n t h e l a m i n a t e i n t h e f i b e r d i r e c t i o n and sL !s t h e l a m i n a t e s t r e n g t h i n t h e f i b e r d i r e c t i o n . S i m i l a r l y , i n e q u a t i o n ( 7 ) o N i s t h e a p p l i e d s t r e s s i n t h e l a m i n a t e i n t h e d i r e c t i o n t r a n s v e r s e t o t h e f i b e r s and s i s t h e l a m i n a t e s t r e n g t h i n t h a t d i r e c t i o n . C o n s t r a i n t s ( 6 ) , ( 7 ) a r e a p p l i e d a t t h e poin! o f maximum s t r e s s i n t h e s h e l l . I n e q u a t i o n (8) kR i s t h e r i n g a x i a l s t i f f n e s s p e r u n i t l e n g t h o f circumference and k i s a l o w e r l i m i t f o r kR. R0

Since t h e s h e l i i s used i n an a i r b o r n e a p p l i c a t i o n i t must have minimum weight. The d e s i g n problem becomes t h a t o f d e t e r m i n i n g t h e m a t e r i a l d e s i g n parameters a , t L , v F and t h e geometric d e s i g n parameter b such t h a t t h e s h e l l has minimum w e i g h t and s a t i s f i e s t h e frequency cons t r a i n t ( 4 ) and t h e s t r e s s and s t i f f n e s s c o n t r a i n t s ( 6 ) , ( 7 ) , ( 8 ) . I n a d d i t i o n t o these d e s i g n c o n s t r a i n t s i t i s a l s o r e q u i r e d t h a t t be g r e a t e r t h a n .0325" (a m a n u f a c t u r i n g c o n s t r a i n t ) , t h a t v be g r e a t e r t h a n . 4 b u t l e s s t h k n . 8 ( a m a n u f a c t u r i n g c o n s t r a i n t ) , and t h a t a be g r e a t e r t h a n l & o b u t l e s s t h a n 800 (a m a n u f a c t u r i n g c o n s t r a i n t ) .

Distributed Mass and Stiffness Structural Systems

f = axla1 load a t : n = n o m l load at z a , = 6 a , = ? b , = d b2=2.66' i = 60

ROTATION

"dl'

F i g . 7.

S h e l l geometry and l o a d i n g

Problem F o r m u l a t i o n The d e s i g n parameters a r e assembled t o form a v e c t o r u o f problem v a r i a b l e s . The v e c t o r u can i n c l u d e b o t h g e o m e t r i c v a r i a b l e s which d e s c r i b e t h e s i z e o r shape o f t h e s h e l l o r a s s o c i a t e d components and m a t e r i a l v a r i a b l e s which d e s c r i b e t h e e l a s t i c p r o p e r t i e s o r g e o m e t r i c c o n f i g u r a t i o n o f t h e l a m i n a t e c o m p r i s i n g t h e s h e l l w a l l . As i n d i c a t e d above, t h e r e a r e f o u r d e s i g n parameters f o r t h e problem c o n s i d e r e d i n t h i $ paper: t h e f i b e r o r i e n t a t i o n a n g l e a (measured w i t h r e s p e c t t o t h e s h e l l a x i a l c o o r d i n a t e s ) , t h e lamina t h i c k n e s s tL ( n o t e t h a t t h e t o t a l s h e l l t h i c k n e s s can be o b t a i n e d once tL i s determined), t h e f i b e r volume f r a c t i o n vF, and t h e r i n g s i z e parameter b. Thus u becomes

where

ul

= f i b e r o r i e n t a t i o n a n g l e a (degrees)

u2 = lamina t h i c k n e s s tL ( i n c h e s ) u3 = f i b e r volume f r a c t i o n vF

u4 = r i n g s i z e parameter b ( i n c h e s )

1

The w e i g h t w o f t h e s h e l l and i t s a s s o c i a t e d components and t h e d e s i g n (and m a n u f a c t u r i n g ) c o n s t r a i n t s g r e t h e n expressed i n terms o f u. The s p e c i f i c c o n s t r a i n t s depend upon t h e s p e c i f i c problem u n d e r r c o n s i d e r a \ i o n b u t w i l j i n c l u d e i n e q u a l i t y c o n s t r a i n t s o f t h e form

2 where wi, 'I , 'I a r e as d e f i n e d p r e v i o u s l y . The magnitude o f wi(u) must be determined numer*i Bi u s i n g t h e s p e c i a l R a y l e i g h q u o t i e n t t e c h n i q u e t o be d e s c r i b e d below. Thus ically g . ( u ) and i t s d e r i v a t e s , i f r e q u i r e d , must be e v a l u a t e d n u m e r i c a l l y . T h i s c o u l d c r e a t e comput a t i o n a l d i f f i c u l t i e s during the minimization o f the objective function. I n l i g h t o f t h i s d i s c u s s i o n , t h e s p e c i f i c problem under c o n s i d e r a t i o n becomes t h a t o f m i n i m i z i n g t h e o b j e c t i v e f u n c t i o n f o ( u ) , where fo(u) = wo(u) s u b j e c t t o t h e frequency c o n s t r a i n t g,(u)

=

a 0

'I2-'?

T

0

R. A. Rand and C. N. Shen the stress constraints g2(u) = sL(u)-oL(u)

0

the r i n g s t i f f n e s s constraint

the f i b e r o r i e n t a t i o n constraint

t h e lamina t h i c k n e s s c o n s t r a i n t

t h e f i b e r volume f r a c t i o n c o n s t r a i n t

and t h e r i n g s i z e c o n s t r a i n t

Equations (12) through (20) a r e d e r i v e d i n d e t a i l elsewhere (Ref. 11). We n o t e t h a t t h e problem i s a g e n e r a l methematical programming problem w i t h o n l y i n e q u a l i t y c o n s t r a i n t s .

