Oscillation of second-order sublinear neutral delay difference equations

Oscillation of second-order sublinear neutral delay difference equations

Applied Mathematics and Computation 146 (2003) 543–551 www.elsevier.com/locate/amc Oscillation of second-order sublinear neutral delay difference equa...

117KB Sizes 0 Downloads 64 Views

Applied Mathematics and Computation 146 (2003) 543–551 www.elsevier.com/locate/amc

Oscillation of second-order sublinear neutral delay difference equations Wan-Tong Li

a,*

, S.H. Saker

b,c

a

Department of Mathematics, Lanzhou University, Lanzhou, Gansu 730000, PeopleÕs Republic of China b Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt c Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Matejki 48/49, 60–769 Poznan, Poland

Abstract We present new oscillation criteria for the second-order sublinear neutral delay difference equation Dðan Dðxn þ pn xns ÞÞ þ qn xcnr ¼ 0; where 0 < c < 1 is a quotient of odd positive integers and Ó 2002 Elsevier Inc. All rights reserved.

P1

1 n¼0 an

¼ 1:

Keywords: Oscillation; Delay neutral difference equations

1. Introduction In this note we shall consider the second-order sublinear neutral delay difference equation Dðan Dðxn þ pn xns ÞÞ þ qn xcnr ¼ 0;

n ¼ 0; 1; 2 . . . ;

ð1Þ

where 0 < c < 1 is a quotient of odd positive integers, D denotes the forward difference operator Dxn ¼ xnþ1  xn and D2 xn ¼ DðDxn Þ for any sequence fxn g of *

Corresponding author. E-mail addresses: [email protected] (W.-T. Li), [email protected], [email protected] (S.H. Saker). 0096-3003/$ - see front matter Ó 2002 Elsevier Inc. All rights reserved. doi:10.1016/S0096-3003(02)00604-5

544

W.-T. Li, S.H. Saker / Appl. Math. Comput. 146 (2003) 543–551

real numbers, s, r are fixed nonnegative integers, fan g, fpn g and fqn g are sequences of real numbers such that an > 0;

1 X 1 ¼ 1; a n¼n0 n

0 6 pn < 1

for all n P 0 and

qn P 0;

ð2Þ

and qn is not identically zero for large n. By a solution of (1) we mean a nontrivial sequence fxn g which is defined for n P  N ; where N ¼ maxfs; rg; and satisfies Eq. (1) for n ¼ 0; 1; 2 . . . Clearly if xn ¼ An

for n ¼ N ; . . . ; 1; 0

ð3Þ

are given, then Eq. (1) has a unique solution satisfying the initial conditions (3). A solution fxn g of (1) is said to be oscillatory if for every n1 > 0 there exists an n P n1 such that xn xnþ1 6 0; otherwise it is nonoscillatory. Eq. (1) is said to be oscillatory if all its solutions are oscillatory. Recently, there has been an increasing interest in the study oscillation and asymptotic behavior of solutions of second-order neutral delay difference equations, for example see [1–18] and the references therein. To the best of our knowledge, nothing is known regarding the qualitative behavior of solutions of Eq. (1) in the sublinear case. Therefore our aim in this paper is to give several oscillation criteria of Eq. (1) when (2) holds.

2. Main results We will assume throughout this paper that Dan P 0. Theorem 2.1. Assume that (2) holds. Furthermore, assume that there exists a positive sequence fqn g such that for every a P 1 " # 1c 2 n X alr ðaðl þ 1  rÞÞ ðDql Þ ql Ql  lim sup ¼ 1; ð4Þ n!1 4cql l¼0 c

where Qn ¼ qn ð1  pnr Þ . Then every solution of Eq. (1) oscillates. Proof. Assume for the sake of contradiction that Eq. (1) has a nonoscillatory solution fxn g; we may assume without loss of generality that xnN > 0 for n P n0 > 0: (the case when xn < 0 is similar and hence is omitted). Set zn ¼ xn þ pn xns :

ð5Þ

By, assumption (2) we have zn > 0 for n P n0 and from (1) it follows that Dðan Dzn Þ ¼ qn xcnr 6 0;

n P n0 ;

