Chemosphere, Vol.14, No.ll/12, Printed in Great Britain
pp 1729-1740,
1985
0045-6535/85 $3.00 + .OO @1985 Pergamon Press Ltd.
ORSANOCHLORINE COMPOUNDS IN BALTIC SALMON AND TROUT. I . CHLORINATED HYDROCARBONS AND CHLOROPHENOLS 1982 Pekka J. Vuorinen F i n n i s h Same and F i s h e r i e s Research I n s t i t u t e , F i s h e r i e s D i v i s i o n U n i o n i n k a t u 45 B 42, SF 00170 H e l s i n k i 17, F i n l a n d Jaakko P a a s i v i r t a , Teuvo P i i l o l a , Kari Surma-Aho and Juhani Tarhanen Department of Chemistry, U n i v e r s i t y of J y v i s k y l ~ K y l l i k i n k a t u 1-3, SF 40100 J y v ~ s k y l ~ 10, F i n l a n d
ABSTRACT
P o l y c h l o r i n a t e d hydrocarbons and c h l o r o p h e n o l compounds were analyzed i n three populations of Baltic salmon (Salmo s a l a r ) and one p o p u l a t i o n of Bothnian Bay t r o u t (Salmo t r u t t a ) . Muscles, l i v e r s and u n f e r t i l i z e d eggs were s t u d i e d and t h e a n a l y s i s r e s u l t s t r e a t e d by standard s t a t i s t i c a l methods. PCB, DDT r e s i d u e s , HCB and l i n d a n were d e t e c t e d i n most, 2,3, b - t richlorocymene in s o m e samples a t l e v e l s which a r e near t o t h e g l o b a l b a s e l i n e . Ten chlorophenol compounds were d e t e c t e d , 34DCC a t 0-1000 ug/kg t h e o t h e r s 0-100 ug/kg ( f r e s h w e i g h t ) l e v e l s . Chlorohydrocarbons showed some s i g n i f i c a n t p o s i t i v e c o r r e l a t i o n s w i t h w e i g h t , a n d f a t c o n t e n t s of t h e f i s h . S i g n i f i c a n c e s o f t h e d i f f e r e n c e s between p o p u l a t i o n s and t i s s u e s were low or n e g l i b l e except t h a t t h e c h l o r o p h e n o l s i n l i v e r were a t c l e a r l y h i g h e r l e v e l than i n muscle or eggs.
INTRODUCTION
P e r s i s t e n t and t o x i c o r g a n o c h l o r i n e compounds form a t h r e a t t o man and environment which has been i n t e n s i v e l y s t u d i e d w h i l e t h e s e substances can be monitored by e x t r e m e l y s e n s i t i v e a n a l y s i s methods. B a l t i c salmon (Salmo s a l a r ) and t r o u t (Salmo t r u t t a ) have a g r e a t importance as food and, w h i l e l o c a t i n g a t high t r o p h i c l e v e l of t h e a q u a t i c ecosystem, appeared t o be a v e r y s u i t a b l e sample m a t e r i a l t o s t u d y t h e appearance o f t h e p o t e n t i a l l y harmful x e n o b i o t i c s . The accumulation of these substances i n t i s s u e s of p a r e n t f i s h might a l s o d i s t u r b t h e development of t h e i r gametes, and even t h e i r of÷springs. In t h e p r e s e n t s t u d y t h e w e l l known b i o c i d i c o r g a n o c h l o r i n e hydrocarbans were s e l e c t e d t o be a n a l y z e d . In a d d i t i o n , c h l o r o p h e n o l i c compounds, among which some might be p e r s i s t e n t and harmful i n b i o s p h e r e , were taken %o be s t u d i e d , because we i n J y v i s k y l i posess a complete r e f e r e n c e standard c o l l e c t i o n of p o l y c h l o r o p h e n o l s (PCP), c a t e c h o l s (PCC) and g u a i a c o l s (PCS) and have developed t h e i r a n a l y s i s methods a t l oN l e v e l i n b i o l o g i c a l samples.