...

The o b j e c t i v e f u n c t i o n fo(u) and t h e c o n s t r a i n t s g . ( u ) , i = 2, , 8 a r e c l o s e d form f u n c t i o n s of u, b u t s i n c e w ( u ) must be determined n u m e r i c a l l y , t h e c o n s t r a i n t g ( u ) i s n o t a c l o s e d form f u n c t i o n o f u. ~ 6 ter a n s v e r s e frequency w T ( u ) i s determined by f i r s t b i s c r e t i z i n g t h e c o n t i n u ous s h e l l u s i n g t h e f i n i t e - e l e m e n t t e c h n i q u e and t h e n m i n i m i z i n g a s p e c i a l R a y l e i g h t q u o t i e n t d e f i n e d f o r t h e d i s c r e t e model. The techniques a r e d e s c r i b e d below. Thus t h e s o l u t i o n t o t h e problem formulated i n e q u a t i o n s (12) t h r o u g h (20) i n v o l v e s a m i n i m i z a t i o n w i t h i n a m i n i m i z a t i o n . D i s c r e t i z a t i o n of D i s t r i b u t e d Parameter S h e l l For a s h e l l s t r u c t u r e , d i s c r e t i z a t i o n i s performed i n b o t h t h e a x i a l and c i r c u m f e r e n t i a l d i r e c t i o n s , as shown s c h e m a t i c a l l y i n F i g . 8. The number o f elements r e q u i r e d t o model t h e s h e l l i s a f u n c t i o n o f t h e response c h a r a c t e r i s t i c s o f t h e element b e i n g used and t h e accuracy d e s i r e d . I n g e n e r a l , accuracy i n c r e a s e s w i t h i n c r e a s i n g number o f elements, as shown s c h e m a t i c a l l y i n F i g . 9. However, no f i r m r u l e s f o r t h e number o f elements r e q u i r e d f o r a p a r t i c u l a r problem can be f o r m u l a t e d . The response o f any element i i n a d i s c r e t i z e d s h e l l model i s d e s c r i b e d by t h e r e l a t i o n

where Ki = s t i f f n e s s m a t r i x f o r element i Mi = mass m a t r i x f o r element i

..

q . = v e c t o r o f nodal p o i n t displacement components f o r element i 1

A fi

=

v e c t o r o f a p p l i e d nodal p c i n t f o r c e components f o r element i

2 denotes d / d l Z , where 7 i s time. The f o r m u l a t i o n s o f Ki, M. i n e q u a t i o n and t h e s u p e r s c r i p t doubly(21) depend upon t h e t y p e o f element used i n t h e d i s c r e t i z a t i o n . For t h i s s t u d y curved q u a d r i l a t e r a l s h e l l element i s developed u t i l i z i n o t h e smooth s u r f a c e i n t e r p o l a t i o n

a

Distributed Mass and Stiffness Structural Systems

ERROR

\

F i g . 8.

Discretization o f shell structure u s i n g f i n i t e elements

F i g . 9. Accuracy o f f i n i t e - e l e m e n t c a l c u l a t i o n as a f u n c t i o n o f number o f elements

f u n c t i o n s o f P i a n ( 9 ) . A d e s c r i p t i o n o f t h e element and d e t a i l s o f t h e d e r i v a t i o n s o f Ki, a r e presented elsewhere (Refs. 10, 1 1 ) .

Mi

The response o f t h e ( c o m p l e t e ) she1 1 s t r u c t u r e i s d e s c r i b e d by assembling t h e response equat i c n s o f t h e i n d i v i d u a l elements. T h i s assembly y i e l d s a l a r g e s e t of e q u a t i o n s of t h e form

where

#

~ e n o t e sa m a t r i x c o m p o s i t i o n r a t h e r t h a n a d i r e c t summation. An example o f m a t r i x c o m p o s i t i o n f o r a s i m p l e two element mcdel i s p r e s e n t e d elsewhere (Ref. 1 1 ) . We s i m p l i f y e q u a t i o n (22) b y w r i t i n g 1

where K = (assembled) s t i f f n e s s m a t r i x f o r t h e s h e l l M = (assembled) mass m a t r i x f o r t h e s h e l l

q = v e c t o r o f nodal p o i n t displacement components f o r e n t i r e s h e l l f

A

= v e c t o r o f a p p l i e d nodal p o i n t f o r c e components f o r e n t i r e s h e l l