W.-T. Li, S.H. Saker / Appl. Math. Comput. 146 (2003) 543–551

545

and so fan Dzn g is an eventually nonincreasing sequence. We first show that Dzn P 0 for n P n0 : In fact, if there exists an integer n1 P n0 such that an1 Dzn1 ¼ c < 0; then an Dzn 6 c for n P n1 , that is c Dzn 6 ; an and, hence zn 6 zn1 þ c

n1 X 1 ! 1 as a i¼n1 i

n ! 1;

which contradicts the fact that zn > 0 for n P n0 : Also we claim that D2 zn 6 0: If not there exists n1 P n0 such that D2 zn > 0 for n P n1 and this implies that Dznþ1 > Dzn , so that since Dan P 0; anþ1 ðDznþ1 Þ > anþ1 ðDzn Þ P an ðDzn Þ and this contradicts the fact that fan ðDzn Þg is nonincreasing sequence, then D2 zn 6 0 and therefore we have zn > 0;

Dzn P 0;

and

D2 zn 6 0 for n P n0 ;

ð6Þ

and then from (5) and (6) we have xn P ð1  pn Þzn and this implies that for n P n 1 ¼ n0 þ r xnr P ð1  pnr Þznr : From Eq. (1) and the last inequality, we have Dðan Dzn Þ þ Qn zcnr 6 0;

n P n1 :

ð7Þ

Define the function wn ¼ qn

an Dzn : zcnr

ð8Þ

Then wn > 0 and   qn q Dðan Dzn Þ Dwn ¼ anþ1 Dznþ1 D c : þ n c znr znr

ð9Þ

From the fact that Dzn P 0

and

Dðan Dzn Þ 6 0

for n P n1 ;

we have anr Dznr P anþ1 Dznþ1

and

znþ1r P znr :

ð10Þ

Then, from Eq. (1), (8) and (9), we get Dwn ¼ qn Qn þ

Dqn q anþ1 Dznþ1 Dzcnr wnþ1  n c : qnþ1 znþ1r zcnr

ð11Þ

546

W.-T. Li, S.H. Saker / Appl. Math. Comput. 146 (2003) 543–551

From (10) and (11), we have Dwn 6  qn Qn þ

Dqn q anþ1 Dznþ1 Dzcnr wnþ1  n  c : 2 qnþ1 z

ð12Þ

nþ1r

Now, by using the inequality (cf. [5, p. 39]) xc  yc P cxc1 ðx  yÞ

for all x P y > 0

and

0 < c 6 1;

we find that Dznr c ¼ znþ1r c  znr c P cðznþ1r Þc1 ðznþ1r  znr Þ ¼ cðznþ1r Þ

c1

ðDznr Þ:

ð13Þ

Substitute from (13) in (12), we have Dwn 6  qn Qn þ

Dqn Dznþ1 ðDznr Þ wnþ1  cðznþ1r Þc1 qn anþ1  c 2 : qnþ1 z

ð14Þ

nþ1r

Again, from (10) in (14), we obtain Dwn 6  qn Qn þ

Dqn ðanþ1 Þ2 ðDznþ1 Þ2 c1 wnþ1  cðznþ1r Þ qn  2 ; qnþ1 ðanr Þ zc nþ1r

ð15Þ

and hence, 2

Dwn 6  qn Qn þ

2

Dqn ðanþ1 Þ ðDznþ1 Þ wnþ1  cqn 2 : 1c  c qnþ1 ðanr Þðznþ1r Þ znþ1r

ð16Þ

From (8) and (16), we find Dwn 6  qn Qn þ

Dqn cqn 1 2 wnþ1  :  2 wnþ1 qnþ1 ðznþ1r Þ1c ðanr Þ qnþ1

ð17Þ

From (6), we conclude that zn 6 zn0 þ Dzn0 ðn  n0 Þ;

n P n0 ;

and consequently there exists a n1 P n0 and appropriate constant a P 1 such that zn 6 an for n P n1 ; and this implies that znþ1r 6 aðn þ 1  rÞ

for n P n2 ¼ n1 þ r  1;

W.-T. Li, S.H. Saker / Appl. Math. Comput. 146 (2003) 543–551

547

and, hence 1 ðznþ1r Þ

1c

P

1 ðaðn þ 1  rÞÞ

1c

:

Substitute from the last inequality in (17), we find Dwn 6  qn Qn þ

Dqn cqn wnþ1   w2 2 1c nþ1 qnþ1 qnþ1 anr ðaðn þ 1  rÞÞ 1c

¼ qn Qn þ 2

anr ðaðn þ 1  rÞÞ 4cqn

ðDqn Þ

2

32 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1c pffiffiffiffiffiffiffi ð aðn þ 1  rÞ Þ Dq a nr cqn n7 6 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 wnþ1  5 pffiffiffiffiffiffiffi 2 cqn 1c qnþ1 ðaðn þ 1  rÞÞ anr " # ðaðn þ 1  rÞÞ1c anr ðDqn Þ2 <  qn Qn  : ð18Þ 4cqn Then, we have "

# ðanr Þðaðn þ 1  rÞÞ1c ðDqn Þ2 Dwn <  qn Qn  : 4cqn

ð19Þ

Summing (19) from n2 to n, we obtain " # n X ðalr Þðaðl þ 1  rÞÞ1c ðDql Þ2 ql Ql  wn2 < wnþ1  wn2 <  ; 4cql l¼n 2

which yields " # 1c 2 n X alr ðaðl þ 1  rÞÞ ðDql Þ ql Ql  < c1 ; 4cql l¼n 2

for all large n, which is contrary to (4). The proof is complete.



Remark 2.1. Note that from Theorem 2.1, we can obtain different conditions for oscillation of all solutions of Eq. (1) when (2) holds by different choices of fqn g: Let qn ¼ nk ; n P n0 and k > 1 is a constant. By Theorem 2.2 we have the following result.

548

W.-T. Li, S.H. Saker / Appl. Math. Comput. 146 (2003) 543–551

Corollary 2.1. Assume that all the assumption of Theorem 2.1 hold, except the condition (4) is replaced by 2  2 3 1c k n asr ðaðs þ 1  rÞÞ ðs þ 1Þ  sk X 6k 7 ð20Þ lim sup 4s Qs  5 ¼ 1; k n!1 4cs s¼n0 where Qn ¼ qn ð1  pnr Þc : Then every solution of Eq. (1) oscillates. Remark 2.2. When c ¼ 1, Eq. (1) reduces to the linear delay difference equation Dðan ðDxn þ pn xns ÞÞ þ qn xnr ¼ 0;

n ¼ 0; 1; 2 . . .

and the condition (4) in Theorem 2.1 reduces to " # 2 n X ðalr ÞðDql Þ lim sup ql ql ð1  plr Þ  ¼ 1: n!1 4ql l¼0

ð21Þ

ð22Þ

Then Theorem 2.1 and Theorem 1 in [15] are the same in linear case. Also when pn ¼ 0 and c ¼ 1 Theorem 2.1 and Corollary 1 in [16] are the same. 1

Theorem 2.2. Assume that (2) holds, and let fqn gn¼0 be a positive sequence. Furthermore, we assume that there exists a double sequence fHm;n : m P n P 0g such that (i) Hm;m ¼ 0 for m P 0; (ii) Hm;n > 0 for m > n > 0, (iii) D2 Hm;n ¼ Hm;nþ1  Hm;n : If "  2 # m1 pffiffiffiffiffiffiffiffiffi Dqn q2nþ1 1 X lim sup Hm;n qn Qn  hm;n Hm;n  Hm;n ¼ 1; m!1 Hm;0 n¼n0 4 qn qnþ1 ð23Þ where D2 Hm;n hm;n ¼ pffiffiffiffiffiffiffiffiffi ; Hm;n

  1c qn ¼ cqn = ðaðn þ 1  rÞÞ ðanr Þ :

Then every solution of Eq. (1) oscillates. Proof. Proceeding as in Theorem 2.1, we assume that Eq. (1) has a nonoscillatory solution, say xn > 0 and xnr > 0 for all n P n0 . From the proof of Theorem 2.1 we obtain (18) for all n P n2 . From (18), since Dqn 6 0; we have for n P n2 Dwn 6  qn Qn þ