1729
1730
. .,..,.,. ) '~'~.,.,'~. -a'i "~
SAMPLES
Catching areas o f the s t u d i e d p o p u l a t i o n s are i n d i c a t e d as numbers i n t h e map (Fig. 1). The ~ l~ sampled p o l u l a t i o n s were s e l e c t e d on t h e b a s i s ~ ') of d i f f e r e n t m i g r a t i n g b e h a v i o u r . Salmons of I ./ p o p u l a t i o n 1 (Kemi River) m i g r a t e t o t h e B a l t i c I'. ~.~ p r o p e r , and those o f p o p u l a t i o n 3 (Kymi R i v e r ) ~ ~) .) mainly m i g r a t e i n the Gulf o~ F i n l a n d 111. Trout ~ . /-.9~ ~. ~weoen ) USSR ( p o p u l a t i o n 2, Kemi r i v e r ) are q u i t e l o c a l , y ~ # , j, r "~ P o p u l a t i o n s (1-:3) were catched by p r o f e s s i o n a l /.yr "x fishermen d u r i n g spawning m i g r a t i o n on the Sea ~__ ? r|nland ") near t h e corresponding r i v e r m o u t h . P o p u l a t i o n s ~ Gulf ) .,," 1 (salmon) and 2 ( t r o u t ) were kept a l i v e i n ~ B0~hni,~ // freshwater f l o w o f Kemi r i v e r and p o p u l a t i o n 3 ~. [ / / ~ (salmon) i n Kymi r i v e r , r e s p e c t i v e l y , from 3une ¢ ~ ' ~'~v.''~'~r~ .,--'--~ r , J ~ - ' " ~ "~.._ '~ \/~ ) a t the Central Fish C u l t u r e S t a t i o n of Northern ~//_ ~...L"~ -• 8'1ttc .~T T F i n l a n d o f t h e F i n n i s h Game and F i s h e r i e s Research ~a (--"\,~ I n s t i t u t e . In October eggs were s t r i p p e d and f i s h ~ F ~ -I were s a c r i f i e d . They were measured, weighed, and Y / ~J t h e muscle, l i v e r and u n f e r t i l i z e d egg samples were taken and stored f r o z e n . FIGURE 1. Sampling areas. COMPOUNDS ANALYZED S t r u c t u r e s and names of t h e compounds sought from a l l samples are given below, chlorohydrocarbons i n F i g . 2, c h l o r o p h e n o l s i n F i g . 3. In a d d i t i o n , p o l y c h l o r i n a t e d dibenzofurans (PCDF), p o l y c h l o r i n a t e d d i b e n z o - p - d i o x i n s (PCDD) were s t u d i e d from t h r e e muscle samples of each f o u r p o p u l a t i o n s ( r e s u l t s are not included h e r e ) . CCl2
CHCI z
CCl]
Cl
c, DOE
Cl ~ C I
c,
ODD
/
c, o, Q ,e Cl
DOT
Clp
HCB
PCB
Hexachloro- Polychlori nated
P e r s i s t e n t residues o f the i n s e c t i c i d e DDT
benzene
CH 3
CI
Cl
Cl
Cl
C
I
o
C! .cl
Cl
a
cl
Lindan
H3C CH3 GYM
Cl
¢1 0 '~ ~1
LIND
Cl
..o
OXY
0
bi phenyls
C!
o
CI
¢1
"¢~1
C!
CI
c, GAMMA
ALPHA
TRANS
2,3,6-Trichlo- Oxychlordane y"-Chlordane o~-Chlordane Trans-nonachlor rocymene FIGURE 2. S t r u c t u r e s and names o f t h e chlorohydrocarbons analyzed.
1731
23DCP
Cl
26DCP
2LIDCP
I
el" v
345TCP ~ C H
2346TECP 3
4SDCG H3CO
DMP
"CI
2356TECP
3LI5TCG
CL~H3
q56TCG
I
"'CI
PECP
TECG
H
CI
245TCP
Clf ~ ,
L ~ I cLH3 C 1 ~ H 3
H3
Cl" "~,~ ~1
246TCP
Ci
CI
34DCC
CI
L
345TCC
H
Cl" ~1 "el TECC
FIGURE 3. Structures and name abbreviations of the chlorophenol analyzed in the present study.
compounds
Seventeen chlorophenol compounds which have been found in aquatic w i l d l i f e /2-5/ were chosen to the analytical reference standard (Fig. 3). The authentic reference compounds were p u r i f i e d (PCPs) or synthesized (PCCs and PCGs) and t h e i r analytical properties exposed in Jyviskyl& /6-10/.
ANALYSIS PROCEDURES Chlorohvdrocarbons and chloroohenols Weighed part of the homogenized muscle, l i v e r or egg sample was mixed with 3 times higher amount of dry sodium suphate and measured amounts of the internal standards (2,4,6-trichlorobiphenyl for chlorohydrocarbons and 2,3,6-trichlorophenol f o r chlorophenol compounds). Soxhlet extraction with a solvent mixture hexane-acetone--diethyl e t h e r - l i g h t petroleum b.p. 40-60 (2.5:5.5:1:9 v/v) was performed f o r 6 hours and the extract evaporated by nitrogen gas stream. The residue was weighed %o obtain f a t contents and then dissolved in 5 ml of hexane.
1732
P a r t o f t h e hexane s o l u t i o n (2 ml) was shaken w i t h conc. sulphuric acid and a n a l y s e d by SC/ECD f o r chlorohydrocarbons as d e s c r i b e d p r e v i o u s l y / 5 / .