T y p i c a l l y , t h e s e t (23) c o n t a i n s s e v e r a l hundred e q u a t i o n s and t h e s o l u t i o n i s o b t a i n e d u s i n g m a t r i x techniques developed f o r l a r g e s e t s o f e q u a t i o n s . Frequency C a l c u l a t i o n Using R a y l e i g h Q u o t i e n t The o r d i n a r y d i f f e r e n t i a l e q u a t i o n s (23) o b t a i n e d by d i s c r e t i z i n g t h e s h e l l can be d i r e c t l y i n t e g r a t e d w i t h r e s p e c t t o t i m e t o o b t a i n t h e complete s h e l l response h i s t o r y . Imposing cons t r a i n t s on t h i s response r a t h e r t h a n on t h e n a t u r a l f r e q u e n c i e s would r e s u l t i n a t r u e o p t i m a l c o n t r o l problem, which c o u l d be t r e a t e d w i t h i n t h e framework o f t h e techniques developed. However, t h e computation c o s t s f o r a l l b u t t h e s i m p l e s t c o n f i g u r a t i o n s and l o a d i n g s would be p r o h i b i t i v e . We make t h e problem one o f o p t i m a l d e c i s i o n r a t h e r t h a n o p t i m a l c o n t r o l by imposi n g c o n s t r a i n t s o n l y 'on t h e n a t u r a l f r e q u e n c i e s and n o t on t h e a c t u a l response. The n a t u r a l frequencies o f t h e s h e l l d e s c r i b e d m a t h e m a t i c a l l y by e q u a t i o n (23) a r e o b t a i n e d by setting fA = 0

i n e q u a t i o n (23) and s o l v i n g t h e r e s u l t i n g f r e e v i b r a t i o n e q u a t i o n

R . A . Rand a n d C. N . Shen

The c l a s s i c a l method f o r s o l v i n g e q u a t i o n ( 2 4 ) t o o b t a i n t h e s h e l l n a t u r a l f r e q u e n c i e s i s t o assume a s o l u t i o n o f t h e form j w-r q = ye

(25)

where

and s u b s t i t u t e t h i s s o l u t i o n i n t o e q u a t i o n ( 2 4 ) .

l21

The r e s u l t i n g frequency e q u a t i o n becomes

-wM+K y = 0

(26)

E q u a t i o n (26) i s s o l v e d by numerical techniques f o r n 3 values o f n a t u r a l frequency wi and c o r r e s p o n d i n g nodal v e c t o r yl, where n i s t h e number o f degrees o f freedom i n t h e f i n i t e element system. However, i n such syst&rrs t h e o r d e r o f t h e m a t r i c e s M and K i s so l a r g e t h a t c o m p u t a t i o n a l c o s t s and s t o r a g e requirements become excessive. One way t o a v o i d these problems i s t o s e l e c t "key" degrees o f freedom and reduce t h e o r d e r o f system o f e q u a t i o n s u s i n g a r e d u c t i o n o f t h e t y p e proposed by Guyan ( 1 2 ) . T h i s t e c h n i q u e i s a r b i t r a r y i n t h e method of s e l e c t i n g t h e "key" nodes. I n t h i s s t u d y t h e f r e q u e n c i e s a r e o b t a i n e d f r o m K, M u s i n g a R a y l e i g h - t y p e technique, which r e s u l t s i n s i g n i f i c a n t l y l o w e r computational c o s t s . The t e c h n i q u e i s based upon R a y l e i g h ' s p r i n c i p l e , which s t a t e s t h a t i n t h e fundamental mode o f v i b r a t i o n o f an e l a s t i c system t h e d i s t r i b u t i o n o f k i n e t i c and p o t e n t i a l e n e r g i e s i s such as t o make t h e frequency a minimum (Ref. 1 3 ) . By d e f i n i t i o n , t h e R a y l e i g h q u o t i e n t r ( q ) a s s o c i a t e d w i t h q i s g i v e n by 7

T T I n e q u a t i o n (27) q Kq i s p r o p o r t i o n a l t o t h e p o t e n t i a l ( s t r a i n ) energy i n t h e model and q Mq i s p r o p o r t i o n a l t o t h e k i n e t i c energy i n t h e model. Thus, as a consequence o f R a y l e i g h ' s p r i n c i p l e , i f r ( q ) i s m i n i m i z e d w i t h r e s p e c t t o a, t h e n as t h e minimum i s approached

when w i s t h e fundamental f r e q u e n c y o f t h e she1 1, y1 i s t h e c o r r e s p o n d i n g model v e c t o r , and c l i s a sEale f a c t o r which a r i s e s due t o t h e f a c t t h a t i f y1 i s a s o l u t i o n t o e q u a t i o n (24) f o r can o n l y be determined t o w i t h i n an a r b i t r a r y conw12, t h e n clyl i s a l s o a s o l u t i o n . Thus yl stant. T h i s method can be extended t o f i n d successive v a l u e s o f wi2 and yi f o r t h e h i g h e r modes b y i n t r o d u c i n g o r t h o g o n a l i t y c o n s t r a i n t s . Thus, i f r ( q ) i s m i n i m i z e d s u b j e c t t o t h e c o n s t r a i n t t h a t q be o r t h o g o n a l t o y l , so

then

I n general, i f r ( q ) i s minimized subject t o t h e cciistraint; ni modal v e c t o r s , so

then

t h a t q be o r t h o g o n a l t o t h e f i r s t

D i s t r i b u t e d Mass a n d S t i f f n e s s S t r u c t u r a l S y s t e m s

M a t h e m a t i c a l l y , these r e s u l t s a r e expressed as

w

ni+l

=

min r ( q ) 9

I

,2

qT~yi = 0, i = 1.2

G n.+l G n 1

,..., ni

o

\

1

Bv t h e use o f R a v l e i q h ' s ~ r i n c i ~ tl hee frequencv c a l c u l a t i o n i s t r a n s f o r m e d from a d i r e c t ( n u m e r i c a l ) c a l c u l a t i o n t o an lrnconstrained ( f o r w 1 2 ) o r a c o n s t r a i n e d ( f o r wi2, 2 < i < n ) A princip?e m i n i m i z a t i o n . A s i m i l a r scheme has been p r e s e n t e d b Fox and Kapoor (Ref. 14) reason f o r t h e t r a n s f o r r i a t l o n o f t h e frequency c a l c u f a t i o n from a d i r e c t t o an i n d i r e c t one i s t h a t t h e assembly o f t h e ( l a r g e ) m a t r i c e s K,M can be r e p l a c e d by t h e assembly o f v e c t o r s Ka and Mq. T h i s assembly proceeds a n a l o g o u s l y t o t h e assembly o f K, M.