Dqn q wnþ1   n 2 w2nþ1 ; qnþ1 qnþ1

ð24Þ

W.-T. Li, S.H. Saker / Appl. Math. Comput. 146 (2003) 543–551

549

or qn Qn 6  Dwn þ

Dqn q wnþ1   n 2 w2nþ1 : qnþ1 qnþ1

ð25Þ

Therefore, we have m1 X

Hm;n qn Qn 6 

n¼n2

m1 X

Hm;n Dwn þ

n¼n2

m1 X

Hm;n

n¼n2

m1 X Dqn q wnþ1  Hm;n  n 2 w2nþ1 ; qnþ1 qnþ1 n¼n2

ð26Þ which yields, after summing by parts, m1 X

Hm;n qn qnþ1 6 Hm;n2 wn2 þ

n¼n2

m1 X

wnþ1 D2 Hm;n þ

n¼n2



m1 X n¼n2 m1 X

Hm;n 

qn qnþ1

2 2 wnþ1 ¼ Hm;n2 wn2 

m1 X n¼n2

m1 X

hm;n

Hm;n

Dqn wnþ1 qnþ1

pffiffiffiffiffiffiffiffiffi Hm;n wnþ1

n¼n2

m1 X

Dqn q wnþ1  Hm;n  n 2 w2nþ1 ¼ Hm;n2 wn2 q nþ1 qnþ1 n¼n2 n¼n2 " pffiffiffiffiffiffiffiffiffiffiffiffiffi  #2 m1 X pffiffiffiffiffiffiffiffiffi Dqn Hm;n qn qnþ1  wnþ1 þ pffiffiffiffiffiffiffiffiffiffiffiffiffi hm;n Hm;n  Hm;n qnþ1 qnþ1 2 Hm;n qn n¼n2  2  2 m1 qnþ1 1X Dqn pffiffiffiffiffiffiffiffiffi þ hm;n  Hm;n : 4 n¼k qn qnþ1 þ

Then, m1 X n¼n2

"

Hm;n

2 #  q2nþ1 Dqn pffiffiffiffiffiffiffiffiffi Hm;n Hm;n qn qn  hm;n  < Hm;n2 wn2 6 Hm;0 wn2 4 qn qnþ1

which implies that " 2 #  nX m1 2 1 X q2nþ1 Dqn pffiffiffiffiffiffiffiffiffi Hm;n qn qn  hm;n  qn qnþ1 þ Hm;0 wn2 : Hm;n < Hm;0 4 qn qnþ1 n¼0 n¼0 Hence

" 2 #  m1 q2nþ1 1 X Dqn pffiffiffiffiffiffiffiffiffi lim sup Hm;n Hm;n qn qn  hm;n  < 1; 4 qn qnþ1 m!1 Hm;0 n¼0

which is contrary to (23). The proof is complete. By choosing the sequence fHm;n g in appropriate manners, we can derive several oscillation criteria for (1.1). For instance, let us consider the double sequence fHm;n g defined by

550

W.-T. Li, S.H. Saker / Appl. Math. Comput. 146 (2003) 543–551

Hm;n ¼ ðm  nÞk ; or  Hm;n ¼

 log

mþ1 nþ1

k ;

where k P 1, m P n P 0. Then Hm;m ¼ 0 for m P 0 and Hm;n > 0 and D2 Hm;n 6 0 for m > n > 0: Hence we have the following results.  Corollary 2.2. Assume that all the assumptions of Theorem 2.2 hold, except the condition (23) is replaced by "  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2 # m k2 q2nþ1 1 X Dqn k 2 ðm  nÞk lim sup k ðm  nÞ qn Qn  kðm  nÞ  m!1 m n¼0 4qn qnþ1 ¼ 1; where Qn ¼ qn ð1  pnr Þc . Then every solution of Eq. (1) oscillates. Corollary 2.3. Assume that all the assumptions of Theorem 2.2 hold, except the condition (23) is replaced by " #  k m X q2nþ1 1 mþ1 lim sup log qn Qn  Bm;n ¼ 1; m!1 nþ1 4qn ð logðm þ 1ÞÞk n¼0 where 0