C h l o r o p h e n o l d e t e r m i n a t i o n p r o c e d u r e was somewhat m o d i f i e d from
the
pre-
v i o u s one / 5 / . A n o t h e r 2 ml o f t h e hexane s o l u t i o n was mixed w i t h 2 ml o f e t h e r s 3 ml o f 0 . 2 N NaOH and 3 ml o f wet a n i o n exchange r e s i n Sephadex QAE-25 and shaken f o r 5 m i n u t e s . The s o l v e n t s were d e c a n t e d away, 2 ml e t h e r and 2 ml o f w a t e r s o l u t i o n o f KC1 ( 0 . 0 5 N) and HC1 ( 0 . 2 N) added and shaken f o r 2 min. The e t h e r l a y e r was added t o 50 ml of water solution which contains 1 ml o f 70 % p o t a s s i u m c a r b o n a t e and 1 ml o f a c e t i c a c i d a n h y d r i d e and shaken f o r 5 min. w i t h 5 ml o f hexane. The hexane l a y e r was e v a p o r a t e d t o 1 ml volume and sample o f i t i n j e c t e d t o a gas chromatograph O r i o n A n a l y t i c a MICROMAT HRGC 412 w i t h d u a l column o p e r a t i o n . The columns were o f ~used s i l i c a c o a t e d w i t h SE 54 and OV 1701. N i - 6 3 EC d e t e c t o r s were used i n t e m p e r a t u r e - p r o g r a m m e d r u n n i t r o g e n as c a r r i e r gas. Chlorophenol a c e t a t e s were i d e n t i f i e d comparing t o t h e a u t h e n t i c r e f e r e n c e s t a n dard m i x t u r e and q u a n t i f i e d u s i n g r e s p o n s e f a c t o r s against the internal standard. L i m i t o f d e t e r m i n a t i o n was ( i n f r e s h w e i g h t ) 0 . 5 n g / g (ppb) ~or chloroh y d r o c a r b o n s and c h l o r o p h e n o l s c o n t a i n i n g t h r e e o r more c h l o r i n e s , 4 ppb for chlorophenols containing 2 chlorines. The a n a l y s i s r e s u l t s
were s t o r e d i n computer memory and h a n d l e d
dard s t a t i s t i c a l methods p r e v i o u s l y employed food chain x e n o b i o t i c s s t u d i e s / 5 , 1 1 , 1 2 / .
in
our f i s h
by
stan-
and a q u a t i c
RESULTS AND DISCUSSION
Basic s t a t i s t i c s o f t h e samples and t h e i r o r g a n o c h l o r i n e compound c o n t e n t s were c a l c u l a t e d f o r each p o p u l a t i o n ( 1 - 4 ) and f o r each t i s s u e (muscle, livers eggs) and a r e p r e s e n t e d on f r e s h w e i g h t b a s i s i n T a b l e s 1-7. Q u i t e a l a r g e v a r i a t i o n o c c u r e d i n w e i g h t and l e n g h t o f t h e f i s h e s and i n fat c o n t e n t s o f t h e t h r e e t i s s u e s as seen i n T a b l e 1. Chlorohydrocarbons ( F i g . 2 . ) were d e t e c t e d i n a l l p o p u l a t i o n s and t i s s u e s e x c e p t 2 , 3 , 6 - t r i c h l o r o c y mene (SYM) which was n o n - d e t e c t a b l e i n a l l t r o u t t i s s u e s and i n muscles o f t h e Kymi r i v e r salmons ( p o p u l a t i o n 3; see T a b l e s 2 - 4 ) . The l e v e l o f PCB o f t h e w i l d salmons ( p o p u l a t i o n s 1 and 3) was a l i t t l e lower than t h a t o b s e r ed i n Sda~sk Bay salmon / 1 3 / , b u t t h e l e v e l o f SDDT (= DDE + DDD + DDT) o f salmon p o p u l a t i o n s 1 and 3 was a b o u t s i x t i m e s h i g h e r . Ten o f t h e s e v e n t e e n s t u d i e d c h l o r o p h e n o l compounds ( F i g . 3) were d e t e c t e d b u t o n l y i n p a r t o f t h e samples, most f r e q u e n t l y i n l i v e r s where t h e i r l e v e l was h i g h e r t h a n i n o t h e r t i s s u e s . S t a t i s t i c s which i n c l u d e s t h e zero values are presented in Tables 5-7.
1733