.

D e t e r m i n a t i o n o f S h e l l Transverse Frequency

WT

I n g e n e r a l , u n c o n s t r a i n e d m i n i m i z a t i o n o f r ( q ) y i e l d s t h e l o w e s t n a t u r a l frequency o f t h e d i s c r e t i z e d model. I f t h e c o n s t r a i n e d frequency i s n o t t h e l o w e s t frequency o f t h e s h e l l , t h e c a l c u l a t i o n o f t h e c o n s t r a i n e d frequency r e q u i r e s a c o n s t r a i n e d m i n i m i z a t i o n o f r ( q ) . The o p t i m a l d e c i s i o n o f u i n such problems t h u s r e q u i r e s a c o n s t r a i n e d m i n i m i z a t i o n ( t o o b t a i n t h e f r e q u e n c y ) w i t h i n a c o n s t r a i n e d m i n i m i z a t i o n ( t o o b t a i n u*) and t h e c o m p u t a t i o n a l c o s t s c o u l d become 1a r g e . I n t h i s s t u d y we develop a t e c h n i q u e by which t h e c a l c u l a t i o n o f t h e s h e l l t r a n s v e r s e b e n d i n r f r e q u e n c y w , i n c l u d i n g i n e r t i a l s t i f f e n i n g r e s u l t i n g from t h e a x i a l l o a d f due t o r o t a t i o n w R o f t h e shelT, i s t r a n s f o r m e d t o an u n c o n s t r a i n e d m i n i m i z a t i o n r e g a r d l e s s o f i t s o r d e r i n t h e ( o r d e r e d ) v e c t o r o f modal f r e q u e n c i e s . The t r a n s f o r m a t i o n i s performed by d e f i n i n g a s p e c i a l R a y l e i g h q u o t i e n t r ' ( q ' ) , where -r

.-

I n e q u a t i o n (33) q ' i s o b t a i n e d f r o m q as d e s c r i b e d below and uf i s t w i c e t h e p o t e n t i a l energy c o n t r i b u t e d t o t h e t r a n s v e r s e ) v i b r a t i o n mode c o r r e s p o n d i n g t o w T by t h e ( a x i a l ) i n e r t i a l l o a d f. I n t h i s s t u d y u i s g i v e n by (Ref. 11)

i

where ~ ( z i) s t h e t r a n s v e r s e displacement o f t h e s h e l l c e n t r o i d a t any c r o s s - s e c t i o n , as shown s c h e m a t i c a l l y i n F i g . 10. I n e q u a t i o n (33), t h e m o d i f i e d nodal p o i n t displacement v e c t o r q ' i s o b t a i n e d from q by s e t t i n g t o 0 those components i n q which, due t o symmetry o r r i g i d body m o t i o n c o n s i d e r a t i o n s , do n o t c o n t r i b u t e t o t h e e n e r g i e s i n t h e t r a n s v e r s e mode F o r example, a t node n o f element i shown and a r e s e t t o z e r o t o s a t i s f v symmetry i n F i g . 10, t h e ( r o t a t i o n a l ) degrees o f freedom requirements. For t h e s e f i v e degrees o f freedom, t h e t r a n s f o r m a t i o n from q t o q ' i s as f o l l o w s :

@

2

The corresponding components of t h e g r a d i e n t v r ' ( q l ) of r ' a r e a l s o s e t t o 0. The v a l u e o f w T 2 i s now o b t a i n e d by m i n i m i z a t i o n o f r ' ( q ' ) as g i v e n by e q u a t i o n ( 3 3 ) . The m i n i m i z a t i o n i s u n c o n s t r a i n e d r e g a r d l e s s of t h e a c t u a l o r d e r of wT, and t h e g r a d i e n t V r ' ( q t ) o f r ' ( q l ) can be o b t a i n e d b y d i f f e r e n t i a t i o n o f e q u a t i o n ( 3 3 ) , so any o f s e v e r a l g r a d i e n t techn i q u e s can be used. I n t h i s s t u d y t h e c o n j u g a t e g r a d i e n t method i s used (Ref. 8). T h i s s p e c i a l R a y l e i g h q u o t i e n t t e c h n i q u e can be a p p l i e d t o any c o n s t r a i n e d f r e q u e n c y f o r which t h e modal v e c t o r can be r e a s o n a b l y e s t i m a t e d . Optimum D e c i s i o n The d e c i s i o n ( m i n i n ~ i z a t i o n ) nroblem f o r m u l a t e d i n e q u a t i o n s (12) through (20) i s a n o n l i n e a r mathematical programming problem w i t h on1y inequal it y c o n s t r a i n t s . The optimum d e c i s i o n v e c t o r u* i s o b t a i n e d u s i n g two techniques: an " a n a l y t i c a l " s o l u t i o n i s o b t a i n e d u s i n g t h e c l a s s i c a l

R. A. Rand and C. N. Shen method o f Lagrange m u l t i p l i e r s and conpared w i t h a numerical s o l u t i o n o b t a i n e d u s i n g a m o d i f i e d Complex method. I n o r d e r t o e l i m i n a t e dimensional i n c o n s i s t e n c i e s i n t h e a n a l y t i c a l s o l u t i o n and t o e l i m i n a t e s c a l i n g ( n u m e r i c a l ) problems i n t h e numerical s o l u t i o n , t h e problem i s f i r s t transformed t o nondimensional c o o r d i n z t e space by d e f i n i n g a new d e c i s i o n v e c t o r v w i t h nondimensional components

F i g . 10.