Bm;n

k ¼@ nþ1



mþ1 ln nþ1

k2 2

Dqn  qnþ1

1 s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi k 2 mþ1 A ln : nþ1

Then every solution of Eq. (1) oscillates. Another Hm;n may be chosen as Hm;n ¼ /ðm  nÞ; Hm;n ¼ ðm  nÞ

ðkÞ

m P n P 0; k > 2; m P n P 0;

where / : ½0; 1Þ ! ½0; 1Þ is a continuously differentiable function which satisfies /ð0Þ ¼ 0 and /ðuÞ > 0; /0 ðuÞ P 0 for u > 0; and ðm  nÞðkÞ ¼ ðm  nÞðm  n þ 1Þ ðm  n þ k  1Þ and D2 ðm  nÞ

ðkÞ

¼ ðm  n  1Þ

ðkÞ

 ðm  nÞ

Corresponding corollaries can also be stated.

ðkÞ

¼ kðm  nÞ

ðk1Þ

:

W.-T. Li, S.H. Saker / Appl. Math. Comput. 146 (2003) 543–551

551

Acknowledgements Supported by the NNSF of China (10171040), the NSF of Gansu Province of China (ZS011-A25-007-Z), the Foundation for University Key Teacher by Ministry of Education of China, and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education of China.

References [1] R.P. Agarwal, Difference Equations and Inequalities, Theory, Methods and Applications, Revised and Expanded, 2nd ed., Marcel Dekker, New York, 2000. [2] R.P. Agarwal, P.J.Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers, 1997. [3] R.P. Agarwal, M.M.S. Manuel, E. Thandapani, Oscillatory and nonoscillatory behavior of second-order neutral delay difference equations, Mathl. Comput. Modelling 24 (1996) 5–11. [4] R.P. Agarwal, M.M.S. Manuel, E. Thandapani, Oscillatory and nonoscillatory behavior of second-order neutral delay difference equations II, Appl. Math. Lett. 10 (1997) 103–109. [5] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, 2nd ed., Cambridge University Press, 1952. [6] H.F. Huo, W.T. Li, Oscillation of the Emden-Fowler difference systems, J. Math. Anal. Appl. 256 (2001) 478–485. [7] J.C. Jiang, Oscillatory criteria for second-order quasilinear neutral delay difference equations, Appl. Math. Comp. 125 (2002) 287–293. [8] B.S. Lalli, B.G. Zhang, On existence of positive solutions and bounded oscillations for neutral difference equations, J. Math. Anal. Appl. 166 (1992) 272–287. [9] W.T. Li, Oscillation theorems for second order nonlinear difference equations, Math. Comput. Modell. 31 (7) (2000) 71–79. [10] W.T. Li, S.S. Cheng, Classifications existence of positive solutions of second order nonlinear neutral difference equations, Funk. Evac. 40 (1997) 371–393. [11] W.T. Li, S.S. Cheng, Asymptotically linear solutions of a discrete Emden-Fowler equation, Far East J. Math. Sci. 6 (4) (1998) 521–542. [12] W.T. Li, S.S. Cheng, Characterizing conditions for the existence of nonoscillatory solutions of a discrete Emden-Fowler equation with summable coefficients, Dyn. Sys. Appl. 9 (2000) 457– 461. [13] W.T. Li, X.L. Fan, C.K. Zhong, On unbounded positive solutions of second order difference equations with singular nonlinear term, J. Math. Anal. Appl. 246 (2000) 80–88. [14] W.T. Li, X.L. Fan, C.K. Zhong, Positive solutions of discrete Emden-Fowler equation with singular nonlinear term, Dyn. Sys. Appl. 9 (2000) 247–254. [15] Z. Szafranski, B. Szmanda, Oscillation of some difference equations, Fasc. Math. 28 (1998) 149–155. [16] Z. Szafranski, B. Szmanda, Oscillation theorems for some nonlinear difference equations, Appl. Math. Comp. 83 (1997) 43–52. [17] B.G. Zhang, G.D. Chen, Oscillation of certain second order nonlinear difference equations, J. Math. Anal. Appl. 199 (1996) 827–841. [18] Z. Zhang, J. Chen, C. Zhang, Oscillation of solutions for second-order nonlinear difference equations with nonlinear neutral term, Comp. Math. Appl. 41 (2001) 1487–1494.