TABLE 1. S t a t i s t i c s of the Baltic salmon and trout samples c o l l e c t e d 1983 f o r t h e p r e s e n t a n a l y s e s i n c l u d i n g r e s u l t s o f t h e f a t d e t e r m i n a t i o n s . N o t a t i o n s : x = a v e r a g e , s = s t a n d a r d d e v i a t i o n , N = number o~ s a m p l e s , MIN = s m a l l e s t v a l u e and MAX = l a r g e s t v a l u e . Expl.
Weight kg
x s N MIN MAX
5.00 2.67 15 2.30 10.00
Population 1. Kemi r i v e r Salmon
Lenght cm
Muscle Fat %
Liver Fat %
Egg Fat %
82.0 12.3 15 67.5 101.5
5.43 2.26 15 2.11 9.35
2.37 0.69 15 1.39 3.56
5.68 1.13 15 2.70 7.42
2. Kemi river Trout
x s N MIN MAX
3.15 .619 11 2.30 4.40
66.9 3.38 11 62.5 73.0
3.15 1.21 11 1.62 5.53
2.72 0.70 11 1.86 3.85
5.94 1.33 11 4.31 8.35
3. Kymi r i v e r Salmon
x s N MIN MAX
4.63 .737 3 3.80 5.20
77.3 4.62 3 72.0 80.0
4.45 3 . Za3 3 1.50 8.01
2.06 0.31 3 1.85 2.42
5.54 0.13 3 5.40 5.64
4. H a t c h e r y Salmon
x s N MIN MAX
3.22 .536 10 2.44 4.02
65.1 3.90 10 59.0 71.5
4.02 1.34 10 1.93 5.92
2.30 0.20 10 2.09 2.69
5.13 2.43 10 3.58 11.9
TABLE 2. C h l o r i n a t e d h y d r o c a r b o n s n g / g (ppb) i n f r e s h muscles of Baltic salmon and t r o u t . SDDT = DDE + DDD + DDT. F o r n o t a t i o n s s e e T a b l e 1. HCB
PCB
DDE
DDD
DDT
S D D T OXY GAMMA ALPHA TRANS
LIND
1. K e m i r i v e r , x 19.3 333 s 6.34 115 N 14 14 MIN 10 146 MAX 32 491
Salmon 202 141 4 8 . 0 85.7 74.1 2 3 . 5 14 14 14 83 11 15 373 267 93
390.5 168.0 14 116 713
13.6 10.7 14 4 40
13.3 11.3 14 0 32
15.1 8.31 14 0 30
14.2 6.41 14 0 24
5.00 5.75 14 0 20
2. K e m i r i v e r , x 4.91 425 s 2.26 173 N 11 11 MIN 1 147 MAX 9 733
Trout 145 1 6 . 6 3 0 . 5 59.7 19.6 13.6 11 11 11 41 1 5 241 71 48
191.6 75.1 11 47 282
10.5 6.56 11 0 19
0.91 2.07 11 0 6
1.73 1.68 11 0 5
7.18 4.51 11 0 13
1.36 1.29 11 0 3
3. Kymi r i v e r 5 Salmon X 9.67 350 109 112 5 5 . 7 s 8.96 136 5 4 . 5 60.6 27.6 N 3 3 3 3 3 MIN 4 199 55 53 27 MAX 20 464 164 174 82
276.0 142.5 3 135 420
28.7 7.77 3 20 35
10.7 5.51 3 5 16
3.00 5.20 3 0 9
12.3 6.03 3 6 18
5.67 2.31 3 3 7
4. Hatchery, Salmon X 5.10 240 76o8 29.6 20.6 s 2.13 116 4 4 . 8 2 6 . 1 1 1 . 0 N 10 10 10 10 10 MIN 3 120 40 3 8 MAX 10 469 192 64 41
127.0 64.6 10 51 234
10.0 7.80 10 3 21
5.20 3.58 10 0 12
5.80 10.7 5.09 6.86 10 10 0 0 19 20
2.10 1.66 10 0 4
SYM 18.8 35.7 11 0 115
5.40 6.99 5 0 17
~
r,l-
0
~ , ~
ii
~0
0~0
ii
0~0 ~
~0~0~
~0
h6
~ 0 ~ 0
0 ~ 0 ~
~
~ 0 0 0
m
(,,I~--,~
~-I~ 0 0 " ~
ho
•~ . ~ O ' q o : r
•
:X:ZZ~n x .~ Z)~-¢ xZ -IOl ",dI~
~
.,
~ ~
0
,,
ii
0~
OW~O
~
•~ 0 " 0' O" 0 0 ~ O ~ l
) 0 -I
(A O, (A ~ ~0 "I
0"~
'
~'0
"1 ~.
I~'<
m ~ <
•
x (.4
I~I~
xZ
XXZ=
~
0
~0
W~
O0
~
.
0
~
~O~OW
~ 0 ~
~
~0
*W ~ , ~ O ~ W ~
~ , o
W O ~
~ .
0
~
X~Z~X~ xZ
~
.0
~
ii
~W
m~
~
~w
ii
~0~ ~ 0 ~ 0
0
~
0~ ~
~00 ~
.
0
,
~ "
0
0W~
~ 0 ~
~
0 0
~ 0
~
xZ
='In
OO
"q'1
-I~"
On
i~ i,.,.
O
mo +~
-I1" Ill
t~ < -t.
z
r-
Z O~
"rl
:~
-
.
i
tn
-o
m ,,=, ,n
N "
~"
..I
,... Ut
i~ ~,.,.
I~'D O"
~ I n'-tn
.-400" In"O
"7"
~0~0~
~00~0
~0000
i|
~OOWO
WO0~O
~ 0 ~ 0
ii
~ O W ~
~0~0
~ 0 ~ 0
ii
~ 0 0 ~
~ 0 ~
xZ
I
"I 0'.0',*.*.
U10-~
•
i
ii
O0 im O0
~ 0 ~ 0
W O ~
00~00
~ 0 ~
ii ~0
~ 0 ~ 0
hO(,4 q ~ &4 ~.,.&4
i
O4(4
bo,.., 01. ,.-" 'q o (.,40 ~ • o 2 ,.o~.,. • .la h,.1 CO o UIO, O4 0 1 0
Ol {.n(A .~ o "I
xz
X ) ~.,¢
'~ "~ Z ~a x
"I
x l.O
• 0
~
~ 0 ~O~WO
77
~WW
O0 ii
~ 0 ~
O0 ii
O0 ii ~ 0 ~0~0~
0
0.~ ~,0~
0 ~ ~11~
~m01
,0¢4~"
hO~ ,1~< .,0 O- ~ , . (,41~
xZ
:X:ZZ~
~
,
m~
.
0
~00~0
~m ii
~W
~
WO~O
00~I~
~
=,
=,
~O~W~
~ ,
~
xZ
0
r-
Z to
r" Z~
-.t
o
-4
01
-.I
111
t')
÷
i=I
ii
-4
81
io ul
w
m
:r
"I
,'o D" l.J.
mm
-.I"I bCr D'O
O:3"
JlD t~a.