S h e l l m o t i o n i n t r a n s v e r s e mode (schematic)

Then t h e o p t i m a l d e c i s i o n problem becomes t h a t o f m i n i m i z i n a f o ( v ) = w0(v) s u b j e c t t o t h e nondimensional c o n s t r a i n t s yl(v)

=

2

nT ( v ) - 1 > 0

>0

y2(v) = sL(v)-uL(v)

y3(v) = sN(v)-aN(v) > O Y ~ ( v )= kR(V)-kR ( v )

>

0

0

y 5 ( v ) = (1-vl)(vl-.125) y ( v ) = v2-1 6

>0

>0

y 7( v ) = (1-v3)(v3-. 5) 2 0 y 8 ( v ) = v4-1

0

w h e r e n T i s a nondimension frequency g i v e n by

The a n a l y t i c a l s o l u t i o n t o t h i s problem i s o b t a i n e d u s i n g Lagrange m u l t i p l i e r s (Ref. 8 ) . we seek t h e s t a t i o n a r y p o i n t s o f a new o b j e c t i v e f u n c t i o n f ' ( v ) d e f i n e d as

Thus,

3

f l ( v ) = fo(v)+

=y

( v )

i= 1

where A . a r e t h e Lagrange m u l t i p l i e r s . posing the conditions

and s e l e c t i n g hi such t h a t

The s t a t i o n a r y p o i n t s f o r f ' ( v ) a r e determined by im-

Distributed Mass and Stiffness Structural Systems

Equations (40) and (41) comprise a s e t o f 12 e q u a t i o n s i n 12 unknowns. T h i s s e t i s s o l v e d t o d e t e r m i n e t h e s t a t i o n a r y p o i n t s o f f ' ( v ) . The s t a t i o n a r y p o i n t r e s u l t i n g i n t h e minimum v a l u e of f o ( v ) corresponds t o t h e optimum d e c i s i o n v e c t o r v*. Before t h e a n a l y t i c a l s o l u t i o n can proceed, t h e c o n s t r a i n t y ( v ) must be expressed as a f u n c t i o n o f v. T h i s i n t u r n r e q u i r e s t h a t o~ be expressed a4 an a n a l y t i c a l f u n c t i o n o f u. g e n e r a l f u n c t i o n a l form o f w T 2 ( u ) i s

The

where G r e p r e s e n t s t h e s h e l l e x t e r n a l geometry. I n t h i s problem wR,C a r e f i x e d and we c o u l d f i t a g e n e r a l power s e r i e s i n u., i = 1,2,3,4 t o an a r r a y of ( n u m e r i c a l l y c a l c u l a t e d ) values o f wT2. However, f o r t h i n s h e l l s we can s i m p l i f y t h e problem by assuming t h a t we can s e p a r a t e i n e r t i a l and bending e f f e c t s . Then e q u a t i o n (42) becomes WTL;

1

fl “l ( w R > ~ ) t f 2W '( ~ 9 ~ ) For f i x e d wR, C t h i s reduces t o

where a. i s a c o n s t a n t . The bending c o n t r i b u t i o n fZw(u) i n e q u a t i o n (44) i s now assumed t o be p r o p o r t i o n a l t o k /ms, where ks, ms a r e measures of s t i f f n e s s and mass, r e s p e c t i v e l y , f o r t h e s h e l l . Thus equa%ion ( 4 4 ) becomes

where a i s a c o n s t a n t . F i n a l l y , f o r t h i n l a m i n a t e d s h e l l s w i t h f i x e d c o n s t i t u e n t p r o p e r t i e s , k s which c o n t r o l s w T i s ( a p p r o x i m a t e l y ) g i v e n by

and

and e q u a t i o n ( 4 5 ) becomes w T 2 ( u ) = ao +a 1

U3COS

U1

l+u3

2 The c o n s t a n t s a a a r e determined by c a l c u l a t i n g w ( u ) f o r d i s c r e t e values of u!. u2, u3, and f i t t i n g equgiioA ( 4 6 ) t o t h e r e s u l t s u s i n g a l e a i t - s q u a r e s technique. The ana y t i c a l s o l u t i o n thus u t i l i z e s an approximate e x p r e s s i o n f o r LJ ( u ) . T The numerical s o l u t i o n t h e problem posed by e q u a t i o n s (36) and ( 3 7 ) i s o b t a i n e d u s i n g a modif i e d Complex method (Ref. 8 ) . T h i s method i s a t t r a c t i v e f o r numerical o p t i m i z a t i o n problems of t h e t y p e c o n s i d e r e d i n t h i s s t u d y because i t does n o t r e q u i r e e v a l u a t i o n o f t h e g r a d i e n t s of e i t h e r f ( v ) o r y . ( v ) , i = 1, . . . , 8. The b a s i c Complex method i s s i m i l a r t o t h e Simplex method eRcept t h a t t h e shape, as w e l l as t h e s i z e , o f t h e Complex v a r i e s . The i n i t i a l Complex i s e s t a b l i s h e d by t a k i n g any a c c e s s i b l e p o i n t as t h e s t a r t i n g v e r t e x . Each o f t h e r e m a i n i n g v e r t i c e s i s found by randomly d e f i n i n g a v e r t e x , t e s t i n g i t s a c c e s s i b i l i t y , and moving i t , if necessary, towards t h e c e n t r o i d o f t h e v e r t i c e s a l r e a d y e s t a b l i s h e d u n t i l i t becomesaccessible. A f t e r t h e i n i t i a l Complex i s e s t a b l i s h e d , m i n i m i z a t i o n i s performed by e l i m i n a t i n g t h e l e a s t d e s i r a b l e v e r t e x ( i .e. t h e v e r t e x w i t h t h e l a r g e s t v a l u e o f t h e o b j e c t i v e f u n c t i o n f ) by r e f l e c t i o n o f t h i s v e r t e x an a r b i t r a r y d i s t a n c e through t h e c e n t r o i d o f t h e r e m a i n i n g B e - t i c e s , t e s t i n g t h e a c c e s s i b i l i t y o f t h e new v e r t e x , and moving i t , i f necessary, towards t h e c e n t r o i d the u n t i l i t becomes a c c e s s i b l e . T h i s process i s repeated u n t i l no f u r t h e r improvement i~ o b j e c t i v e f u n c t i o n f o ( v ) can be o b t a i n e d and t h e Complex c o l l a p s e s ( i n t h e l i m i t ) t o a s i n g l e v e r t e x c o r r e s p o n d i n g t o v*. A b a s i c p r o p e r t y of t h e R a y l e i g h q u o t i e n t i s t h a t o n l y a reasonable e s t i m a t e o f t h e modal v e c t o r y l i s r e q u i r e d t o y i e l d a good e s t i m a t e o f w.2. The Complex method was s e l e c t e d f o r a p p l i c a t i o n i n t h i s s t u d y s i n c e i t enabled us t o e x b l o i t t h i s p r o p e r t y t o reduce t h e computat i o n a l e f f o r t r e q u i r e d t o o b t a i n v*. We assume t h a t yt i s ( r e l a t i v e l y ) weak y coupled t o v and recompute yt o n l y p e r i o d i c a l l y d u r i n g t h e m i n i m i z a t i o n , n o t each t i m e uTAi s determined.

R. A . Rand and C . N .

Shen

We can do t h i s because o f t h e p r o p e r t y oC t h e d a y l e i g h q u o t i e n t d e s c r i b e d above and s i n c e t h e Complex method i s s e l f - c o r r e c t i n g ; a new v e r t e x i s chosen by r e j e c t i n g t r i a l v e r t i c e s u n t i l an improvement i s o b t a i n e d . I n a d d i t i o n , we recompute Ki, Mi d i r e c t l y o n l y when y x i s updated. P.t i n t e r m e d i a t e p o i n t s we assume t h a t K . = 6 6 6 K

1 2 3 9 1

1

M . = d 6 ~ ~ i 2 3 i

where

KT, MY a r e t h e cos 6

=-

4

( l a s t ) computed values o f Ki,

Mi

a t u0 and

Ul

4 cos u

0

1

Again, t h e Complex method a u t o m a t i c a l l y c o r r e c t s f o r any e r r o r i n t r o d u c e d by u s i n g e q u a t i o n ( 4 7 ) . W i t h these m o d i f i c a t i o n s t h e numerical o p t i m i z a t i o n proceeds v e r y q u i c k l y . RESULTS The fundamental frequency w f o r t r a n s v e r s e (bending) v i b r a t i o n o f t h e she1 1 shown i n F i g . 7 about t h e e l l i p s e m a j o r a x i T ( i . e . t h e v i b r a t o r y m o t i o n i s p a r a l l e l t o t h e e l l i p s e m i n o r a x i s ) was c a l c u l a t e d f o r d i s c r e t e values o f t h e m a t e r i a l d e s i g n parameters ul ( f i b e r o r i e n t a t i o n an l e ) , u2 ( l a m i n a t h i c k n e s s ) , and u3 ( f i b e r volume f r a c t i o n ) and t h e r e s u l t s used t o express qPas a c l o s e d form f u n c t i o n o f u. The c a l c u l a t e d values o f wT a r e summarized i n Table 2; t h e e x p r e s s i o n wT2(u) o b t a i n e d by l e a s t - s q u a r e s f i t t i n g o f e q u a t i o n ( 4 6 ) t o these r e s u l t s i s w T 2 ( u ) = 24520+1215100( Values o f w ' ( u ) T

o b t a i n e d u s i n g e q u a t i o n ( 4 9 ) a r e a l s o resented i n Table 2.

TABLE 2

1

4 u3cos U1 l+u3 1

( o r i e n t a t i o n angle a i n degrees)

R e s u l t s o f Frequency C a l c u l a t i o n

I

1

u7 (lamina thickness i n inches)

+calculated t ~ r o mf i t [equation (4911

!/

U3 ( f i b e r volume fraction)

+

wT2~1~-6 2 2 ( r a d /sec )

Distributed Mass and Stiffness Structural Systems

The weight of this shell and its associated attaching ring was minimized with res ect to the decision vector u defined by equation (10) subject to a (design) constraint o n w ~(u). Design constraints on stress and stiffness and manufacturing constraints were also imposed. Mathematical formulation of the problem is given in equations (12) through (20). The optimum decision vector u* which minimizes the weight was obtained by two methods. Using the approximate frequency relation equation (49) and solving the problem analytically using Lagrange mu1 tipliers yields

5

wo*(=f *) = w (u*) 0

0

=

3.639 lbs

and

u2*(=tL*)

=

u3*('vF*)

= .519

u4*(=b*)

=

.0073

.570 inches

where the superscript * denotes the value for optimal decision of u. Solving the problem using the modified Complex method and evaluating wT2(u) periodically using equation (33) yields w0*

=

3.650 lbs

ul*

=

10.05'

u2*

=

.00732 inches

u3*

=

.520

u4*

=

.572 inches

and

Complete results are summarized in Table 3.

a.