"I"I
O0
•
.-I
r-
+m
w
1735
TABLE 5. A v e r a g e c o n t e n t s ( x ) o f c h l o r o p h e n o l s ppb i n f r e s h m u s c l e s o f Baltic salmon and t r o u t , s t a n d a r d d e v i a t i o n s (s) and numbers o f samples (N) included. 246TCP 245TCP
TeCP
1. K e m i r i v e r , x 1.9 0.2 s 4.5 0.6 N 13 13
Salmon 5.0 13.6 13
1.8 6.1 13
19.2 50.6 13
5.2 10.0 13
9.3 26.4 13
9.7 17.0 13
9.2 17.7 13
17.2 40.5 13
68.2 85.2 15
2. K e m i r i v e r , x 5.9 2.5 s 8.4 7.2 N 11 11
Trout 29.3 26.9 11
4.2 4.4 11
89.9 185.0 11
2.2 5.8 11
2.9 5.6 11
3.6 6.5 11
2.5 8.4 11
17.8 59.1 11
160.9 269.5 11
3. Kymi r i v e r , x 1.0 0.0 s 1.7 0.0 N 3 3
Salmon 17.3 23.4 3
3.0 3.0 3
0.0 0.0 3
0.0 0.0 3
1.3 2.3 3
0.0 0.0 3
0.0 0.0 3
7.0 6.2 3
29.7 21.4 3
2.0 2.3 10
332.0 330.9 10
4.0 9.9 10
2.6 4.5 10
0.0 0.0 10
0.0 0.0 10
2.0 3.3 10
350.1 336.0 10
4. H a t c h e r y , Salmon x 1.7 3.5 2.3 s 3.5 5.3 2.8 N 10 10 10
P e C P 34DCC 345TCC
DMP
T E C C 456TCB
TEC8
SUM
TABLE b. A v e r a g e c o n t e n t s ( x ) o f c h l o r o p h e n o l s ppb i n f r e s h l i v e r s a m p l e s o f B a l t i c salmon and t r o u t , s t a n d a r d d e v i a t i o n s ( s ) and numbers o f samples (N) included. 246TCP 245TCP
TeCP
1. K e m i r i v e r , x 5.9 18.5 s 10.3 39.3 N 15 15
Salmon 2.2 3.4 15
2. Kemi r i v e r , x 15.0 25.6 s 16.2 54.8 N 11 11 3. x s N
Kymi r i v e r , 2.3 74.3 4.0 128.7 3 3
P e C P 34DCC 345TCC
DMP
TeCC
456TC8
TeC8
SUM
3.1 5.4 15
247.7 202.2 15
4.7 6.8 15
14.9 35.8 15
3.4 9.5 15
8.4 24.4 15
17.0 29.1 15
325.9 227.6 15
Trout 28.9 22.4 11
12.8 9.9 11
319.5 377.4 11
15.1 33.9 11
8.6 15.4 11
6.4 13.3 11
5.1 13.2 11
6.5 17.2 11
443. & 457.7 11
Salmon 196.7 278.4 3
68.7 50.3 3
118.7 121.6 3
0.0 0.0 3
4.3 7.5 3
0.0 0.0 3
30.0 39.7 3
2.0 3.5 3
497.0 497.0 3
1.4 3.1 10
210.9 128.8 10
5.& 4.7 10
3.8 4.0 10
18.5 57.5 10
5.4 6.9 10
1.6 3.1 10
260.8 139.9 10
4. H a t c h e r y , Salmon x 10.3 3.3 0.0 s 31.5 5.1 0.0 N 10 10 10
1736
TABLE 7 . A v e r a g e c o n t e n t s (×) o f c h l o r o p h e n o l s ppb i n f r e s h egg s a m p l e s o f Baltic salmon and t r o u t , s t a n d a r d d e v i a t i o n s ( s ) and numbers o f samples (N) included. 246TCP 245TCP
TeCP
P e C P 34DCC 345TCC
DMP
TeCC
1. K e m i r i v e r , x 5.4 1.2 s 9.2 2.5 N 15 15
Salmon 13.1 35.0 15
1.4 2.6 15
26.8 47.7 15
1.0 2.4 15
2.0 4.1 15
4.7 12.2 15
2. K e m i r i v e r , x 10.7 6.7 s 10.1 22.3 N 11 11
Trout 37.2 26.8 11
9.9 9.1 11
32.9 108.8 11
0.0 0.0 11
0.1 0.3 11
3. x s N
Kymi r i v e r , 2.3 0.0 3.2 0.0 3 3
Salmon 22.7 26.4 3
1.7 2.1 3
0.0 0.0 3
0.0 0.0 3
4. × s N
H a t c h e r y , Salmon 1.1 0.5 0.3 1.5 1.6 0.7 10 10 10
1.2 2.6 10
17.6 25.5 10
2.9 4.0 10
456TC8
TeC8
SUM
1.7 4.4 15
7.9 16.7 15
65.1 72.7 15
2.2 4.4 11
0.0 0.0 11
1.4 2.2 11
101.1 172.2 11
1.0 1.7 3
0.0 0.0 3
4.0 6.9 3
3.0 2.6 3
34.7 28.0 3
1.3 2.4 10
6.0 12.1 10
1.8 5.7 10
0.1 0.3 10
32.8 32.4 10
TABLE 8 . P e a r s o n c o r r e l a t i o n c o e f f i c i e n t s i n f r e s h muscles o f t h e w i l d salmons ( p o p u l a t i o n s 1 and 3 ) . S i g n i f i c a n c e s : * * p =< 0 . 0 1 and * * * p =< 0 . 0 0 1 . Fat Weight Lenght DDE DDD DDT LIND HCB PCB OXY ALPHA GAMMA TRANS TeCP PeCP TECG 246TCP DMP
.4257 .4813 .9768 .9958 .9387 -.4040 .7079 .9456 .7965 .9256 .1190 .9211 -.6960 -.2470 .2578 -.1044 -.7170
** ** *
* * *
Weight
Lenght
1.0000 .9801 * * .2948 .4250 .4859 .3474 -.2663 .5055 .4806 .4054 .8919 * .5346 .5876 .9834 * * -.0378 -.4119 -.3014
.9801 * * 1.0000 .7298 .7990 .8260 .0313 .1848 .8811 .8434 .6045 .6979 .8334 .4364 .9750 -.1521 -.4268 -.4808
1737