TABLE 3 Results for Optimum Decision of u Results at optimum using Lagrauge multipliers yi* (dimensionless) constraint

b.

Results at optimum using Complex

Xi* (Lagrange mu1 tipliers)

R. A. Rand and C. N. Shen

DISCUSSION From T a b l e 3 we n o t e t h a t t h e v a l u e o f u* o b t a i n e d n u m e r i c a l l y ' u s i n ( r t h e m o d i f i e d Complex method i s i n c l o s e agreement w i t h t h e a n a l y t i c a l s o l u t i o n o b t a i n e d u s i n g Lagrange m u l t i p l i e r s , v e r i f y i n g t h a t t h e m o d i f i e d Complex t e c h n i q u e developed i s acceptable. The a n a l y t i c a l r e s u l t s o b t a i n e d u s i n g Lagrange m u l t i p l i e r s can a l s o be used t o show by i m p l i c a t i o n t h a t t h e v a l u e o f u* o b t a i n e d i s indeed o p t i m a l , i . e . t h a t i t corresponds t o minimum weight. We n o t e f r o m T a b l e 3 t h a t a l l non-zero Lagrange m u l t i p l i e r s a r e l e s s t h a n zero. Then a Kuhn-Tucker theorum i n ~ p i i e st h a t u* cannot be a maximum. We can i n f a c t show t h a t u* corresponds t o a minimum by p e r t u r b i n g u*. Thus, a t u1*+6u1,

g3(u) i s violated;

a t ul*-6u1,

g5(u) i s violated;

a t u2*+6u2, g 4 ( u ) i s v i o l a t e d and f o ( u ) i n c r e a s e s ; a t u2*-6u2,

g2(u), g3(u) a r e violated;

a t u,*+6u3,

g4(u) i s v i o l a t e d and f o ( u ) i n c r e a s e s ;

J

a t u3*-6u3,

g2(u) i s v i o l a t e d ;

a t u4*+6u4, f c ( u ) increases; and a t u4*-du4,

g4(u) i s v i o l a t e d .

So u* does indeed correspond t o a minimum o f t h e o b j e c t i v e f u n c t i o n f ( u ) . The d i r e c t c o m p u t a t i o n a l c o s t o f t h e Complex m i n i m i z a t i o n i s o n l y about two t i m e s t h e c o s t of g e n e r a t i n g t h e d a t a t o o b t a i n t h e approximate e x p r e s s i o n f o r w 2 ( u ) used i n t h e a n a l y t i c a l m i n i m i z a t i o n . Thus, t h e Complex m i n i m i z a t i o n i s c o m p e t i t i v e wien t h e manpower c o s t s i n v o l v e d i n t h e a n a l y t i c a l m i n i m i z a t i o n a r e a l s o considered. Several aspects o f t h e techniques p r e s e n t e d i n t h i s paper a r e new. The q u a d r i l a t e r a l s h e l l element developed t o d i s c r e t i z e t h e d i s t r i b u t e d parameter s h e l l s t r u c t u r e can be a p p l i e d t o s h e l l s which a r e l a m i n a t e d composites. The mass m a t r i x f o r t h e element i s a h y b r i d which combines t h e c o m p u t a t i o n a l speed o f a lumped mass m a t r i x w i t h t h e accuracy o f a c o m p a t i b l e mass m a t r i x . The s p e c i a l R a y l e i g h q u o t i e n t t e c h n i q u e f o r frequency c a l c u l a t i o n i s d i r e c t l y c o m p a t i b l e w i t h t h e d i s c r e t i z e d model and v e r y g e n e r a l . The e f f e c t o f i n e r t i a l s t i f f e n i n g i s d i r e c t l y i n c l u d e d . S p e c i f i c f r e q u e n c i e s , n o t n e c e s s a r i l y t h e lowest, w i t h e a s i l y approximated modal v e c t o r s a r e o b t a i n e d by u n c o n s t r a i n e d m i n i m i z a t i o n o f t h e m o d i f i e d R a y l e i g h q u o t i e n t . The m o d i f i e d Complex method developed f o r t h e optimum d e c i s i o n o f u i s c o m p a t i b l e w i t h t h e f r e q u e n c y c a l c u l a t i o n t e c h n i q u e i n t h a t i t assumes t h a t t h e c o n s t r a i n e d f r e q u e n c y w, i s r e l a t i v e l y i n s e n s i t i v e t o s m a l l changes i n u. Thus t h e modal v e c t o r yt c o r r e s p o n d i h g t o wT i s recomputed o n l y p e r i o d i c a l l y . The t e c h n i q u e i s s e l f - c o r r e c t i n g . I n addition, the t e c h n i q u e does n o t r e q u i r e e v a l u a t i o n o f t h e g r a d i e n t o f e i t h e r t h e o b j e c t i v e f u n c t i o n f o r t h e c o n s t r a i n t s gi, so t h a t n o i s e problems encountered i n an e a r l i e r problem, when g r a d i g n t techniques were employed i n c o m b i n a t i o n w i t h t h e p e n a l t y f u n c t i o n method o f F i a c c o and McCormick (Ref. 15) t o m i n i m i z e t h e w e i g h t o f a c y l i n d r i c a l s h e l l s u b j e c t t o a c o n s t r a i n t on i t s c i r c u m f e r e n t i a l e x t e n s i o n mode frequency (Ref. 10) a r e e l i m i n a t e d . Para1 l e l s o l u t i o n o f t h e o p t i m a l d e c i s i o n problem by an " a n a l y t i c a l " t e c h n i q u e p r o v i d e s d i r e c t v e r i f i c a t i o n of t h e m o d i f i e d Complex method developed and p e r m i t s an e s t i m a t i o n o f t h e e f f i c i e n c y o f t h e numerical method. Such a method seems f e a s i b l e f o r automated d e s i g n o f complex s t r u c t u r e s s u b j e c t t o c o n s t r a i n t s based upon t h i s study. F i n a l l y , p r e v i o u s s t r u c t u r a l o p t i m i z a t i o n s t u d i e s have c o n c e n t r a t e d p r i m a r i l y on s a t i s f y i n g e i t h e r dynamic ( f r e q u e n c y ) o r s t a t i c ( s t r e s s ) c o n s t r a i n t s ; i n t h i s s t u d y t h e f e a s i b i l i t y o f combining s t r u c t u r a l a n a l y s i s techniques and o p t i m i z a t i o n techniques d i r e c t l y t o o b t a i n optimum s t r u c t u r a l designs under simultaneous frequency and s t r e s s c o n s t r a i n t s i s demonstrated. The techniques developed a r e g e n e r a l and a p p l i c a b l e t o o t h e r t y p e s o f problems. Acknowledgement P a r t o f t h i s paper i s s u b m i t t e d t o t h e School o f E n g i n e e r i n g a t Rensselaer P o l y t e c h n i c I n s t i t u t e i n p a r t i a l f u l f i l l m e n t o f t h e requirements o f t h e degree o f D o c t o r o f Engineering.