Pearson c o r r e l a t i o n s ( T a b l e 8) oT t h e measured r e s i d u e c o n t e n t s w i t h Tat w e r e p o s i t i v e and many a l s o s i g n i T i c a n % T o t c h l o r o h y d r o c a r b o n s e x c e p t T o t l i n d a n ( L I N D } . I n c o n t r a r y , c h l o r o p h e n o l s showed no s i g n i n i T i c a n c e i n the corresponding correlations. T h e r e T o r e , i n c o m p a r i s o n s between p o p u l a t i o n s and t i s s u e s T a t b a s i s i s t a k e n T o t c h l o r o h y d r o c a v b o n s and Tresh w e i g h t basis Tor c h l o r o p h e n o l s . Due t o t h e common s o u r c e sum oT t h e DDT r e s i d u e s (SDDT = DDE+DDD+DDT) and sum oT t h e c h l o r d a n e r e s i d u e s (SCHL = OXY+GAMMA+ ALPHA+TRANS) on T a t b a s i s i s compared. I n c o m p a r i s o n oT t h e c h l o r o p h e n o l s o n l y t h e i r sum i s t a k e n i n t o a c c o u n t w h i l e i t showed l o w e r v a r i a t i o n than the individual compounds ( T a b l e s 5 - 7 ) . These s u m m a r i s i n g c o m p a r i s o n s a r e p r e s e n t e d i n F i g . 4.
.T~O;ppb
HCB in f a t liver
muscle
ppm
m.
eggs
PCB in f a t liver
muscle
eggs
20~
o
1 2
ppm 1o.
~i
q
1 2
3
~
I
2
3
o
q
ppm 2.
Sum of DDT residue~ in f a t muscle liver eggs
NNn 1
2 3
q
1 2
ppm LIND [:3 z~ muscle
)
q
i,-,
12
and liver
SYM r~
z 3
3
1
in f a t eggs
q
12
I-1FlnF1 1
3 q
2 ,3 q
Sum of chlordanes in f a t muscl e I i ver eggs
I
3 q
2 )
2
3
q
1 2
3 4
1
2 ]$
q
ppb Sum of chlorophenols in fresh eggs i .muscle l i v e r
°"
o
I
r~
F-1
2 I q I
;,
Ix
q I
qlz
....
z 3
q 1 ~
il ,t-t 1 2'3
q
I Fdt. q
12
~ q
FIGURE 4. A v e r a g e c o n t e n t s i n d i f f e r e n t t i s s u e s o f t h e four populations: 1. Kemi r i v e r s a l m o n . 2 . Kemi r i v e r t r o u t . 3. Kymi r i v e r s a l m o n . 4. H a t c h e r y salmon.
1738
Weight and l e n g t h showed no s i g n i f i c a n t Pearson c o r r e l a t i o n s i n fish muscles e x c e p t weight t o PeCP and GAMMA| T a b l e 8. More i n f o r m a t i o n on p o s s i b l e i n t e r f e r e n c e s was o b t a i n e d by s t e p w i s e m u l t i p l e l i n e a r regression analyses / 1 1 / where F a t , Weight, Lenght and P o p u l a t i o n were taken t o be e x p l a n a t o r y v a r i a b l e s . The l a t t e r were f r e q u e n t l y s i g n i f i c a n t f o r chlorohydrocarbons e x c e p t never f o r OXY, LIND and SYM, n o n s i g n i f i c a n t f o r c h l o rophenols. Covariance ANOVA t e s t which e l i m i n a t e s t h e i n t e r f e r e n c e of Weight, Lenght and Fat showed t h a t t h e d i f f e r e n c e s between t h e chlorohydrocarbon c o n t e n t s of p o p u l a t i o n s were s i g n i f i c a n t e x c e p t f o r LIND and SYM. In c o n t r a r y , o n l y few s i g n i f i c a n t d i f f e r e n c e s o f t h e p o p u l a t i o n s were o b t a i n e d f o r chlorophenols. The l a t t e r were those of PeCP i n a l l t i s s u e s and those o f TeCP i n muscles and l i v e r s . For
chlorohydrocarbons5
t h e d i f f e r e n c e s between t i s s u e s
were
nonsignifi-
cant. However, contents in l i v e r f a t i n most cases were s l i g h t l y lower than i n muscle o r egg f a t ( F i g . 4 ) . More v i s i b l y , c h l o r o p h e n o l l e v e l s o f liver were h i g h e r than t h o s e of muscle o r eggs ( f r e s h weight b a s i s ; F i g . 4). A general food chain enrichment power o f o r g a n o c h l o r i n e s c o u l d be
estima-
ted by comparing average c o n t e n t s measured i n s p e c i e s r e p r e s e n t i n g d i f f e r e n t t r o p h i c l e v e l s . With t h e p r e s e n t salmon r e s u l t s such comparisons might be done as presented i n Tables 9 and 10.
TABLE 9.
Average c o n t e n t s ppm i n muscle f a t
Species/ Population
HCB
PCB
Starling/ F i n l a n d 1983
.043
1.44
Pike/Vatia f r e s h w a t e r 83
.020
Herring/ B a l t i c 1982
Sum of DDT
tissues. Sum of Chlord.
LIND
Refefence
.523
.076
.334
14
2.68
.061
.000
.020
15
7.00
2.14
.563
16
Salmon/ 1. Kemi r i v e r 82
.401
6.68
7.70
1.03
.000
T h i s work
Sea g u l l / B a l t i c 83
.460
86.3
31.6
1.35
.006
17
Osprey/ F i n l a n d 70-82
.21&
29.1
16.7
.847
.201
17
White-tailed eagle/Baltic 1980-83
13.0
12182
3603
148.3
7.08
17
1739
Table 10. Average c h l o r o p h e n o l c o n t e n t s ppb i n f r e s h muscles. Species/ Population
34DCC
246TCP
TeCP
PeCP
.083
1.21
14 15
Starling/ F i n l a n d 1983
.000
Burbot/Vatia # f r e s h w a t e r 83
37.3
9.20
12.1
2.6
Salmon/ 1. Kemi r i v e r 82
19.2
1.9
5.0
1.8
White-tailed eagle/Baltic 1980-83
0.00
63.8
89.0
2152 ##
Refefence
T h i s work 17
# F i v e km downstreams from a pulp b l e a c h i n g p l a n t ## Very l a r g e v a r i a t i o n from 14 t o 8571 ppb
Comparison o f t h e c h l o r o h y d r o c a r b o n l e v e l s p o i n t s o u t c h l o r d a n e s as possible e n v i r o n m e t a l p o i s o n s which a r e s i m i l a r t o PCB and DDT r e s i d u e s . T h e i r l e v e l i n t h e p r e s e n t salmon samples i s however low, ~hich i s unders t a n d a b l e because c h l o r d a n e s never have been used i n S c a n d i n a v i a . They form an i m p o r t a n t group o f g l o b a l p o l l u t a n t s which come t o our environment by athmospheric t r a n s f e r and are d e t e c t a b l e a l l around i n biosphere /1420/. P e s t i c i d e LIND and g l o b a l p o l l u t a n t HCB which i s a f u n g i c i d e b u t comes i n major amounts from combustions / 2 1 , 2 2 / were w i d e l y d e t e c t e d i n salmons, t o o , b u t showed n o t v e r y h i g h food chain enrichment p o t e n t i a l . 34DCC i s one of t h e main c h l o r o p h e n o l s formed i n pulp bleaching ( l i g n i n c h l o r i n a t i o n ) process. T h e r e f o r e i t s appearance i n salmons c o u l d i n d i c a t e a wide i n f l u e n c e range of c h l o r i n a t i o n s . The o t h e r c h l o r o p h e n o l s g e n e r a l l y found 246TCP, TeCP and PeCP a r e formed i n c h l o r i n a t i o n o f phenol t o make wood p r e s e r v a t i v e s and i n waste combustions / 2 3 , 2 4 / . These f o u r components do n o t show v e r y high enrichment poNer a l t h o u g h PeCP was once anomalously found a t h i g h l e v e l i n r o t t e n w h i t e - t a i l e d e a g l e muscle / 1 7 / . In c o n t r a r y , some o t h e r PCPs and PCGs had shown b i o a c c u m u l a t i o n and enrichment p r o p e r ties i n a q u a t i c food c h a i n / 4 , 5 , 1 2 , 1 5 / which was seen i n t h e p r e s e n t s a l mon and t r o u t samples o n l y as an o c c a s i o n a l appearance o f t h e s a m e compounds (Tables 5 - 7 ) . To a c h i e v e more p r e c i s e i n f o r m a t i o n o f p o s s i b l e environmental impact of o r g a n o c h l o r i n e compounds d e t e c t e d i n f i s h , b i r d s p e c i e s , t h e i r eggs and j u v e n i l e s which have f i s h as food should be s t u d i e d by manner d e s c r i b e d by i n one o f our r e p o r t s i n 1981 / 2 5 / . There are o t h e r p e r s i s t e n t o r g a n o c h l o r i n e s , p o t e n t i a l b i o c i d e s , which are not y e t w e l l s t u d i e d . We suspect t h a t c h l o r o p h e n o l s might form p e r s i s t e n t m e t a b o l i t e s . Consequently, p o s s i b l e appearance of b i o m e t h y l a t e d c h l o r o p h e n o l i c ( a l s o d i m e r i c ) compounds and n e u t r a l c h l o r o p h e n o l dimers (PCDPE, PCDF and PCDD), c a l l e d t o g e t h e r a r o m a t i c c h l o r o e t h e r s (ACEs) / 2 6 / , i n s a l mon and t r o u t i s under s t u d y i n our l a b o r a t o r i e s .
A~knowledoements. We would l i k e to extend our thanks t o Kemijoki Oy f o r t h e salmons and t r o u t o f t h e K e m i j o k i p o p u l a t i o n . The s t u d y was f i n a n c i a l l y supported by t h e M i n i s t r y o f A c r i c u l t u r e and F o r e s t r y of Finland (LYSTI workgroup).