Distributed Mass and Stiffness Structural Systems

REFERENCES (1)

Kraus, H. (1967) T h i n E l a s t i c S h e l l s , Wiley, New York.

(2)

Z i e n k i e w i c z , 0. C. (1971) The F i n i t e - E l e m e n t Method i n E n g i n e e r i n g Science, McGraw-Hill, New York.

(3)

P r z e m i e n i e c k i , J. S . (1967) Theory o f M a t r i x S t r u c t u r a l A n a l y s i s , McGraw-Hill, New York

(4) Schmit, L. A., The s t r u c t u r a l s y n t h e s i s concept and i t s p o t e n t i a l r o l e i n d e s i g n w i t h composites, Proceedin s, General E l e c t r i c I O f f i c e o f Naval Research Composites Symposicm, P d (1967). (5)

Turner, M. J., O p t i m i z a t i o n o f s t r u c t u r e s t o s a t i s f y f l u t t e r requirements, J. AIAA 7, 945 (1969).

(6) Rubin, C. P., Minimum w e i g h t d e s i g n o f complex s t r u c t u r e s s u b j e c t t o a frequency cons t r a i n t , J. AIAA 8, 923 (1970).

(7) McCart, R. B. Haug, E. J., and S t r e e t e r , T. D., Optimal d e s i g n of s t r u c t u r e s w i t h cons t r a i n t s on n a t u r a l f r e q u e n c i e s , Vol. o f Tech. Papers, AIAA S t r u c t u r a l Dynamics and A e r o e l a s t i c i t y S p e c i a l i s t Conference, New Orleans (1969). (8)

Beveridge, G. S. and Schechter, R. S . (1972) O p t i m i z a t i o n : Theory and P r a c t i c e , McGrawH i l l , New York.

(9)

Deak, A.L. and Pian, T. H. H., A p p l i c a t i o n o f t h e smooth-surface i n t e r p o l a t i o n t o t h e f i n i t e - e l e m e n t a n a l y s i s , J. AIAA 5, 187 (1967).

(10)

Rand, R. A. and Shen, C. N., Optimum d e s i g n o f composite s h e l l s s u b j e c t t o n a t u r a l frequency c o n s t r a i n t s , J. Computer and S t r u c t u r e s 3, 247 (1973).

(11)

Rand, R. A., Optimum d e s i g n o f s h e l l s t r u c t u r e s s u b j e c t t o c o n s t r a i n t s , D o c t o r ' s Thesis, Rensselaer P o l y t e c h n i c I n s t i t u t e , Troy, New York (1977).

(12)

Guyan, R. J.,

(13)

Temple, G.

(14)

Fox, R. L. and Kapoor, M. P., A m i n i m i z a t i o n method f o r t h e s o l u t i o n o f t h e e i g e n problem a r i s i n g i n s t r u c t u r a l dynamics, Proceedings, W r i q h t - P a t t e r s o n Conference on M a t r i x Methods, Ohio (1968).

(15)

Fiacco, A. V. and McCormick, G. P. (1968) N o n l i n e a r Programming: s t r a i n e d M i n i m i z a t i o n Techniques, Wiley, New York.

(16)

N o v o z h i l o v , V. V.

Reduction o f S t i f f n e s s and Mass M a t r i c e s , J. AIAA 3, 380 (1965).

and B i c k l e y , W . G. (1956) R a y l e i g h ' s P r i n c i p l e , Dover, New York.

S e q u e n t i a l Uncon-

(1959) Theory o f T h i n S h e l l s ( T r a n s l a t i o n ) , P. Noordhoff.