1740
REFERENCES
1. 2.
3. 4. 5. 6.
7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.
E. Ikonen and H. Auvinen. ICES, C.M. 1984/M:4 (Mimeo r e p o r t ) 31 pp. J . P a a s i v i r t a , M . - L . H a t t u l a , J.S&rkk~, J . J a n a t u i n e n , M.Pitkanen and T . K u r k i r i n n e . On t h e a n a l y s i s and appearance o f t h e o r g a n i c c h l o r i n e compounds i n the Lake P&ijanne ecosystem. I n : Organiska M i j ~ g i f t e r i V a t t e n . NORDFORSK M i l j 6 v ~ r d s e r i e n P u b l i k a t i o n 1776:5 (1976) 439. L.Landner, K . L i n d s t r ~ m , M.Karlsson, J . N o r d i n and L.S~rensen. B u l l . E n v i r o n . Contamin. T o x i c o l . 18 (1977) 6a3. J . P a a s i v i r t a , J.S&rkk&, T . L e s k i j & r v i and A. Roos. Chemosphere (1980) 441. J . P a a s i v i r t a , J.S&rkk&, M.Aho, K.Surma-Aho, J.Tarhanen and A.Roos. Chemosphere 10 (1981) 405. J . K n u u t i n e n . S y n t h e s i s , s t r u c t u r e v e r i f i c a t i o n and gas chromatographic d e t e r m i n a t i o n o f c h l o r i n a t e d c a t e c h o l s and g u a i a c o l s o c c u r i n g i n spent bleach l i q u o r s of k r a f t p u l p m i l l s . Ph.D. t h e s i s . Department o f Chemistry, U n i v e r s i t y o f Jyv~skyl~ Research Report 18 (1984) ISBN 951-679-184-0. J . S . K n u u t i n e n and J.T.Tarhanen. J. Chem. Eng. Data. 266 (1981) 347. J . S . K n u u t i n e n , J.Tarhanen and M . L a h t i p e r & . Chromatographia 15 (1982) 9. J . K n u u t i n e n . J.Chromatogr. 242 (1982) 289. J . K n u u t i n e n and I.O.O.Korhonen. J.Chromatogr. 257 (1983) 127. J . P a a s i v i r t a and R . L i n k o . Chemosphere 9 (1980) 643. J . P a a s i v i r t a , J.S&rkka, K.Surma-Aho, T.Humppi, T.Kuokkanen and M . M a r t t i n e n . Chemosphere 1_22 (1983) 239. J . F a l a n d y s z . Meeresforsch. 29 (1982) 219. J . P a a s i v i r t a , R. Paukku, K.Surma-Aho and L . W e l l i n g . Chemosphere, in print. J . P a a s i v i r t a , J . K n u u t i n e n , J.Tarhanen, K . H e i n o l a , K.M&ntykoski, K.Surma-Aho and J.S~rkk~. Report ( i n F i n n i s h ) . Board o f Waters, F i n l a n d . D u b l i c a t e 1984:250 (1984). R.Moilanen, H.Pyysalo, K. Wickstr6m and R. L i n k o . B u l l . E n v i r o n . Contamin. T o x i c o l . 29 (1982) 334-351. J . P a a s i v i r t a , R.Paukku, K.Surma-Aho, J.Tarhanen and L. W e l l i n g . Anal y s e s of X e n o b i o t i c s i n B i r d s . Report t o t h e M i n i s t r y o f Environment, F i n l a n d , 24.1.1984 ( i n F i n n i s h ) . B.Jansson, R.Vaz, 8 . B l o m k v i s t , S;Jensen and M. Olsson. Chemosphere (1979) 181. H.Pyysalo, K.Wickstr~m and K.Litmanen. Chemosphere 10 (1981) 865. J . P a a s i v i r t a , J.S~rkk~, K.Surma-Aho, T.Humppi, T.Kuokkanen and M . M a r t t i n e n . Chemosphere 12 (1983) 239. B. A h l i n g . S c i . T o t a l Environm. 9 (1978) 117. K.D.Courtney, Hexachlorobenzene (HCB): A Review. Environm. Research 2__00 (1979) pp. 225-266. U.G.Ahlborg and T.M. Thunberg. C h l o r i n a t e d Phenols: Occurence, T o x i c i t y , Metabolism and Environmental Impact. CRC C r i t i c a l Reviews on Toxi c o l o g y J u l y (1980) 1-33. T.O. T i e r n a n , M . L . T a y l o r , J.H. G a r r e t t , 8.F.Van Ness, J . G . S o l c h , D.A. Deis and D.J.Wagel. Chemosphere 12 (1983) 595. J . P a a s i v i r t a , J.S~rkk~, J . P e l l i n e n and T.Humppi. Chemosphere 10 (1981) 787. J . P a a s i v i r t a , K. H e i n o l a , T.Humppi, A . K a r j a l a i n e n , J . K n u u t i n e n , K.Mant y k o s k i , R.Paukku, T . P i i l o l a , K.Surma-Aho, J.Tarhanen, L. W e l l i n g , H.Vihonen and J . S & r k k i . Chemosphere 1_44 (1985) 469.
(Received in Germany 24 June 1985; accepted
ii October
1985)